JPS5817236B2 - Manufacturing method of powder coating - Google Patents

Manufacturing method of powder coating

Info

Publication number
JPS5817236B2
JPS5817236B2 JP5844881A JP5844881A JPS5817236B2 JP S5817236 B2 JPS5817236 B2 JP S5817236B2 JP 5844881 A JP5844881 A JP 5844881A JP 5844881 A JP5844881 A JP 5844881A JP S5817236 B2 JPS5817236 B2 JP S5817236B2
Authority
JP
Japan
Prior art keywords
powder
resin
raw material
powder coating
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5844881A
Other languages
Japanese (ja)
Other versions
JPS57174355A (en
Inventor
加藤晃平
森太郎
富田理平
武田達郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Toryo KK
Original Assignee
Dai Nippon Toryo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Toryo KK filed Critical Dai Nippon Toryo KK
Priority to JP5844881A priority Critical patent/JPS5817236B2/en
Publication of JPS57174355A publication Critical patent/JPS57174355A/en
Publication of JPS5817236B2 publication Critical patent/JPS5817236B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)

Description

【発明の詳細な説明】 本発明は粉体塗料の製造方法に関する。[Detailed description of the invention] The present invention relates to a method for producing a powder coating.

従来の粉体塗料の製造方法は大別して、次の2種類に分
類される。
Conventional powder coating manufacturing methods can be broadly classified into the following two types.

(1)原料成分を充分に乾式混合した後に加熱された円
筒をもつ押出機に供給し、これを熱溶融しながら同時に
熱溶融成分中に顔料を練合分散せしめ、次いで冷却及び
粉砕を行い、分級して粉体塗料を得る方法。
(1) After thorough dry mixing of the raw material components, they are supplied to an extruder with a heated cylinder, and while melting the raw materials, at the same time kneading and dispersing the pigment into the hot melting components, followed by cooling and pulverization. How to obtain powder coating by classification.

(2)原料成分を充分に乾式混合した後に加熱ロールミ
ルに供給し、溶融と練合とを同時に進行させ、次いで冷
却及び粉砕を行い、分級して粉体塗料を得る方法。
(2) A method of thoroughly dry-mixing raw material components and then supplying them to a heating roll mill, allowing simultaneous melting and kneading, followed by cooling, pulverization, and classification to obtain a powder coating.

ところが、これら従来法には大きな欠点がある。However, these conventional methods have major drawbacks.

即ち、(1)の方法においては熱溶融成分を溶融し顔料
を練合分散せしめているが装置内にふ・いては部分的に
樹脂の滞留部分が生ずるので、この部分においては特に
低温硬化型の熱硬化性粉体塗料の製造の場合には硬化反
応が進行しくゲル化)、この反応物が混線物中に混入し
、冷却、粉砕、分級して得た粉体塗料を用いて塗装した
場合には塗膜表面にブツが生じ外観不良となる。
That is, in the method (1), the hot melt component is melted and the pigment is kneaded and dispersed, but since there is a part where the resin stagnates in the equipment, the low temperature curing type is especially necessary in this part. In the case of manufacturing thermosetting powder coatings, the curing reaction progresses and gels), and this reaction product is mixed into the mixture, and the powder coating obtained by cooling, pulverizing, and classifying is used for coating. In some cases, bumps may appear on the surface of the coating, resulting in poor appearance.

才だ、(2)の方法においては加熱ロール表面にて熱酊
融成分の溶融及びこれと顔料との練合分散が同時に行わ
れるため顔料の分散が不均一になり易く、どれを冷却、
粉砕、分級して得た粉体塗料を用いて塗装した場合には
塗膜の光沢が低下し外観不良となる。
In method (2), the melting of the hot-melting component and the kneading and dispersion of this and the pigment are performed simultaneously on the surface of the heating roll, which tends to result in uneven dispersion of the pigment.
If a powder coating obtained by pulverization and classification is used for coating, the gloss of the coating film will decrease and the appearance will be poor.

・ 本発明は以上の如き従来法の欠点をもたない改良さ
れた粉体塗料の製造方法を提供するものであり、樹脂粉
末硬化剤及び顔料を含む原料を均一に乾式混合した粉体
を適宜の厚さに積層して搬送しなから該粉体に波長約3
〜10μmの赤外線を照射し、粉体中の熱溶融成分を短
時間で溶融せしめ、ただちに、これを加熱ロールミルに
供給し、短時間で前記粉体を練合せしめ、次いでこれを
冷却せしめた後、粉砕することを特徴とする。
- The present invention provides an improved method for producing powder coatings that does not have the drawbacks of the conventional methods as described above, and involves uniformly dry-mixing raw materials including a resin powder curing agent and a pigment, and then dry-mixing the powder as appropriate. The powder is laminated to a thickness of about
After irradiating infrared rays of ~10 μm to melt the hot melt components in the powder in a short time, immediately supplying this to a heated roll mill and kneading the powder in a short time, and then cooling it. , characterized by crushing.

本発明の方法により充分な顔料分散が出来、かつ前述の
如き滞留部分が生ぜず、また熱履歴時間が短いため、樹
脂と硬化剤との反応が進行せず良好なる粉体塗料が得ら
れる。
The method of the present invention allows sufficient pigment dispersion, does not cause the above-mentioned stagnation area, and because the heat history time is short, the reaction between the resin and the curing agent does not proceed and a good powder coating can be obtained.

本発明方法は特に低温硬化型熱硬化性粉体塗料に有効で
ある。
The method of the present invention is particularly effective for low temperature curing thermosetting powder coatings.

本発明方法において使用される原料としては従来使用さ
れているもの全てが使用できる。
All conventionally used raw materials can be used in the method of the present invention.

樹脂としてはガラス転移温度10〜80°Cのアクリル
樹脂、ポリニスフル樹脂、エポキシ樹脂あるいはこれら
の変性樹脂、これらの混合物が代表的なものとして挙げ
られる。
Typical resins include acrylic resins, polynisful resins, epoxy resins, modified resins thereof, and mixtures thereof, each having a glass transition temperature of 10 to 80°C.

硬化剤としてはコノ・り酸、アジピン酸、セバシン酸、
テカメチンンジカルボン酸、無水コハク酸、無水イタコ
ン酸、無水フタル酸等の多価カルボン酸またはその酸無
水物;ジシアンジアミド、メタフエニVンジアミン、ジ
アミノフェニルメタン、ジアミノフェニルスルホン等の
芳香族、脂肪族系アミン類;ブロックインシアネート等
が代表的なものとして挙げられる。
Hardening agents include cono-phosphoric acid, adipic acid, sebacic acid,
Polyhydric carboxylic acids or their acid anhydrides such as tecametin dicarboxylic acid, succinic anhydride, itaconic anhydride, and phthalic anhydride; Aromatic and aliphatic acids such as dicyandiamide, metaphenylene diamine, diaminophenylmethane, and diaminophenyl sulfone. Typical examples of amines include blocked incyanate and the like.

顔料としては酸化チタン、カーボンブラック、酸化鉄、
アルミ粉、フタロシアニンブルー、ジンククロメート、
炭酸カルシウム、硫酸バリウム等の無機、有機着色顔料
、体質顔料が代表的なものとして挙げられる。
Pigments include titanium oxide, carbon black, iron oxide,
Aluminum powder, phthalocyanine blue, zinc chromate,
Typical examples include inorganic and organic coloring pigments such as calcium carbonate and barium sulfate, and extender pigments.

その曲必要に応じ、アクリル酸エステル系モノマー又は
それにスチレン系モノマー成分を含む、ガラス転移温度
20℃以下の重合オリゴマー、パーフルオロカルボン酸
又はその金属塩等の表面調整剤;アセトアミドプロピオ
ン酸アミド、ステアリン酸アミド、ジアセトアミド、ゼ
ロチン酸ミリシル、部分酸化ポリオレフィン等のブロッ
キング防止剤;アジピン酸エステル、フタル酸エステル
等(7)”Tffi剤;ポリ(オキシエチレン)燐酸エ
ステル類、塩酸ピリジン等の帯電防止剤等の添加剤を使
用することが出来る。
If necessary, a polymerized oligomer containing an acrylic acid ester monomer or a styrene monomer component with a glass transition temperature of 20°C or less, a surface conditioner such as perfluorocarboxylic acid or a metal salt thereof; acetamidopropionic acid amide, stearin Anti-blocking agents such as acid amide, diacetamide, myricyl zerotate, partially oxidized polyolefin; adipate esters, phthalate esters, etc. (7) Tffi agents; antistatic agents such as poly(oxyethylene) phosphate esters, pyridine hydrochloride, etc. Additives such as can be used.

これら成分の配合割合は通常樹脂100重量部に対し硬
化剤1〜30重量部、顔料50重量部以下、添加剤10
重量部以下が適当である。
The mixing ratio of these components is usually 1 to 30 parts by weight of curing agent, 50 parts by weight or less of pigment, and 10 parts by weight of additive per 100 parts by weight of resin.
Parts by weight or less are appropriate.

特に、樹脂としてエピクロルヒドリン−ビスフェノール
型エポキシ樹脂と硬化剤としてジヒドラジド系あるいは
イミダゾール系化合物との組合せ、樹脂としてアクリル
酸(又はメタアクリル酸)のアルキルエステル(アルキ
ル基は炭素数1〜12とアクリル酸(又はメタアクリル
酸)のグリシンルエステルとを主成分とするグリシジル
基含有共重合体と硬化剤としてテカメチレンジカルボン
酸、アジピン酸、セバシン酸あるいはこれらとイミダゾ
ール系化合物との組合せの低温硬化型熱硬化性粉体塗料
が本発明方法において有効である。
In particular, a combination of an epichlorohydrin-bisphenol type epoxy resin as a resin and a dihydrazide or imidazole compound as a curing agent, and an alkyl ester of acrylic acid (or methacrylic acid) as a resin (the alkyl group has 1 to 12 carbon atoms and acrylic acid ( or methacrylic acid) as a main component, and a combination of tecamethylene dicarboxylic acid, adipic acid, sebacic acid, or an imidazole compound as a curing agent. Powder coatings are useful in the method of this invention.

本発明における原料を乾式混合した粉体の積層厚みは樹
脂の種類、照射される赤外線の線質及び強度更に照射時
間に応じて適宜決定すればよいが通常1〜30mmであ
る。
The layered thickness of the powder obtained by dry mixing raw materials in the present invention may be appropriately determined depending on the type of resin, the quality and intensity of the infrared rays to be irradiated, and the irradiation time, but is usually 1 to 30 mm.

厚みが前記範囲以上になると短時間で下層粉体の温度が
昇らないだめ適当でない。
If the thickness exceeds the above range, it is not appropriate unless the temperature of the lower layer powder rises in a short period of time.

本発明における積層粉体の搬送手段は粉体を飛散させな
いで静かに搬送できるものであればよく、たとえばベル
トコンベアー、又は電磁式や電動式の振動フィルター等
が例示される。
The means for conveying the laminated powder in the present invention may be any means as long as it can convey the powder quietly without scattering the powder, and examples thereof include a belt conveyor, an electromagnetic type or an electric type vibrating filter, and the like.

なおこれらの材質は当然耐熱性でかつ后融物が付着しな
いものを使用する。
It should be noted that these materials are naturally heat resistant and do not attract melted substances.

本発明において照射される赤外線は、積層厚み、樹脂の
種類等により任意に決定出来るが通常放射強度の大きい
波長3〜10μm特に3〜7μmのものが適当である。
The infrared rays to be irradiated in the present invention can be arbitrarily determined depending on the laminated thickness, the type of resin, etc., but a wavelength of 3 to 10 .mu.m, particularly 3 to 7 .mu.m, with a high radiation intensity is usually suitable.

この範囲で雰囲気温度100〜400°C程度とする。Within this range, the ambient temperature is about 100 to 400°C.

その際粉体の温度が樹脂の軟化点以上になるように調整
する必要がある。
At this time, it is necessary to adjust the temperature of the powder to be equal to or higher than the softening point of the resin.

なお、前記波長範囲以外になると放射強度が低いため粉
体の下層まで短時間で温度が上昇せず適当でない。
It should be noted that if the wavelength is outside the above range, the radiation intensity is low and the temperature does not rise to the lower layer of the powder in a short period of time, which is not appropriate.

まだ、照射時間は、20〜200秒が適当である。However, the appropriate irradiation time is 20 to 200 seconds.

照射時間が前記範囲より短いと樹脂の耐融程度が少なく
、逆に長いと反応が生じ粉体塗料の性能に悪影響をおよ
ぼしやすくなり好才しくない。
If the irradiation time is shorter than the above range, the degree of melting resistance of the resin will be low, whereas if the irradiation time is too long, reactions will occur and the performance of the powder coating will be likely to be adversely affected, which is undesirable.

本発明において用いられる加熱ロールミルは通常2〜5
個の外径30〜100cIrLのロールが適当で、その
温度は原料の種類に応じて適宜決定され、樹脂の軟化温
度以上で通常80〜150°Cが適当である。
The heated roll mill used in the present invention usually has 2 to 5
A roll having an outer diameter of 30 to 100 cIrL is suitable, and its temperature is appropriately determined depending on the type of raw material, and is usually 80 to 150°C above the softening temperature of the resin.

その際粉体の滞留時間は5〜20秒特に10秒以下が適
当である。
In this case, the residence time of the powder is suitably 5 to 20 seconds, particularly 10 seconds or less.

なお、粉体供給側のロールの回転速度は通常30〜10
0rl)Illが適当で粉体供給側から遠ざかる程ロー
ルの回転速度を速く、通常2倍以上にする必要があり、
それにより耐融練合される粉体が次のロール表面に乗り
移る。
Note that the rotation speed of the roll on the powder supply side is usually 30 to 10
0rl) Ill is appropriate, and the further away from the powder supply side the faster the rotation speed of the roll, usually it is necessary to double or more,
As a result, the powder to be melt-kneaded transfers to the surface of the next roll.

以下、図面を参照しつつ本発明を更に詳細に説明する。Hereinafter, the present invention will be explained in more detail with reference to the drawings.

第1図は本発明方法の実施状態を示すための概略説明図
である。
FIG. 1 is a schematic explanatory diagram showing the implementation state of the method of the present invention.

ホッパー1には均一ニ混合すれた粉体塗料用原料が収容
されており、下部の供給口を開口することによりベルト
コンベアー2上に一定割合にて原料が供給される。
A hopper 1 contains uniformly mixed raw materials for powder coating, and by opening a supply port at the bottom, the raw materials are supplied onto a belt conveyor 2 at a constant rate.

均一厚みに積層されて搬送される原料粉体に対しその上
方約5〜50CrrLの高さに設けられた赤外線発生装
置3により赤外線を照射する。
An infrared ray generator 3 installed at a height of about 5 to 50 CrrL above irradiates infrared rays onto the raw material powders, which are laminated to a uniform thickness and transported.

なお、粉体の積層厚みが例えば10mm以上と厚い場合
や、ガラス転移温度の高い樹脂を使用した場合下方から
も同様に赤外線を照射するとさらに有効である。
Note that when the stacked powder thickness is thick, for example, 10 mm or more, or when a resin with a high glass transition temperature is used, it is more effective to irradiate infrared rays from below as well.

赤外線照射により原料粉体のうちの熱浴融成分が浴融し
微小な后融核が形成され、その周囲を粉末状顔料が包囲
した状態が形成される。
The hot bath melting component of the raw material powder is bath melted by infrared irradiation to form a minute melting nucleus, which is surrounded by powdered pigment.

なお、場合により熱耐融成分は、必ずしも完全に溶融せ
ず、その表面層のみ耐融していてもよい。
Note that, depending on the case, the heat-resistant melting component may not necessarily be completely melted, and only its surface layer may be melt-resistant.

この様な状態の原料が加熱ロールミル4に供給され、こ
こでは極めて短かい時間で練合が行われ、樹脂中に顔料
が均一に分散せしめられる。
The raw materials in such a state are supplied to the heated roll mill 4, where they are kneaded in an extremely short period of time, and the pigment is uniformly dispersed in the resin.

尚、赤外線発生装置3にフード5を付設することにより
照射エネルギーの損失を防ぐことができ、更にロールミ
ル4にフード6及びファン7を付設することによりロー
ルミル4で発生する揮発成分や粉塵を除去することがで
きる1このようにして練合された原料は、通常ンート秋
物とし、従来から一般的に使用されている手段にて冷却
、粉砕、分級して通常10〜100μ程度の粉体塗料を
製造する。
Incidentally, by attaching a hood 5 to the infrared generator 3, loss of irradiation energy can be prevented, and by attaching a hood 6 and a fan 7 to the roll mill 4, volatile components and dust generated in the roll mill 4 can be removed. 1 The raw materials kneaded in this way are usually used as powder coatings, and are cooled, pulverized, and classified using commonly used means to produce powder coatings with a size of about 10 to 100 microns. do.

冑、本発明方法は熱可塑性粉体塗料にも適用できる。However, the method of the present invention can also be applied to thermoplastic powder coatings.

以−Hの如き本発明によれは加熱m融過程にかかる熱履
歴を最小時間に押えることが可能となり、そのだめ樹脂
と硬化剤の反応が進行せず、才だ顔料分散が充分出来、
従来顔料分散を十分に行うことができず従って不満足な
性能の製品しか得ることのできなかった低温硬化型熱硬
化性樹脂を用いた場合においてさえ高能率にて高性能の
粉体塗料を得ることができる。
According to the present invention as described in E-H, it is possible to suppress the thermal history required for the heating and melting process to the minimum time, so that the reaction between the resin and the curing agent does not proceed, and the pigment can be sufficiently dispersed.
To obtain high-performance powder coatings with high efficiency even when using low-temperature curing thermosetting resins, which conventionally could not sufficiently disperse pigments and therefore only produced products with unsatisfactory performance. I can do it.

以下に、本発明実施例及び比較例を示す。Examples of the present invention and comparative examples are shown below.

ここでは多塩基酸硬化型エポキシ基含有アクリル樹脂系
の粉体塗料の製造が行われている。
Here, polybasic acid-curable epoxy group-containing acrylic resin powder coatings are manufactured.

原料粉体と1〜ではアクリル樹脂(大日本インキ化学工
業(株)製ファインティックA−215CD)77.8
車量部、エポキシ樹脂(三菱油化(株)製、エピコート
−41001,)3.8重量部硬化剤(テカメチノンジ
カルボン酸)’ 13.4 重fi部、表面調整剤(モ
ンサント製モダフロー)10重量部、カーボンブラック
(三菱化成工業(株)製カーボン−#9C)O)4重量
部をヘンシェルミキサー(2000rI)III)にて
2分間、乾式混合(トライフレンド)したものを使用す
る。
Acrylic resin (Finetic A-215CD manufactured by Dainippon Ink and Chemicals Co., Ltd.) was 77.8 for the raw material powder and 1 to 1.
Part by weight, epoxy resin (Mitsubishi Yuka Co., Ltd., Epicoat-41001,) 3.8 parts by weight Hardening agent (tecamethinone dicarboxylic acid)' 13.4 Part by weight, surface conditioner (Modaflow, manufactured by Monsanto) 10 4 parts by weight of carbon black (Carbon-#9C)O manufactured by Mitsubishi Chemical Industries, Ltd.) were dry mixed (Trifriend) for 2 minutes in a Henschel mixer (2000 rI) III).

実施例 1 トライブレンドされた原料粉体を電磁フィーダー上に1
0mmの厚みに連続供給し、フィーダ゛−の上部30c
r/1の位置に暗赤外線放出用のセラミックを設置しこ
のセラミックを400°Cに加熱して波長3〜7μmの
暗赤外線を放出させた。
Example 1 Tri-blended raw material powder was placed on an electromagnetic feeder.
Continuously feed the feeder to a thickness of 0 mm, and
A ceramic for emitting dark infrared rays was placed at the r/1 position, and this ceramic was heated to 400°C to emit dark infrared rays with a wavelength of 3 to 7 μm.

そして原料にZlする暗赤外線の照射時間が90秒とな
る様にフィーダーをセットし連続的に原料粉体を送つた
Then, the feeder was set so that the irradiation time of dark infrared rays on the raw material was 90 seconds, and the raw material powder was continuously fed.

その時の雰囲気温度は200°Cであり、粉体層の中央
部分の原料温度は130’Cであった。
The ambient temperature at that time was 200°C, and the raw material temperature at the center of the powder bed was 130'C.

樹脂が溶融した状態のまま、120°Cの3本ロールか
らなるホットロールミルに連続供給し、滞留時間10秒
となるようロールを回転させながら練合し、次いで冷却
ロールにて冷却し、ミルにて粉砕し、200メツシユ金
網にて振動篩し分級し、平均粒径30〜35μmの粉体
塗料を得た。
The resin in its molten state is continuously fed to a hot roll mill consisting of three rolls at 120°C, kneaded while rotating the rolls so that the residence time is 10 seconds, and then cooled with a cooling roll and transferred to the mill. The powder was pulverized and classified by vibrating through a 200-mesh wire mesh to obtain a powder coating with an average particle size of 30 to 35 μm.

実施例 2 トライブレンドされた原料粉体をスチールベルトコンベ
アー上に5mm厚に連続供給し、フィーダ゛−の上部4
0CTLの位置に暗赤外線放出用セラミックを設置し、
このセラミックを400°Cに加熱して波長3〜7μm
の暗赤外線を放出させた。
Example 2 Tri-blended raw material powder was continuously fed to a thickness of 5 mm on a steel belt conveyor, and
A dark infrared emitting ceramic is installed at the 0CTL position,
This ceramic is heated to 400°C to produce wavelengths of 3 to 7 μm.
emitted dark infrared rays.

そして原料粉体に対する暗赤外線の照射時間が60秒と
なる様にフィーダーを七ツl−L原料粉体を送った。
Then, seven l-L raw material powders were fed through the feeder so that the dark infrared rays irradiated the raw material powders for 60 seconds.

その時の雰囲気温度ば300°Cであり、粉体層の中央
部分の原料湿度は]40°Cであった。
The ambient temperature at that time was 300°C, and the raw material humidity at the center of the powder layer was 40°C.

以下、実施例1と同様にして粉体塗料を得た。Thereafter, a powder coating material was obtained in the same manner as in Example 1.

比較例 1 トライブレンドされた原料粉体を120°Cの3本ロー
ルからなるホットロールミルに連続供給し、滞留時間1
0秒となるようロールを回転させながら溶融、練合を同
時に行ない、次いで実施例1と同様にして冷却、粉砕、
分級して粉体塗料を得だ。
Comparative Example 1 Tri-blended raw material powder was continuously fed to a hot roll mill consisting of three rolls at 120°C, and the residence time was 1.
Melting and kneading were carried out at the same time while rotating the rolls so that the melting time was 0 seconds, and then cooling, pulverization, and
It was classified and powder paint was obtained.

比較例 2 トライフレンドされた原料粉体を120℃にセットされ
た押出機(Buss −co−二−グー(Buss社製
)〕に、滞留時間40秒となるよう連続供給腰酌融した
状態の1捷、以下実施例1と同様にして練合、冷却、粉
砕、分級して粉体塗料を得た。
Comparative Example 2 Trifriended raw material powder was continuously fed to an extruder (Buss-co-Ni-Goo (manufactured by Buss)) set at 120°C so that the residence time was 40 seconds. The mixture was kneaded, cooled, pulverized, and classified in the same manner as in Example 1 to obtain a powder coating.

比較例 3 ドライフレンドされた原料粉体をスチールコンベアー上
に5m1rt厚に連続供給し、フィーダーの上部40c
IrLの位置にランプを設置し、波長1〜2μmの近赤
外線を照射した。
Comparative Example 3 Dry-friended raw material powder was continuously fed onto a steel conveyor to a thickness of 5 ml, and the upper part of the feeder was 40c.
A lamp was installed at the IrL position, and near-infrared rays with a wavelength of 1 to 2 μm were irradiated.

そして原料粉体に対するランプの照射時間が60秒とな
る様にフィーダーをセットし原料粉体を送った。
Then, the feeder was set so that the lamp irradiation time for the raw material powder was 60 seconds, and the raw material powder was fed.

その時の雰囲気温度は300’Cであり、粉体層の中央
部分の原料温度は70’Cであり、表面層は溶融してい
たが下層部はほとんど溶融してなかった。
The ambient temperature at that time was 300'C, the raw material temperature at the center of the powder layer was 70'C, and the surface layer was melted, but the lower layer was hardly melted.

このものを以下実施例1と同様にして練合、冷却、粉砕
、分級して粉体塗料を得た。
This material was then kneaded, cooled, crushed, and classified in the same manner as in Example 1 to obtain a powder coating.

比較例 4 比較例3においてランプの照射時間を240秒とする以
外は同様にして粉体塗料を得だ。
Comparative Example 4 A powder coating material was obtained in the same manner as in Comparative Example 3 except that the lamp irradiation time was changed to 240 seconds.

なお、粉体層の中央部分の原料温度は220°Cとなり
樹脂は全部酢融状態となっていた。
Note that the raw material temperature at the center of the powder layer was 220°C, and the resin was all in an acetic acid molten state.

以上6ケのサンプルを、リン酸処理した鉄板上に静電塗
装し、170’Cl2O分間焼付け、膜厚40〜50μ
の塗膜を得だ。
The above 6 samples were electrostatically coated on a phosphoric acid-treated iron plate, baked for 170'Cl2O minutes, and the film thickness was 40-50μ.
A coating film was obtained.

その光沢と塗膜外観は次の通りであった。The gloss and appearance of the coating film were as follows.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の代表的実施状態を示した概略説明
図である。 1:ホッパー、2:ベルトコンベアー、3:赤外線発生
装置、4:ホットロールミル、5,6:フード、7:フ
ァン。
FIG. 1 is a schematic explanatory diagram showing a typical implementation state of the method of the present invention. 1: Hopper, 2: Belt conveyor, 3: Infrared generator, 4: Hot roll mill, 5, 6: Hood, 7: Fan.

Claims (1)

【特許請求の範囲】[Claims] 1 粉体塗料の製造において、樹脂粉末硬化剤及び顔料
を含む原料を均一に乾式混合した粉体を適宜の厚さに積
層して搬送しなから該粉体に波長約3〜10μmの赤外
線を照射し、粉体中の熱溶融成分を短時間で溶融せしめ
、ただちに、これを加熱ロールミルに供給し、短時間で
前記粉体を練合せしめ、次いでこれを冷却せしめた後、
粉砕することを特徴とする粉体塗料の製造方法。
1. In the production of powder coatings, a powder obtained by uniformly dry-mixing raw materials including a resin powder curing agent and a pigment is layered to an appropriate thickness and transported, and then the powder is exposed to infrared rays with a wavelength of about 3 to 10 μm. irradiation to melt the hot melt components in the powder in a short time, immediately feed it to a heating roll mill, knead the powder in a short time, and then cool it,
A method for producing a powder coating, which includes pulverization.
JP5844881A 1981-04-20 1981-04-20 Manufacturing method of powder coating Expired JPS5817236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5844881A JPS5817236B2 (en) 1981-04-20 1981-04-20 Manufacturing method of powder coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5844881A JPS5817236B2 (en) 1981-04-20 1981-04-20 Manufacturing method of powder coating

Publications (2)

Publication Number Publication Date
JPS57174355A JPS57174355A (en) 1982-10-27
JPS5817236B2 true JPS5817236B2 (en) 1983-04-05

Family

ID=13084690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5844881A Expired JPS5817236B2 (en) 1981-04-20 1981-04-20 Manufacturing method of powder coating

Country Status (1)

Country Link
JP (1) JPS5817236B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60226567A (en) * 1984-04-26 1985-11-11 Nippon Paint Co Ltd Preparation of powder coating compound
NL1002153C2 (en) * 1996-01-23 1997-08-04 Dsm Nv Radiation curable powder paint binder composition.
KR20020014784A (en) * 2001-12-19 2002-02-25 고재권 Manufacturing method of electric wire protective pipe and electric wire protective pipe thereof
JP5668873B2 (en) 2011-12-28 2015-02-12 日産自動車株式会社 Vehicle control device
EP3197942A4 (en) * 2014-09-22 2018-03-28 Valspar Sourcing, Inc. Microwave bonding for coating compositions
CN105694666A (en) * 2016-02-01 2016-06-22 芜湖市四捍粉末涂料有限公司 Thermosetting antistatic flame-retardant powder paint

Also Published As

Publication number Publication date
JPS57174355A (en) 1982-10-27

Similar Documents

Publication Publication Date Title
EP1907453B1 (en) Powder coating materials
AU2006326451B2 (en) Low gloss coil powder coating composition for coil coating
US6162856A (en) Reflective composition of particles with resinous binder and process for preparing same
CN101311234B (en) Metal flashing powder coatings and preparation method thereof
JPH0578605A (en) Powder coating giving uneven pattern, its production, production device and coating method therefor, and coating film therefrom
JPS61111335A (en) Molding of plastic
EP1798267A1 (en) Powder coating composition suitable for coil coating
JPS5817236B2 (en) Manufacturing method of powder coating
JPH04227667A (en) Surface-treaterd metal oxide and preparation thereof
EP0536791B1 (en) Powdered paint
EA003372B1 (en) Pigment concentrate
JP3458847B2 (en) Granular additive for synthetic resin and method for producing the same
US3832226A (en) Method for dry electrostatic coating
US3384610A (en) Fluidized bed coatings containing powdered epoxy resin compositions and method for preparing the same
JPS5923741B2 (en) Manufacturing method of thermosetting resin powder coating
US5620643A (en) Process for producing fused particle agglomerates
JP2003119427A (en) Method for producing powder coating material
EP0653466A2 (en) Powder coating
US3485789A (en) Pulverulent coating compositions and fluidized bed coating method
US3617379A (en) Electrical insulation coating containing particles of inorganic substance of dielectric constant no less than 1500
US3577274A (en) Resin coatings containing zinc inclusions
US20030100646A1 (en) Powder-based coating composition, a cured film thereof, and a method of improving a color strength of the cured film
CH442741A (en) Process for the production of vinyl resin mixtures containing fillers
JPH0226659A (en) Method and apparatus for applying electrostatic powder
JPH01236284A (en) Manufacture of electrostatic powder coating material