JPS58173872A - Amorphous si thin film photovoltaic force element - Google Patents

Amorphous si thin film photovoltaic force element

Info

Publication number
JPS58173872A
JPS58173872A JP57055344A JP5534482A JPS58173872A JP S58173872 A JPS58173872 A JP S58173872A JP 57055344 A JP57055344 A JP 57055344A JP 5534482 A JP5534482 A JP 5534482A JP S58173872 A JPS58173872 A JP S58173872A
Authority
JP
Japan
Prior art keywords
layer
type
amorphous silicon
amorphous
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57055344A
Other languages
Japanese (ja)
Inventor
Hajime Ichiyanagi
一柳 肇
Hiroshi Kawai
弘 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP57055344A priority Critical patent/JPS58173872A/en
Publication of JPS58173872A publication Critical patent/JPS58173872A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To obtain the titled element, high in photoelectric conversion efficiency and flexible in structure, by a method wherein a transparent electrode, on the side of incoming light, is located on a lamination of an N type layer I-type layer, Si layer, and P type SiC layer, all of which are amorphous type and piled up in that order, and the pile is attachecd onto a substrate. CONSTITUTION:A 0.1-2mm.-thick stainless steel substrate 21 is mirrorfinished, whereon SiH4+CH4+B2H6 is decomposed by glow discharge for the formation of an approximately 500Angstrom -thick P type, amorphous SiC layer 22. SiH4 is next decomposed by glow discharge for the formation of an approximately 5,000Angstrom - thick I-type, amorphous Si layer 23. This is followed by the formation of an 50-200Angstrom -thick N type, amorphous Si layer 24 resulting from decomposition by glow discharge of SiH4+PH3, which is followed by the formation by evaporation of a 300-5,000Angstrom -thick transparent electrode 25. With the element being constituted as such, photoelectric conversion rate as high as 8% is realized. Use of P type, amorphous SiC ensures an adequate photoelectromotive force and realizes a P type layer that is uniformly thin. Use of a stainless substrate results in an amorphous Si thin film photovoltaic force element that is rigid and flexible.

Description

【発明の詳細な説明】 本発明は、太陽電池などの光電変換デバイスに」いるア
モルファスシリコン薄膜光起電力素子にする。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an amorphous silicon thin film photovoltaic element used in photoelectric conversion devices such as solar cells.

従来、かかる太陽電池などの光電変換デバイスに用いら
れる半導体材料には、チョクラルスキ法、フローティン
グゾーン法あるいはリボン状に引き上げる方法により作
製したシリコン単結晶が用いられてきた。しかし、かか
る単結晶はその原価から見て一般的な電力供給方法とし
ては普及していない。近年、製造原価を低減する方法と
して、モノシラン(SiH4)などをグロー放電中で分
解するなどの方法によって得られる水素を含むアモルフ
ァス膜状のシリコンを用いることが提案されている。こ
れらの方法によって、禁止帯中に存在する局在準位が比
較的少なく、置換型不純物のドーピングによる価電子制
御がある程度可能なアモルファスシリコン膜を得ること
が可能となり、太陽電池等の光電変換デバイスを作製で
き、その製造原価は低減される見通しとなっている。
Conventionally, silicon single crystals produced by the Czochralski method, the floating zone method, or the ribbon-like pulling method have been used as semiconductor materials for photoelectric conversion devices such as solar cells. However, such single crystals are not widely used as a general power supply method due to their cost. In recent years, as a method of reducing manufacturing costs, it has been proposed to use an amorphous silicon film containing hydrogen obtained by decomposing monosilane (SiH4) or the like in a glow discharge. These methods make it possible to obtain amorphous silicon films that have relatively few localized levels in the forbidden band and that can control valence electrons to some extent by doping with substitutional impurities, making them suitable for photovoltaic devices such as solar cells. It is expected that the manufacturing cost will be reduced.

しかし、このようにして得られるアモルファスシリコン
は他の結晶半導体に比べ、禁止帯中に存在する局在準位
がまだまだ多(、特に禁止帯の中で伝導帯および充満帯
近傍で非常に多く、いわゆるパントチイルを引いている
However, compared to other crystalline semiconductors, the amorphous silicon obtained in this way still has a large number of localized levels in the forbidden band (particularly in the forbidden band, there are many localized levels near the conduction band and the filled band). It is pulling what is called a pantochiil.

れが新たな欠陥を作ることになる。禁止帯中の局在準位
やドーピング効率の悪さのため、例えばアモルファスシ
リコン太陽電池に於いても十分に高い光電変換効率を得
るに至っていないのが現状である。
This creates new defects. At present, it is not possible to obtain sufficiently high photoelectric conversion efficiency even in amorphous silicon solar cells, for example, due to localized levels in the forbidden band and poor doping efficiency.

ルファスシリコン層、5は透明導電層、6は太陽光線で
ある。2.8.4の各アモルファスシリコン層は公知の
グロー放電分解法、反応性スパッタ法などによって得ら
れ、P型アモルファスシリコン層2はポロンなどをドー
プし、n型アモルファスシリコン層3は不純物をドープ
せず、n型アモルファスシリ32層4はリンなどをドー
プしておす、各々の厚みはP型アモルファスシリコン層
2が約500A、n型アモルファスシリコン層3が約5
000A1n型アモルファスシリコン層4が50〜20
0にである。透明導電層5は公知の真空蒸着法あるいは
スパッタ法などによって得られ、その厚みは300〜5
000λ 程度である。
5 is a transparent conductive layer, and 6 is a solar ray. Each amorphous silicon layer in 2.8.4 is obtained by a known glow discharge decomposition method, reactive sputtering method, etc., the P-type amorphous silicon layer 2 is doped with poron, etc., and the n-type amorphous silicon layer 3 is doped with impurities. The n-type amorphous silicon 32 layer 4 is doped with phosphorus or the like.The thickness of each layer is approximately 500A for the P-type amorphous silicon layer 2 and approximately 5A for the n-type amorphous silicon layer 3.
000A1 n-type amorphous silicon layer 4 is 50 to 20
It is at 0. The transparent conductive layer 5 is obtained by a known vacuum evaporation method or sputtering method, and has a thickness of 300 to 50 mm.
It is about 000λ.

との界面で伝導帯の大きな落差が形成されず、充分な光
起電力効果が得られていないという欠点がある。また、
P型アモルファスシリコン層の吸収係数が大きいため、
入射光のうちp−i界面で吸収されなかった光がほとん
どP型アモルファスシリコン層で吸収されてしまい、ス
テンレス基板で反射された光を充分に活用できないとい
う欠点がある。
There is a drawback that a large drop in the conduction band is not formed at the interface with the material, and a sufficient photovoltaic effect cannot be obtained. Also,
Because the absorption coefficient of the P-type amorphous silicon layer is large,
Most of the incident light that is not absorbed at the p-i interface is absorbed by the P-type amorphous silicon layer, and the drawback is that the light reflected by the stainless steel substrate cannot be fully utilized.

第2図は従来の他のアモルファスシリコン薄膜光起電力
素子の構造を示す断面図であり、11はガラス基板、1
2は透明導電層、18はP型アモルファスシリコンカー
バイト層、14はn型アモルファスシリコン層、15は
n型アモルファスシリコン層、16はアルミニウムなど
の電極、17は太陽光線である。透明導電層12は前述
の方法以外に公知のCVD法あるいはスプレー法などに
よって得られ、その厚みは300〜500OA  程度
である。P型アモルファスシリコンカーバイト層13は
、例えばモノシラン(5iH4)、メタン(CH4)、
およびジポラン(B2H6,)  の混合ガスをグロー
放電分解することによって得られ、厚みは50〜200
ムなどを真空蒸着することによって作製され、その厚み
は0.1μm−1μm程度である。
FIG. 2 is a cross-sectional view showing the structure of another conventional amorphous silicon thin film photovoltaic device, in which 11 is a glass substrate;
2 is a transparent conductive layer, 18 is a P-type amorphous silicon carbide layer, 14 is an n-type amorphous silicon layer, 15 is an n-type amorphous silicon layer, 16 is an electrode such as aluminum, and 17 is a sunlight beam. The transparent conductive layer 12 is obtained by a known method such as CVD or spraying in addition to the method described above, and has a thickness of about 300 to 500 OA. The P-type amorphous silicon carbide layer 13 is made of, for example, monosilane (5iH4), methane (CH4),
It is obtained by glow discharge decomposition of a mixed gas of
It is manufactured by vacuum evaporating a film or the like, and its thickness is about 0.1 μm to 1 μm.

このような構造のアモルファスシリコン薄膜光起電力素
子はP型層が薄いために均一な層を形成しにくく、P型
層が島状になり、P−i接合が不完全になる欠点がある
。またガラス基板を用いているため割れやすく、フレキ
シブルでないという欠点がある。
An amorphous silicon thin film photovoltaic device having such a structure has a drawback that since the P-type layer is thin, it is difficult to form a uniform layer, the P-type layer becomes island-like, and the P-i junction becomes incomplete. Furthermore, since it uses a glass substrate, it has the disadvantage of being easily broken and not being flexible.

本発明は上記欠点を解消するため成されたもので、本発
明の1つの目的は、高い光電変換効率を有するアモルフ
ァスシリコン薄膜光起電力素子を提供することにある。
The present invention has been made to eliminate the above-mentioned drawbacks, and one object of the present invention is to provide an amorphous silicon thin film photovoltaic device having high photoelectric conversion efficiency.

本発明の他の目的は、P型アモルファスシリコン層の光
学的バンドギャップの大きいアモルファスシリコン薄膜
光起電力素子を提供することにある。本発明のもう1つ
の目的は、P型アモルファスシリコン層の吸収係数の小
さいアモルファスシリコン薄膜光起電力素子を提供する
ことにある。本発明の他の目的はP型層を厚くして均一
な層を形成し、P−i接合が充分なアモルファスシリコ
ン薄膜光起電力素子を提供するこのような目的を達する
に本発明者等は種々検討の結果、光入射側より順次透明
導電層、n型アモルファスシリコン8、i型アモルファ
スシリコンL P型アモルファスシリコンカーバイト層
、および基板で構成することにより可能であることを見
出した。
Another object of the present invention is to provide an amorphous silicon thin film photovoltaic device in which the P-type amorphous silicon layer has a large optical bandgap. Another object of the present invention is to provide an amorphous silicon thin film photovoltaic device whose P-type amorphous silicon layer has a small absorption coefficient. Another object of the present invention is to provide an amorphous silicon thin film photovoltaic device by thickening the P-type layer to form a uniform layer and having a sufficient P-i junction. As a result of various studies, we have found that this is possible by sequentially comprising a transparent conductive layer, n-type amorphous silicon 8, i-type amorphous silicon LP, P-type amorphous silicon carbide layer, and a substrate from the light incident side.

以下に本発明を1実施例に関し詳細に説明する。The present invention will be explained in detail below with reference to one embodiment.

第3図は本発明によるl実施例のアモルファスシリコン
薄膜光起電力素子の構造を示す断面図であ))、21は
ステンレス鋼基板、22はP型アモルファスシリコンカ
ーバイト層、28はn型アモルファスシリコン層、24
はn型アモルファスシリコン層、25は透明導電層、2
6は太陽光線である。ステンレス鋼基板21は0.11
113L〜2B厚を使用し、鏡面研磨した側にモノシラ
ン(SiH4)、メタン(CH4)およびジボラン(B
gHa)の混合ガスをグロー放11解し、P型アモルフ
ァスシリコンカーバイト層22を形成する。その厚みは
約50OAである。次にモノシランのみをグロー放電分
解しi型アモルファスシリコン層28を約500OA形
成し、さらにモノシランとホスフィン(PH3)の〜5
000A程度形成する。
FIG. 3 is a sectional view showing the structure of an amorphous silicon thin film photovoltaic device according to an embodiment of the present invention), 21 is a stainless steel substrate, 22 is a P-type amorphous silicon carbide layer, and 28 is an n-type amorphous layer. silicon layer, 24
is an n-type amorphous silicon layer, 25 is a transparent conductive layer, 2
6 is the sun's rays. Stainless steel substrate 21 is 0.11
113L to 2B thickness, monosilane (SiH4), methane (CH4) and diborane (B
A mixed gas of gHa) is released in a glow 11 to form a P-type amorphous silicon carbide layer 22. Its thickness is approximately 50OA. Next, monosilane alone is decomposed by glow discharge to form an i-type amorphous silicon layer 28 of about 500 OA, and then monosilane and phosphine (PH3) of ~500 OA are formed.
000A is formed.

このようにして作製したアモルファスシリコン薄膜光起
電力素子の光電変換効率は8.0% であり、一方間構
造でP型層にアモルファスシリコンを用いた従来例の素
子の光電変換効率は7.2%にとどまり、本発明により
高い変換効率を有するアモルファスシリコン薄膜光起電
力素子を得ることがわかる。またP型アモルファスシリ
コンカーバイト層の光学的エネルギーギャップが1.8
 eVであるの層を用いた方がP型アモルファスシリコ
ン層を用いるよりもn型アモルファスシリコン層との界
面における伝導帯の落差が大きいため充分な光起電力効
果が得られる。さらに吸収係数は光学的エネルギーギャ
ップに対応して、P型アモルファスシリコンカーバイト
層の方がP型アモルファスシリコン層よりも小さいため
、P型層を約5ooXと厚くしても吸収閂が小さくステ
ンレス基板での反射光を充分に活用できる。また、P型
層を約500Aと厚くできる結果、P型層が島状となら
ず、均一な薄膜となるためP−i接合を明確に形成する
ことが可能となる。さらにステンレス基板を用いるため
、ガラス基板に比べ、割れることもなく丈夫でフレキシ
ブルなアモルファスシリコン薄膜光起電力素子を得る事
ができる。
The photoelectric conversion efficiency of the amorphous silicon thin film photovoltaic device produced in this way is 8.0%, while the photoelectric conversion efficiency of a conventional device with an interlayer structure and using amorphous silicon for the P-type layer is 7.2%. %, indicating that the present invention provides an amorphous silicon thin film photovoltaic device with high conversion efficiency. Furthermore, the optical energy gap of the P-type amorphous silicon carbide layer is 1.8.
When using a layer with a voltage of eV, a sufficient photovoltaic effect can be obtained because the conduction band drop at the interface with the n-type amorphous silicon layer is larger than when using a p-type amorphous silicon layer. Furthermore, the absorption coefficient of the P-type amorphous silicon carbide layer is smaller than that of the P-type amorphous silicon layer, corresponding to the optical energy gap. You can make full use of the reflected light. Furthermore, since the P-type layer can be made as thick as about 500 Å, the P-type layer does not become island-like and becomes a uniform thin film, making it possible to clearly form a P-i junction. Furthermore, since a stainless steel substrate is used, an amorphous silicon thin film photovoltaic element that is more durable and flexible than a glass substrate can be obtained without breaking.

本発明による上述の実施例では、グロー放電分解法に関
して説明したが、水素雰囲気中での反応性スパッタリン
グ法によってアモルファスシリコン薄膜を形成してもよ
い。また、用いる基板についてもステンレス鋼のみなら
ず、他の金属などの導電性基板あるいは金属を蒸着した
基板を用いても構わない。
In the above-described embodiments of the present invention, the glow discharge decomposition method was described, but the amorphous silicon thin film may also be formed by a reactive sputtering method in a hydrogen atmosphere. Furthermore, the substrate used is not limited to stainless steel, but may also be a conductive substrate made of other metals or a substrate coated with a vapor-deposited metal.

以上詳細に説明したごとく、本発明によれば高い光電変
換効率を有するアモルファスシリコン薄膜光起電力素子
が得られる。また、充分な光起電力効果を持ち、基板で
の反射光を有効に活用できるアモルファスシリコン薄膜
光起電力素子が得られる。さらに丈夫でフレキシブルな
アモルファスシリコン薄膜光起電力素子が得られる。
As described in detail above, according to the present invention, an amorphous silicon thin film photovoltaic device having high photoelectric conversion efficiency can be obtained. Moreover, an amorphous silicon thin film photovoltaic element having a sufficient photovoltaic effect and capable of effectively utilizing reflected light from the substrate can be obtained. A more durable and flexible amorphous silicon thin film photovoltaic device can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のアモルファスシリコン薄膜光起電力素子
の構造を示す断面図であり、第2図は従来の他のアモル
ファスシリコン薄膜光起電力素子の構造を示す断面図で
あり、第3図は本発明による1実施例のアモルファスシ
リコン薄膜光起電力素子の構造を示す断面図である。 1.21ニステンレス鋼基板 2:P型アモルファスシリコン層 3.14.23:n型アモルファスシリコン層4.15
.24:n型アモルファスシリ37層5.12.25:
透明導電層 16:電極
FIG. 1 is a sectional view showing the structure of a conventional amorphous silicon thin film photovoltaic device, FIG. 2 is a sectional view showing the structure of another conventional amorphous silicon thin film photovoltaic device, and FIG. FIG. 1 is a cross-sectional view showing the structure of an amorphous silicon thin film photovoltaic device according to an embodiment of the present invention. 1.21 Stainless steel substrate 2: P-type amorphous silicon layer 3.14.23: N-type amorphous silicon layer 4.15
.. 24: 37 layers of n-type amorphous silicon 5.12.25:
Transparent conductive layer 16: electrode

Claims (2)

【特許請求の範囲】[Claims] (1)光入射側より順次透明導電層、n型アモルファス
シリコン層、i型アモルファスシリコン層、p型アモル
ファスシリコンカーバイド層および基板で構成されるこ
とを特徴とするアモルファスシリコン薄膜光起電力素子
(1) An amorphous silicon thin film photovoltaic device comprising, in order from the light incident side, a transparent conductive layer, an n-type amorphous silicon layer, an i-type amorphous silicon layer, a p-type amorphous silicon carbide layer, and a substrate.
(2)前記基板がステンレス鋼であることを特徴とする
特許請求の範囲第1項記載のアモルファスシリコン薄膜
光起電力素子。
(2) The amorphous silicon thin film photovoltaic device according to claim 1, wherein the substrate is made of stainless steel.
JP57055344A 1982-04-05 1982-04-05 Amorphous si thin film photovoltaic force element Pending JPS58173872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57055344A JPS58173872A (en) 1982-04-05 1982-04-05 Amorphous si thin film photovoltaic force element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57055344A JPS58173872A (en) 1982-04-05 1982-04-05 Amorphous si thin film photovoltaic force element

Publications (1)

Publication Number Publication Date
JPS58173872A true JPS58173872A (en) 1983-10-12

Family

ID=12995884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57055344A Pending JPS58173872A (en) 1982-04-05 1982-04-05 Amorphous si thin film photovoltaic force element

Country Status (1)

Country Link
JP (1) JPS58173872A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10934172B2 (en) * 2011-04-21 2021-03-02 The Government Of The United States Of America, As Represented By The Secretary Of The Navy In situ grown SiC coatings on carbon materials

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10934172B2 (en) * 2011-04-21 2021-03-02 The Government Of The United States Of America, As Represented By The Secretary Of The Navy In situ grown SiC coatings on carbon materials

Similar Documents

Publication Publication Date Title
US4379943A (en) Current enhanced photovoltaic device
US9099585B2 (en) Method of stabilizing hydrogenated amorphous silicon and amorphous hydrogenated silicon alloys
US4433202A (en) Thin film solar cell
US4419533A (en) Photovoltaic device having incident radiation directing means for total internal reflection
US4620058A (en) Semiconductor device for converting light into electric energy
KR910001742B1 (en) Photo electromotive force device
JP2951146B2 (en) Photovoltaic devices
JP3047666B2 (en) Method for forming silicon oxide semiconductor film
JP2008153646A (en) Manufacturing method of semiconductor device
JPH0394477A (en) Photosensor and forming method thereof
JPH0370183A (en) Photovoltaic element
JPS58199710A (en) P type amorphous oxygen and silicon alloy with improved wide band gap and application device
US5391893A (en) Nonsingle crystal semiconductor and a semiconductor device using such semiconductor
IE54573B1 (en) Improved back reflector system and devices utilizing same
JP2692091B2 (en) Silicon carbide semiconductor film and method for manufacturing the same
US20120318335A1 (en) Tandem solar cell with improved tunnel junction
KR100906748B1 (en) Solar cell and method for manufacturing the same
JPS6334632B2 (en)
Yamamoto et al. High-efficiency μc-Si/c-Si heterojunction solar cells
JPS58173872A (en) Amorphous si thin film photovoltaic force element
JPS5936836B2 (en) Amorphous thin film solar cell
JPS59101879A (en) Thin film solar battery
JPS62159475A (en) Amorphous silicon solar cell
JP2001284619A (en) Phtovoltaic device
JPS6152992B2 (en)