JPS58172504A - Measuring method for surface state - Google Patents

Measuring method for surface state

Info

Publication number
JPS58172504A
JPS58172504A JP57054930A JP5493082A JPS58172504A JP S58172504 A JPS58172504 A JP S58172504A JP 57054930 A JP57054930 A JP 57054930A JP 5493082 A JP5493082 A JP 5493082A JP S58172504 A JPS58172504 A JP S58172504A
Authority
JP
Japan
Prior art keywords
measurement
reflected light
measured
cleaness
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57054930A
Other languages
Japanese (ja)
Inventor
Akira Torao
彰 虎尾
Yuichiro Asano
浅野 有一郎
Kunio Kurita
栗田 邦夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP57054930A priority Critical patent/JPS58172504A/en
Publication of JPS58172504A publication Critical patent/JPS58172504A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To enable the on-line monitoring of the kind of an extraneous substance on a surface and the cleaness thereof and to improve the efficiency of production and the yield thereof based on fed-back informations, by measuring the surface by using the correlation between the intensity ratio of a reflected light and the properties of the surface of an object to be measured. CONSTITUTION:A light is applied from a light source onto a hot-rolled steel plate 10 after acid pickling, and then it is branched into three optical paths by using half mirrors 14 and 16. Branched lights are passed through optical filters 18, 20 and 22 and received by optical detectors 24, 26 and 28, whereby the intensities of reflected lights having prescribed wavelengths are detected respectively. Each detection value obtained from measurement is led to an operating device 30 storing an output value of each detector in relation to an object having the best cleaness of the surface, the discrimination of an extraneous substance on the surface and the measurement of the cleaness thereof are performed therein, and the results are displayed in a display unit 32. Since this method enables the discrimination of the extraneous substance on the surface of the object to be measured and the measurement of the cleaness of the surface thereof in a very short time, it is effective for performing the measurement on-line, and the efficiency of production and the yield thereof can be improved by feeding back the result of the measurement to operations.

Description

【発明の詳細な説明】 本発明は、表面性状測定方法に係り、特に、酸洗後の熱
間圧延鋼板の表面性状を測定する際に用いるのに好−適
な、表面性状測定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a surface texture measuring method, and particularly to a surface texture measuring method suitable for use in measuring the surface texture of a hot rolled steel sheet after pickling.

一般に、熱間圧延工程により圧延されて製造妊れる熱間
圧延鋼板の表面には、黒皮と呼ばれる鉄の酸化物が付着
しているため、冷間圧延等に際して、まず、酸洗工程を
通すことにより、それらを除去する必要がある。この酸
洗]7程におけるスケールの1−1I@は、物理的、化
学的作用を利用して行うようにされて(・るが、種々の
原因によりスケールの取り残しくアンダーピノクリング
)や変色等が鋼板表面に生ずることがある。従って従来
は、スケールの剥離性を良くし、前記のようなアンダー
ピンクリングや変色等全防止するべ(、浸漬時間を長く
することが行われているが、必要以上にライン速度が遅
くなり、生産性が低下するという問題点をMする。又、
従9.は、酸洗後の鋼板表面を作業員が目視により判別
し、その情@を操業にフィードバックするよ5Kしてい
るが、判別が不正確であるだけでなく、早期のフィード
バックは田麩であった。
In general, iron oxides called black scale are attached to the surface of hot-rolled steel sheets that are rolled and produced in the hot-rolling process. Therefore, it is necessary to remove them. The scale 1-1I@ in step 7 of this pickling is carried out using physical and chemical effects (under pinocling, where scale is left behind due to various reasons), discoloration, etc. may occur on the surface of the steel plate. Therefore, in the past, the method was to increase the immersion time to improve the peelability of the scale and completely prevent the underpink ring and discoloration described above, but the line speed became slower than necessary. The problem of reduced productivity is M. Also,
9. In 5K, workers visually identify the steel plate surface after pickling and feed back this information to operations, but not only is the determination inaccurate, but the early feedback is too slow. Ta.

fΔJ、酸洗後に表面探傷装置を導入し、表面傷の外?
Cアンダービックリングを検出する方法も試みられてい
るが、変色も同時に検出してしまうという欠点を有して
(・た。
fΔJ, surface flaw detection equipment was introduced after pickling, and surface flaws were detected.
A method of detecting C under bicking has also been attempted, but it has the drawback of detecting discoloration at the same time.

本発明は、前記従来の欠点を解消するべくなざれたもの
で、測定対象物の表面付着物の釉類や表面清浄度をオン
ラインで監視することができ、従って、その情報を操業
してフィードバックすることによって、酸洗等の表面清
浄作業を適切に行い、生産能率及び歩留りを向上するこ
とができる六閣性災測定方法を提供することを目的とす
る。
The present invention was developed to solve the above-mentioned conventional drawbacks, and it is possible to monitor the glaze and surface cleanliness of the surface deposits of the object to be measured on-line, and therefore use the information to feed back the information. The purpose of the present invention is to provide a Rokkaku disaster measurement method that can appropriately perform surface cleaning operations such as pickling and improve production efficiency and yield.

本発明は、光面性状測定方法において、測定対象物の表
面に光を照射した時の反射光強度を、紫外光領域、可視
光領域、両波長領域の境界領域の波長についてそれぞれ
測定し、紫外光領域と境界領域の反射光強度の比、及び
、可視光領域と境界領域の反射光強度の比を求め、前記
反射光強度比と測定対象物の表面性状の相関関係を利用
して、測定対象物の表面付着物の判別や表面清浄度の測
定を行うようにして、前記目的を達成←九ものである。
In the method for measuring optical surface properties, the present invention measures the intensity of reflected light when the surface of the object to be measured is irradiated with light in the ultraviolet light region, the visible light region, and the wavelength in the boundary region of both wavelength regions. Measurement is performed by determining the ratio of the reflected light intensity between the light region and the boundary region and the ratio of the reflected light intensity between the visible light region and the boundary region, and using the correlation between the reflected light intensity ratio and the surface texture of the object to be measured. The above objectives are achieved by determining the presence of substances on the surface of the object and measuring the surface cleanliness of the object.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明は、測定対象物の表面付着物、例えば鋼板の表面
付着物により光の反射特性が異なることを利用したもの
である。即ち、反射光の波長分布が、付着物により異な
るので、その分布を測定することにより付着物を推定し
ようとするものである。
The present invention utilizes the fact that the light reflection characteristics differ depending on the surface deposits of the object to be measured, for example, the surface deposits of a steel plate. That is, since the wavelength distribution of reflected light differs depending on the deposit, it is attempted to estimate the deposit by measuring the distribution.

以下、酸洗後の熱間圧延鋼板に対して本発明を行った例
につき、具体的に説明する。
Hereinafter, an example in which the present invention was applied to a hot rolled steel plate after pickling will be specifically explained.

酸洗後の鋼板表面には、スケールの取り残しであるアン
ダービックリングや、スケールを取り除かれた地鉄が水
や空気中の酸素と化合して発生する変色、例えば錆等が
付着していることがある。
The steel plate surface after pickling has under-bickling, which is leftover scale, and discoloration, such as rust, that occurs when the base metal from which the scale has been removed combines with water and oxygen in the air. There is.

前者は鉄の酸化物、後者は水酸化第二鉄等から構成され
ている。これらの付着した拭料に対し、紫外かも可視光
領域に渡る反射スペクトルを測定すると、鋼板の光沢度
による影響から反射光強度は太き(変動するが、付着物
質や付着灰、即ち、逆に言えば清浄度により波長分布に
一定の特徴が見られる・このような分布状況を定量化す
る場合、オンラインでの測定を考慮すると、瞬時分光を
行い代表的な複数波長での反射光強度を測定するか、反
射光を分岐させ、反射光強度を別々に検出する方法が考
えられる。いずれにしても、複数波長での反射光強度値
を演算して、波長分布状況に対応させることを考える。
The former is composed of iron oxide, and the latter is composed of ferric hydroxide. When we measure the reflection spectrum of these adhered wipes in the ultraviolet and visible light ranges, we find that the intensity of the reflected light is thick due to the influence of the glossiness of the steel plate (although it varies, it may be due to adhered substances or ash, or conversely, Certain characteristics can be seen in the wavelength distribution depending on the degree of cleanliness.When quantifying such distribution conditions, considering online measurement, it is necessary to perform instantaneous spectroscopy and measure the reflected light intensity at multiple representative wavelengths. Alternatively, it is possible to consider a method of branching the reflected light and detecting the intensity of the reflected light separately.In any case, consider calculating reflected light intensity values at multiple wavelengths to correspond to the wavelength distribution situation.

ここで、除算のような演算を行うのは、単にある特定波
長での波長光強度だけでは光沢郷の影響が大きいので、
別の波長でも同時に波長光強度を測定しておき、それら
を除算処理することによって、影響を小さくするためで
ある。
Here, the reason for performing operations such as division is that simply wavelength light intensity at a specific wavelength has a large effect on glossiness.
This is to reduce the influence by measuring the wavelength light intensity at other wavelengths at the same time and dividing them.

次に実際の測定原理について述べる。Next, we will discuss the actual measurement principle.

測定対象物に紫外から可視光領域の波長成分を含んだ光
を照射し、複数(m+n+1fIA、 m、 n≧1の
自然数)の波長λ、トλ1、lす(λ11〈λ、〈λl
j、1=1〜m%j=1〜n、t、jは自然数、111
1丁紫外光領域の波長、λ、は紫外光と可視光の境界領
域(360〜400nm)の波長、λIjは可視光領域
の波長)での反射光強度を測定する。その検出強度を波
長の関数として、■(λ)とし、表面の清浄度が最良な
測定対象物に対して照射した場合の検出強度をT(わと
する。ここで、 I(λ11) lJi=□・・・・・・・−・・・・・・(1)■(λ
、) とおき、α、βの値を最良な対象物でのそれらの値の相
対値α!′、βj′で表わす。即ち、とすると、各測定
毎に合計1弓個σ)値が測定づれ、最良な対象物でのα
′、β′の値は全て1となる。
The object to be measured is irradiated with light containing wavelength components in the ultraviolet to visible light range, and a plurality of (m+n+1fIA, m, a natural number with n≧1) wavelengths λ, λ1, and (λ11〈λ,〈λl)
j, 1 = 1 ~ m% j = 1 ~ n, t, j are natural numbers, 111
The reflected light intensity is measured at a wavelength in the ultraviolet light region, λ is a wavelength in the boundary region (360 to 400 nm) between ultraviolet light and visible light, and λIj is a wavelength in the visible light region. The detected intensity is defined as ■(λ) as a function of wavelength, and the detected intensity when the object to be measured with the best surface cleanliness is irradiated is T(wa).Here, I(λ11) lJi= □・・・・・・・・・・・・・・・(1)■(λ
,) Let the values of α and β be the relative value of those values in the best object α! ′, βj′. In other words, if , the total 1 bow σ) value for each measurement is different from the measurement, and α for the best object is
The values of ' and β' are all 1.

本発明は、この(α、′、・・ 、α、′、β1′、・
・・、βイ′)の値から、衆面付着物の判別や表面清浄
度の測定を行うようにしたものである。
The present invention provides this (α, ′,... , α, ′, β1′, .
. . , βa′), it is possible to determine the presence of deposits on the surface and measure the surface cleanliness.

即ち、m = n = 1とし、λo”240nm、λ
、=400nm、λm+=54or+mの波長を使用し
て、測定を行っ九ところ、第1図に示すような結果が得
られた。
That is, m = n = 1, λo"240 nm, λ
, = 400 nm, and λm+ = 54 or + m, the results were obtained as shown in Figure 1.

図において、・印は、表面が完全に清浄化ばれた試料の
測定点であり、この完全清浄化試料におけ又、β、即ち
、7′は、7r−I肥土[=障り−1,13I(400
)79.1 であった。又、軽度の変色試料(しみ状試料)の測定点
は、同じ(第1図にΔ印で示す如くであり、例えばアン
ダービックリングに近いしみ状試料に更に、同様にして
求め友、変色試料の測定点け、同じ(第1図にO印で示
す如(であり、又、アンダービックリング試料の測定点
は、同じ(第1図に目印で示す如(であった。
In the figure, the * mark is the measurement point of a sample whose surface has been completely cleaned, and in this completely cleaned sample, β, that is, 7' is 13I (400
)79.1. In addition, the measurement points for the slightly discolored sample (spot-like sample) are the same (as shown by the Δ mark in Fig. 1). The measurement points for the under-bicking samples were the same (as shown by the marks O in FIG. 1), and the measurement points for the under-bicking samples were the same (as shown by the marks in FIG. 1).

従って、例えば、α′〉1、且つ、β′〉1の時をでは
変色と判定し、α′<1、且つ、1〈β’(1,5v時
はじみと判定し、α′〈1、且つ、β’)1.5の時は
アンダービックリングと判定することによって光面付着
物の判別や表面清浄度の測定が可能になるものである。
Therefore, for example, when α'>1 and β'>1, it is determined that there is discoloration, when α'<1 and 1<β' (1,5V, it is determined that there is discoloration, and when α'<1 , and β') of 1.5, it is determined that there is under-bickling, thereby making it possible to determine the deposits on the optical surface and measure the surface cleanliness.

尚、前記説明にお(・ては、3つの波長を使用した場合
について説明していたが、波長の数を四に増やすことに
よって判定精貫會高めることができる。
In the above description, the case where three wavelengths were used was described, but the precision of the determination can be improved by increasing the number of wavelengths to four.

又、前記説明においては、紫外光領域と境界領域の反射
光強度の比α、及び、可視光領域と境界領域の反射光+
3!度の比βを、同条件で予め得られている表面清浄度
の良好なfull定対象物に対する反射光強度比i、l
で除算することによって正規化したα′、β′の値から
、測定対象物の表面性状を測定するようにしていたが、
反射光強要比から測定対象物の表面性状を求める方法は
これして限定されず、紫外光領域と境界領域の反射光強
度の比α、及び、可視光領域と境界領域の反射光強度の
比βから、正規化することなく直ちして測定対象物の表
面性状を求めることも勿論可所である。
In addition, in the above description, the ratio α of the intensity of reflected light in the ultraviolet light region and the boundary region, and the ratio α of the reflected light intensity in the visible light region and the boundary region +
3! The intensity ratio β is calculated as the reflected light intensity ratio i, l for a full target object with good surface cleanliness obtained in advance under the same conditions.
The surface texture of the object to be measured was measured from the values of α′ and β′ normalized by dividing by
The method of determining the surface quality of the object to be measured from the reflected light forced ratio is not limited to this, but can be determined by using the ratio α of the reflected light intensity in the ultraviolet light region and the boundary region, and the ratio α of the reflected light intensity in the visible light region and the boundary region. Of course, it is also possible to immediately obtain the surface properties of the object to be measured from β without normalizing it.

以下図[11]を参照して、本発明して係る表面性状測
定方法が採用さnた、酸洗工程【でおける熱[1」圧延
鋼板の表面性状測定装置の実施例の構成を詳細して説明
する。
Referring to Figure [11] below, the configuration of an embodiment of a device for measuring the surface texture of a heat [1] rolled steel plate in the pickling process is described in detail, in which the surface texture measuring method according to the present invention is adopted. I will explain.

本実施例は、第2図に示す如(、酸洗後の熱間圧延鋼板
10の表面に、紫外光領域から可視光領域にわたる波長
成分を含む光を照射する光源12と、熱間圧延鋼板10
の表面で反射された光の一部をそれぞれ分岐するための
、第1及び第2のハーフミラ−14,16と、前記第1
のハーフミラ−14で反射された光から紫外光領域の波
長λ11(例えばλo=240 nm )を有する成分
を取出すための第1の光学フィルタ18と、前記第2の
ハーフミラ−16で反射された光から紫外光領域と可視
光領域の境界領域の波長λ1(例えばλt=400nm
)を有する成分を取出すための第2の光学フィルタ20
と、前記第1及び第2のハーフミラ−14,16を通過
した光から可視光領域の波長λ畠、(例えばλm+=5
40am)を有する成分を取出す念めの第3の光学フィ
ルタ22と、前記第1の光学フィルタ18を通過した波
長λ、1の光の強rLを検出するための第1の光検出器
24と、前記第2の光学フィルタ20を通過した波長λ
!の光の強Kk検出するための泥2の光検出器26と、
前記第3の光学フィルタ22を通過し念、波長λ3.の
光の強度を検出するための第3の光検出器28と、前記
光検出器24.26.28の出カドて応じて、前出(1
)〜(6)式の演算を行い、紫外光領域と境界領域の反
射光強度の比α、及び、可視光領域と境界領域の反射光
強度の比βを求め、これを、表面清浄度の最良な対象物
に対する反射光強度比α、βで正規化し、正規化された
反射光強度比α′、β′と測定対象物の表面性状の相関
関係を利用して、測定対象物の表面付着物の判別や表面
清浄度の測定を行う演算装置30と、該演算装置30に
おける処理結果に応じて、鋼板10の表面付着物の種類
や表面清浄度を表示する表示器32とから構成されてい
る。
In this embodiment, as shown in FIG. 10
first and second half mirrors 14 and 16 for branching a part of the light reflected on the surface of the first half mirror, respectively;
a first optical filter 18 for extracting a component having a wavelength λ11 (for example, λo = 240 nm) in the ultraviolet region from the light reflected by the half mirror 14; and the light reflected by the second half mirror 16. The wavelength λ1 of the boundary region between the ultraviolet light region and the visible light region (for example, λt=400 nm
) second optical filter 20 for extracting components having
and the wavelength λ in the visible light range from the light passing through the first and second half mirrors 14 and 16 (for example, λm+=5
40 am), and a first photodetector 24 for detecting the intensity rL of the light having wavelength λ, 1 that has passed through the first optical filter 18. , the wavelength λ passed through the second optical filter 20
! a photodetector 26 of the mud 2 for detecting the intensity of light Kk;
After passing through the third optical filter 22, the wavelength λ3. a third photodetector 28 for detecting the intensity of the light of
) to (6) are calculated to find the ratio α of the reflected light intensity in the ultraviolet light region and the boundary region, and the ratio β of the reflected light intensity in the visible light region and the boundary region. Normalize the reflected light intensity ratio α, β with respect to the best object, and use the correlation between the normalized reflected light intensity ratio α′, β′ and the surface texture of the object to be measured. It is composed of a computing device 30 that discriminates kimonos and measures surface cleanliness, and a display 32 that displays the type of surface deposits and surface cleanliness of the steel plate 10 according to the processing results of the computing device 30. There is.

以下作用を説明する。酸洗後の熱間圧延鋼板10に、光
源から光を照射し、ハーフミラ−14,16で3つの光
路に分岐させ、光学フィルタ18.20.22を通した
後、光検出器24.26.28で受光し、所定3波長の
反射光強度をそれぞれ検出する。測定された各検出値は
、表面清浄度の最良の対象物tて対する各検出器の出力
値を記憶した演算装置30に導かれ、前出M1図に示す
ような関係から、表面付着物の判別や表面清浄度の測定
が行われ、結果が表示器32に表示される。
The action will be explained below. The pickled hot rolled steel sheet 10 is irradiated with light from a light source, split into three optical paths by half mirrors 14, 16, passed through optical filters 18, 20, 22, and then passed through photodetectors 24, 26, . 28, and detects the reflected light intensity of three predetermined wavelengths. Each measured detection value is guided to the arithmetic unit 30 that stores the output value of each detector for the target object t with the best surface cleanliness, and from the relationship shown in the above-mentioned diagram M1, Discrimination and surface cleanliness measurement are performed, and the results are displayed on the display 32.

このようにして、極めて短時間に測定対象物の表面付着
物の判別や表面清浄度の測定を行うことができるので、
オンラインでの測定に有効であり。
In this way, it is possible to determine the surface adhesion of the object to be measured and measure the surface cleanliness in an extremely short time.
Effective for online measurements.

測定結果を操業にフィードバックすることによってアン
ダービックリングにならないよ5に必要以上にライン速
度を遅くして安全サイドで操業する必要や、アンダ−ビ
ックリングや変色等の発見遅れによる不良部分の増大が
なくなり、生竜能率及び歩留りを向上することができる
Feedback of measurement results to operations prevents under-bicking. 5) It is necessary to operate on the safe side by slowing down the line speed unnecessarily, and the number of defective parts increases due to delayed detection of under-bicking, discoloration, etc. This can improve production efficiency and yield.

間、前記実施例においては、相異なる複数個の波長の光
を同時に照射して、それらの反射光強度比の値の組合せ
から表面清浄度を求めるようにしていたが、所定波長の
反射光強度比を求める方法はこれに限定されず、例えば
、11::瞬時分光を行い、代表的な複数波長での反射
光強度を測定することも勿論可能である。
However, in the above embodiment, the surface cleanliness was obtained by irradiating light of a plurality of different wavelengths simultaneously and determining the surface cleanliness from the combination of the reflected light intensity ratio values. The method for determining the ratio is not limited to this, and for example, it is of course possible to perform 11:: instantaneous spectroscopy and measure the intensity of reflected light at a plurality of representative wavelengths.

以上説明し念通り、本発明によれば、アンダーピックリ
ング、変色等をそれぞれ判別して検出し、測定対象物の
表面清浄度をオンラインで監視することが可能となる。
As explained above, according to the present invention, it is possible to distinguish and detect under-pickling, discoloration, etc., and monitor the surface cleanliness of the object to be measured online.

従って監視結果に応じてライン速度を制御することによ
って、酸洗等の表面清浄作業を適切に行うことが可能と
なり、生産卵重及び歩留りを向上することができるとい
う優れ±効果を有する。
Therefore, by controlling the line speed according to the monitoring results, surface cleaning operations such as pickling can be performed appropriately, which has the advantage of improving the weight and yield of produced eggs.

【図面の簡単な説明】[Brief explanation of drawings]

第1シjは、本発明【て係る表面性状測定方法の原理を
説明するための、反射光伸度比の組合せと熱間圧延鋼板
の表面性状の関係の一例を示す線図、第2図は、本発明
に係る表面性状測定方法が採用された酸洗工程における
熱間圧延鋼板の表面性状測定装置の実施例の構成を示す
ブロック線図である。 10・・・熱間圧延鋼板、12・・・光源、14.16
・・・ハーフミラ−1・18.20.22・・光学フィ
ルタ、24.26.28・・・光検田器、30・−演X
装置、32・・表示器。 代デ9人   高  矢     論 (−
The first graph is a diagram showing an example of the relationship between the combination of reflected light elongation ratio and the surface texture of a hot rolled steel sheet, for explaining the principle of the surface texture measuring method according to the present invention. FIG. 1 is a block diagram showing the configuration of an embodiment of a surface texture measuring apparatus for hot rolled steel sheets in a pickling process in which a surface texture measuring method according to the present invention is adopted. 10... Hot rolled steel plate, 12... Light source, 14.16
・・・Half mirror 1・18.20.22・・Optical filter, 24.26.28・・Optical detector, 30・−X
Device, 32...Display device. 9 members of the representative team Takaya Ron (-

Claims (1)

【特許請求の範囲】[Claims] 測定対象物の表面に光を照射した時の反射光強度を、紫
外光領域、可視光領緘、両波長領域の境界領域の波長に
ついてそれぞれ測定し、紫外光領域と境界領域の反射光
強度の比、及び、可視光細繊と境界領域の反射光強度の
比を求め、前記反射光強度比と測定対象物の表面性状の
相関関係を利用して、測定対象物の表面付着物の判別や
表面清浄度の測定を行うようにしたことを特徴とする表
面性状測定方法。
When the surface of the measurement object is irradiated with light, the reflected light intensity is measured in the ultraviolet light region, the visible light region, and the wavelength in the boundary region between both wavelength regions, and the reflected light intensity in the ultraviolet light region and the boundary region is calculated. The ratio and the ratio of the reflected light intensity of the visible light fiber and the boundary area are determined, and the correlation between the reflected light intensity ratio and the surface texture of the measurement target is used to determine the surface deposits of the measurement target. A method for measuring surface properties, characterized in that surface cleanliness is measured.
JP57054930A 1982-04-02 1982-04-02 Measuring method for surface state Pending JPS58172504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57054930A JPS58172504A (en) 1982-04-02 1982-04-02 Measuring method for surface state

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57054930A JPS58172504A (en) 1982-04-02 1982-04-02 Measuring method for surface state

Publications (1)

Publication Number Publication Date
JPS58172504A true JPS58172504A (en) 1983-10-11

Family

ID=12984337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57054930A Pending JPS58172504A (en) 1982-04-02 1982-04-02 Measuring method for surface state

Country Status (1)

Country Link
JP (1) JPS58172504A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1677099A1 (en) * 2004-12-30 2006-07-05 Danmarks Tekniske Universitet Method and apparatus for classification of surfaces
EP2944942A1 (en) * 2014-05-16 2015-11-18 Vorwerk & Co. Interholding GmbH Automotive cleaner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1677099A1 (en) * 2004-12-30 2006-07-05 Danmarks Tekniske Universitet Method and apparatus for classification of surfaces
WO2006069583A1 (en) * 2004-12-30 2006-07-06 Danmarks Tekniske Universitet Method and apparatus for classification of surfaces
EP2944942A1 (en) * 2014-05-16 2015-11-18 Vorwerk & Co. Interholding GmbH Automotive cleaner

Similar Documents

Publication Publication Date Title
US10290113B2 (en) Surface state monitoring apparatus for metallic body and surface state monitoring method for metallic body
US20090002686A1 (en) Sheet Metal Oxide Detector
US6529273B1 (en) Monitoring oil films
JPS58172504A (en) Measuring method for surface state
JP2705842B2 (en) Method and apparatus for measuring surface properties of metal plate
JPH04233405A (en) Method and apparatus for measuring thickness of paint film
JPH07270130A (en) Method of measuring thickness of oxide film
JPH0933517A (en) Method for measuring quality of steel plate
JPS61134636A (en) Method for measuring degree of decoloration of steel sheet surface
JPH05118989A (en) Degrease evaluating method and evaluating device
JP4433824B2 (en) Method and apparatus for detecting periodic wrinkles
JP3275737B2 (en) Surface inspection device and surface inspection method
JPH11295241A (en) Method and equipment for inspecting surface flaw
JP2962171B2 (en) Surface flaw inspection equipment
JPS6236543A (en) Purity measurement for steel plate surface
JP3239793B2 (en) Method for determining the surface properties of chromium-based stainless steel sheets
JPS60169581A (en) Method for discriminating remaining scale condition of copper strip
JP2012506040A (en) Determination of salt concentration in aqueous solution
JP7150640B2 (en) Residual state determination method and residual state determination device
JPH08220018A (en) Method and apparatus for inspecting surface flaw
JP2002181723A (en) Surface inspection apparatus
JPH08254502A (en) Method and apparatus for measurement of scale property of steel material
JPH04354828A (en) Method for detecting tension of material to be annealed in horizontal continuous annealing furnace
JPH07120391A (en) Spectrofluorophotometer and method for quantitative measurement
JPH03264850A (en) Method and apparatus for measuring amount of applied oil on steel plate surface