JPS58173438A - Measuring device for far field pattern of light emitting element - Google Patents

Measuring device for far field pattern of light emitting element

Info

Publication number
JPS58173438A
JPS58173438A JP5867482A JP5867482A JPS58173438A JP S58173438 A JPS58173438 A JP S58173438A JP 5867482 A JP5867482 A JP 5867482A JP 5867482 A JP5867482 A JP 5867482A JP S58173438 A JPS58173438 A JP S58173438A
Authority
JP
Japan
Prior art keywords
far
automatically
light emitting
light
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5867482A
Other languages
Japanese (ja)
Inventor
Shigeyuki Nitsuta
仁田 重之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP5867482A priority Critical patent/JPS58173438A/en
Publication of JPS58173438A publication Critical patent/JPS58173438A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4257Photometry, e.g. photographic exposure meter using electric radiation detectors applied to monitoring the characteristics of a beam, e.g. laser beam, headlamp beam

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To draw a far field pattern fully automatically by rotating a light emitting element or the like near the max. output point of the remote field image automatically, determining the max. output and drawing the remote field image after standardizing the output to a specified value. CONSTITUTION:A light emitting element 1 is first set in the direction where a far field pattern 5 in a horizontal direction can be measured, and the element is oscillated at a specified output. A pulse motor 7 is rotated automatically thereafter in, for example, an theta=-5 deg.-+5 deg. range and the max. output in the partial far field field pattern 15 is determined. If the value thereof is designated as A on the graph output, the computation starts functioning to convert A to 1, whereafter the motor 7 rotates automatically by theta=-90 deg.-+90 deg. and the far field pattern 15' in a horizontal direction is drawn automatically on paper or a cathod ray tube. The element 1 is thereafter rotated 90 deg. and the far field pattern in a vertical direction is drawn automatically. The far field pattern is thus drawn fully automatically.

Description

【発明の詳細な説明】 この発明は、発光素子の遠視野像を自動的にピーク値を
一定にして描く発光素子の遠視野會測定装置iIK関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a far-field field measuring device iIK for light-emitting elements that automatically draws a far-field image of a light-emitting element with a constant peak value.

例えば、半導体レーザやLED等の発光素子は、これら
素子の特性の一つとして発光点から離れた所での光強度
の分布、すなわち遠視野像を測定することが必要である
。遠視野像測定の原理を第1図、第2図を用いて説明す
る。
For example, one of the characteristics of light-emitting elements such as semiconductor lasers and LEDs is that it is necessary to measure the distribution of light intensity at a distance from the light-emitting point, that is, the far-field pattern. The principle of far-field image measurement will be explained using FIGS. 1 and 2.

第】図は発光素子と受光素子の位置関係を示す図であり
、第2図は遠視野像の測定結果例を示したものである。
1 is a diagram showing the positional relationship between a light emitting element and a light receiving element, and FIG. 2 shows an example of a measurement result of a far field image.

第1図において、1は発光素子で、−例として半導体レ
ーザな示している。2は発光点である。
In FIG. 1, numeral 1 indicates a light emitting element, and a semiconductor laser is shown as an example. 2 is a light emitting point.

3は前記発光点2を含む発光素子1の共振器端面である
。第1図に示すように、発光点2を原点Oとし共振器端
面3上にX軸、2軸、垂直にY軸の直交座標を設定する
。4は受光素子で、XY千画面上発光点2を中心に半径
Rの円周上を回転させることができる。まず、発光素子
1を上下面がXY千面と平行になるように設置した後、
電流を流し一定出力で発振させ、受光素子4を0=−9
0℃から+90℃まで回転して、発光点2の正面方向(
Y軸方向)から角度θ離れた所での強度分布を第2図の
符号5で示すように描く。これはいわゆる発光素子1の
水平方向遠視野像である。
3 is a resonator end face of the light emitting element 1 including the light emitting point 2. As shown in FIG. 1, the light emitting point 2 is set as the origin O, and orthogonal coordinates of the X axis, two axes, and the perpendicular Y axis are set on the resonator end face 3. Reference numeral 4 denotes a light receiving element, which can be rotated on the circumference of a radius R around the light emitting point 2 on the XY screen. First, after installing the light emitting element 1 so that the upper and lower surfaces are parallel to the XY thousand planes,
A current is applied to oscillate at a constant output, and the light receiving element 4 is set to 0=-9.
It rotates from 0℃ to +90℃, and the front direction of the light emitting point 2 (
The intensity distribution at an angle θ away from the Y-axis direction is drawn as shown by reference numeral 5 in FIG. This is a so-called horizontal far-field image of the light emitting element 1.

ここで、水平方向遠視野像5を上記説明のよ5に描くに
当たり1強度分布の最大値はグラフ上で一定値にしてお
くことが遠視野像の評価のために便利である。このため
、水平方向遠視野*Sを描くには、あらかじめ受光素子
4を最大出力が生じる角度付近で回転し、最大出力点で
受光素子4の負荷抵抗を調整して、一定値になるよ5K
した優に描くようKする。なお、発光素子1を設置した
試料台は図示を省略している。
Here, when drawing the horizontal far-field image 5 as described above, it is convenient to set the maximum value of one intensity distribution to a constant value on the graph for evaluation of the far-field image. Therefore, in order to draw the horizontal far field*S, first rotate the light receiving element 4 near the angle where the maximum output occurs, and adjust the load resistance of the light receiving element 4 at the maximum output point until it reaches a constant value of 5K.
I asked Yu to draw it. Note that the sample stage on which the light emitting element 1 is installed is not shown.

水平方向遠視野gI5を描いた後1発光素子1をY軸を
中心に90’CBi転して、水平方向遠視野像5と同様
にして垂直方向遠視野像6を描いて測定は完了する。
After drawing the horizontal far field gI5, one light emitting element 1 is rotated by 90'CBi around the Y axis, and a vertical far field image 6 is drawn in the same manner as the horizontal far field image 5, and the measurement is completed.

第5図はこの過程の一方向につき遠視野像を描く手段を
説明するためのブロック図である。
FIG. 5 is a block diagram for explaining means for drawing a far-field image in one direction during this process.

第5図で、aは最大出力Aを求める手段で、偏角−5°
から+5°まで受光素子4を回転し、この間の最大出力
Aを求めるものである。bは最大出力Aを規格化する手
段で、最大出力Aの規格化値A0に対し、補正倍率α=
 A、/Aを計算するものである。Cは遠視野像測定手
段で、−900〜+90°受光素子4を回転させる。d
は各測定点出力倍率補正手段で、測定値をすべてα倍す
る。eは遠視野像表示手段で、規格化値A0を表示上@
1″にして遠視野像を描くものである。各ブロックで示
されるa〜eの手段の作業は、マイクロコンピュータお
よびこれに連動するパルスモータTおよびXYレコーダ
やブラウン管を使用して自動的に行うことができる。
In Figure 5, a is the means for determining the maximum output A, and the declination angle is -5°.
The light-receiving element 4 is rotated from 1 to +5 degrees, and the maximum output A during this period is determined. b is a means for normalizing the maximum output A, and for the normalized value A0 of the maximum output A, the correction magnification α=
A, /A is calculated. C is a far-field image measuring means that rotates the light-receiving element 4 by -900 to +90 degrees. d
is an output magnification correction means for each measurement point, and all measured values are multiplied by α. e is a far-field image display means, which displays the normalized value A0 @
1" to draw a far-field image. The operations of means a to e shown in each block are automatically performed using a microcomputer, a pulse motor T linked to it, an XY recorder, and a cathode ray tube. be able to.

以上が遠視野像測定の原理である。この発明は、この原
理に基づき自動的に遠視野像測定を行う装置に関するも
のである。その特徴とするところは、自動的に出力のピ
ーク点を求めてピーク値を規格化し、自動的に用紙やブ
ラウン管に描くことKある。以下、図面によりこの発明
を説明する。なお、この発明の一実施例として、上記と
同様の測定を行う場合で説明する。
The above is the principle of far-field image measurement. The present invention relates to a device that automatically measures a far-field image based on this principle. Its feature is that it automatically finds the peak point of the output, normalizes the peak value, and automatically draws it on paper or a cathode ray tube. The present invention will be explained below with reference to the drawings. Note that, as an embodiment of the present invention, a case will be described in which measurements similar to those described above are performed.

第3図はこの装置の試料および受光素子部付近の構成を
模式的に示す断面図である。この図において、1は試料
となる発光素子で、例えば半導体レーザが用いられる。
FIG. 3 is a cross-sectional view schematically showing the structure of the sample and the light-receiving element of this apparatus. In this figure, 1 is a light emitting element serving as a sample, and for example, a semiconductor laser is used.

4は受光素子である。Tは精密角度制御を行うためのパ
ルスモータ、8.sはギヤーである。10は前記ギヤー
IK*り付けられた腕で、受光素子4が回転中心軸2か
ら距離Rの所に設置されている。
4 is a light receiving element. T is a pulse motor for precise angle control; 8. s is a gear. Reference numeral 10 denotes an arm to which the gear IK* is attached, and the light receiving element 4 is installed at a distance R from the rotation center axis 2.

まず1発光素子1を水平方向遠視野像5(纂2図)が測
定できるように方向を合わせて設定し。
First, one light-emitting element 1 is set in such a way that a horizontal far-field image 5 (Fig. 2) can be measured.

一定出力で発振させる。しかる後に、自動的にパルスモ
ータTを、例えば0富−5℃〜+5℃の範囲で回転し、
第4図(a)のように部分遠視野像15内の最大出力を
求める(これは実際には描かれない)。第4図(a) 
K示すように、この値をグラフ出力上でAとすると、計
算機能が働き、AをIK変換した後、パルスモータTは
さらに自動的にθ=−90℃〜+90℃回転して、第4
図(b )のように水平方向遠視野像15′を自動的に
用紙やブラウン管に描く。その後、発光素子1を90℃
回転して(これも自動的に行う)、上記と同様にして自
動的に垂直方向遠視野gI(図示せず)が描かれる。
Oscillate with constant output. After that, the pulse motor T is automatically rotated, for example, in the range of 0°C to +5°C,
The maximum output within the partial far-field image 15 is determined as shown in FIG. 4(a) (this is not actually drawn). Figure 4(a)
As shown in K, if this value is set to A on the graph output, the calculation function works and after converting A to IK, the pulse motor T further automatically rotates θ=-90°C to +90°C, and the fourth
As shown in Figure (b), a horizontal far-field image 15' is automatically drawn on paper or a cathode ray tube. After that, the light emitting element 1 was heated to 90°C.
Rotating (also done automatically), the vertical far field gI (not shown) is automatically drawn in the same manner as above.

なお、上記の実施例において、自動的に試料である発光
素子1に一定出力を出させるよ5Kしたり、水平、垂直
方向遠視野像の各−基準に対する良否判定を行わせるこ
とができる。また、上記では受光素子4は1個でこれを
回転して測定しているが、測定すべき角度範囲に複数の
受光素子4を並べ、これらの出力を取り出して測定する
こともできる。さらに、受光素子4を回転する代りk。
In the above embodiment, it is possible to automatically make the light-emitting element 1 as a sample output a constant output at 5K, or to make a quality judgment with respect to each criterion of the horizontal and vertical far-field images. Further, in the above description, the measurement is performed by rotating one light receiving element 4, but it is also possible to line up a plurality of light receiving elements 4 in the angular range to be measured and extracting their outputs for measurement. Furthermore, instead of rotating the light receiving element 4, k.

発光素子1を回転してももちろんよい。Of course, the light emitting element 1 may also be rotated.

以上説明したよ5にこの発明は、自動的に遠視野像の最
大出力点付近を発光素子または受光素子を回転させて最
大出力を求めるようにし、この最大出力を一定値に規格
化してから、この規格化した一定値を用いて遠視野像を
描くようにしたので、全自動的に遠視野像を描くことが
でき、実用上極めて有用である利点がある。
As explained above, the present invention automatically rotates the light-emitting element or the light-receiving element around the maximum output point of the far-field pattern to obtain the maximum output, normalizes this maximum output to a constant value, and then Since the far-field image is drawn using this standardized constant value, the far-field image can be drawn completely automatically, which has the advantage of being extremely useful in practice.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は遠視野像測定原理を示す構成図、第2図は第1
図による測定結果を示す図、第3図はこの発明の一実施
例を示す要部の模式図、第4図(a)。 (b)は自動ピーク調整を説明するための図、第5図は
一方向につき遠視野書を描く手段のプpツク図である。 図中、1は発光素子、2は発光点、3は共振器端面、4
は受光素子、5は水平方向遠視野像、6は垂直方向遠視
野像、1はパルスモータ、6.sはギヤー、10は腕、
15は部分遠視野倫、IS′は水平方向遠視野像である
。なお1図中の同一符号は同一または相当部分を示す。 代理人 葛 野信 −(外1名) 第111 第2図 第3図 一221= 第5図 丁を続補正阿(自発) 特許庁長官殿 1、’IC件の表示    f?覇昭 57−8881
4号2、発明の名称     発光素子の遠*Vt*渕
定装置3、 補+l」I’るh 5、補正の対象 明細書の発明の詳細な説明の欄および図面6 補正の内
容 (1)明細書第2員18〜19行にrl?=−90°C
から+90°C」とあるのを、「θ=−90°から+9
0’Jと補正する。 (21同じく第3頁13行および第5員19行K[90
°CJとあるのを、それぞれ[90°」と補正する。 (3)同じく第3員16行〜第4R17行の[第5図は
・・・・・・・・・・・・る。」の個所を、下記のよう
に補正する。 r第5図はとの過根の一方向につき、遠視野像を描く手
段を説明するためのブロック図である。 第5図で、aは最大出力Aを求める手段で、正面(偏角
01′)付近で受光素子4を回転し、この間の最大出力
Aを求めるものである。bは最大出力Aを規格化する手
段で、最大出力Aをグラフ上一定値になるよう受光素子
4の負荷抵抗を変えるものである。Cは遠視野儂測定手
段および表示手段で、90’〜+90’受光素子4を回
転しながらグラフ用紙に遠視野壕を表示する。 以上が遠視野像の原理である。この発明は、この原理に
基づき自動的忙遠視野像測定を行う装置に関するもので
ある′。その特徴とするところは、自動的に出力のピー
ク点を求めてピーク値を規格化し、自動的に用紙やクラ
ウン管に描くととKある。これらは、マイクロコンピュ
ータおよびこれに連動するパノしスモーク等を使用して
行うことができる。」 (4)同じく第5011行に1θ鯰−5°C5〜+5゜
C」とあるのを、[θ=−5°〜+5°」と補正する。 (5)同じく第s頁16〜17行K[θ=−900C〜
+90°C1とあるのを、[θ=−90°〜+91)0
」と補正する。 (6)第5図を)IJ紙のように補正する。 以上 第5III
Figure 1 is a configuration diagram showing the principle of far-field image measurement, and Figure 2 is a diagram showing the principle of far-field image measurement.
FIG. 3 is a diagram illustrating the measurement results; FIG. 3 is a schematic diagram of a main part of an embodiment of the present invention; FIG. 4(a) is a diagram showing measurement results; (b) is a diagram for explaining automatic peak adjustment, and FIG. 5 is a diagram of means for drawing a far-field book in one direction. In the figure, 1 is a light emitting element, 2 is a light emitting point, 3 is a resonator end face, and 4 is a light emitting element.
1 is a light receiving element, 5 is a horizontal far-field image, 6 is a vertical far-field image, 1 is a pulse motor, 6. s is gear, 10 is arm,
15 is a partial far-field image, and IS' is a horizontal far-field image. Note that the same reference numerals in Figure 1 indicate the same or corresponding parts. Agent Nobu Kuzuno - (1 other person) No. 111 Figure 2 Figure 3 - 221 = Continued amendment to Figure 5 (on his own initiative) Mr. Commissioner of the Japan Patent Office 1, Indication of 'IC matter f? Hasho 57-8881
No. 4 No. 2, Title of the invention Distance *Vt * Edge determination device for light emitting element 3, Supplement + l'I'ruh 5, Detailed explanation column of the invention in the specification subject to amendment and drawing 6 Contents of amendment (1) rl on lines 18-19 of the second member of the statement? =-90°C
θ=-90° to +90°C”
Correct it to 0'J. (21 Similarly, page 3, line 13 and member 5, line 19 K [90
Correct "°CJ" to "90°" respectively. (3) Similarly, from line 16 of member 3 to line 4R17 [Figure 5 is......]. ” should be corrected as follows. FIG. 5 is a block diagram illustrating a means for drawing a far-field image in one direction of the root. In FIG. 5, a is a means for determining the maximum output A, which rotates the light receiving element 4 near the front (deflection angle 01') and determines the maximum output A during this period. b is a means for normalizing the maximum output A, which changes the load resistance of the light receiving element 4 so that the maximum output A becomes a constant value on the graph. C is a far-field self-measuring means and a display means, which displays a far-field trench on graph paper while rotating the light receiving element 4 from 90' to +90'. The above is the principle of a far-field image. The present invention relates to an apparatus for automatically measuring far-field images based on this principle. Its special feature is that it automatically determines the peak point of the output, normalizes the peak value, and automatically draws it on paper or a crown tube. These can be performed using a microcomputer and a pano smoke etc. that are linked to the microcomputer. (4) Similarly, in line 5011, 1θ catfish -5°C5 to +5°C” is corrected to [θ=-5° to +5°”. (5) Similarly, page s, lines 16-17 K [θ=-900C~
+90°C1, [θ=-90°~+91)0
” he corrected. (6) Correct Fig. 5 to look like IJ paper. Above, Part 5 III

Claims (1)

【特許請求の範囲】[Claims] 単数または複数の発光素子の発光点が中心点に来るよう
に設置された試料台と、前記試料台に対向して設置され
た単数または複数の受光素子を有し、前記受光素子また
は前記発光素子が前記中心点を通る軸を中心軸として回
転することにより、前記発光素子の遠視野像を描く測定
装置において、自動的に前記遠視野像の最大出力点付近
を前記受光素子または前記発光素子を回転させて前記最
大出力を求める手段と、この最大出力を一定値に規格化
する手段と、前記規格化した値を用いて前記遠視野像を
自動的に描く手段とを備えたことを特徴とする発光素子
の遠視野像測定装置。
A sample stage installed so that the light emitting point of one or more light emitting elements is located at the center point, and one or more light receiving elements installed opposite to the sample stage, the light receiving element or the light emitting element In a measuring device that draws a far-field image of the light-emitting element by rotating around an axis that passes through the center point, the light-receiving element or the light-emitting element is automatically moved around the maximum output point of the far-field image. It is characterized by comprising: means for determining the maximum output by rotating it; means for normalizing the maximum output to a constant value; and means for automatically drawing the far-field image using the standardized value. A device for measuring far-field images of light-emitting devices.
JP5867482A 1982-04-06 1982-04-06 Measuring device for far field pattern of light emitting element Pending JPS58173438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5867482A JPS58173438A (en) 1982-04-06 1982-04-06 Measuring device for far field pattern of light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5867482A JPS58173438A (en) 1982-04-06 1982-04-06 Measuring device for far field pattern of light emitting element

Publications (1)

Publication Number Publication Date
JPS58173438A true JPS58173438A (en) 1983-10-12

Family

ID=13091123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5867482A Pending JPS58173438A (en) 1982-04-06 1982-04-06 Measuring device for far field pattern of light emitting element

Country Status (1)

Country Link
JP (1) JPS58173438A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066745A (en) * 2004-08-27 2006-03-09 Ricoh Co Ltd Method of measuring radiation optical axis deviation angle, and device thereof
CN101929889A (en) * 2010-05-17 2010-12-29 西安炬光科技有限公司 Semiconductor laser remote field testing method and device
CN104515595A (en) * 2014-12-20 2015-04-15 西安炬光科技有限公司 Testing device for far field intensity of semiconductor light source

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066745A (en) * 2004-08-27 2006-03-09 Ricoh Co Ltd Method of measuring radiation optical axis deviation angle, and device thereof
CN101929889A (en) * 2010-05-17 2010-12-29 西安炬光科技有限公司 Semiconductor laser remote field testing method and device
CN104515595A (en) * 2014-12-20 2015-04-15 西安炬光科技有限公司 Testing device for far field intensity of semiconductor light source

Similar Documents

Publication Publication Date Title
US6177955B1 (en) Visual display inspection system
JPH02291908A (en) Inspection of tandem-layout shaft
CN107948638A (en) A kind of camera module active calibration equipment and its calibration method
CN108020171A (en) Mobile phone curved surface housing profile measuring method and its measuring apparatus based on Spectral Confocal technology
CN105424191A (en) Scoring method for color quality of light beam laser paper
CN109632264B (en) Device and method for detecting environmental test stability of camera device
CN109471333A (en) A kind of galvanometer correction system and method
CN107607294A (en) A kind of industrial camera entrance pupil method for detecting position and system
JPS58173438A (en) Measuring device for far field pattern of light emitting element
US6651029B2 (en) Apparatus and method for measuring surface shape
JP2021096091A (en) Control device, system, method and program
CN109239901A (en) A kind of micro imaging system focusing plane Fast Calibration, focusing localization method and device
JPH0797064B2 (en) Optical fiber structure measurement method
Turner Determination of extinction angles in monoclinic pyroxenes and amphiboles
CN105157587B (en) Mechanism and method for measuring aperture of iris diaphragm and deflector rod rotation angle
CN110322517B (en) Method, device and equipment for calibrating included angle of optical camera and storage medium
JPH0792422B2 (en) Extinction ratio measuring method in assembly process of polarization maintaining optical fiber and semiconductor laser
JPH0545135A (en) Method and device for visually measuring precise contour
US3804527A (en) Measurement of radiation configuration factor
JPH07117427B2 (en) Measuring accuracy of measuring instruments
JP3758712B2 (en) Measuring position alignment method and system of multi-point type direct feed to rotary moving CT scanner
JPS6117007A (en) Automatic measuring apparatus of contact angle
JP3268877B2 (en) Aspherical lens measurement method
WO1998005926A1 (en) Automatic collimation method and automatic collimation apparatus
KR20000012428U (en) Image measuring device for measuring cylindrical specimen