JPS58172286A - Production of single crystal body - Google Patents

Production of single crystal body

Info

Publication number
JPS58172286A
JPS58172286A JP57055799A JP5579982A JPS58172286A JP S58172286 A JPS58172286 A JP S58172286A JP 57055799 A JP57055799 A JP 57055799A JP 5579982 A JP5579982 A JP 5579982A JP S58172286 A JPS58172286 A JP S58172286A
Authority
JP
Japan
Prior art keywords
single crystal
polycrystal
joined
same
compsn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57055799A
Other languages
Japanese (ja)
Other versions
JPS6215516B2 (en
Inventor
Takeshi Hirota
健 廣田
Harufumi Sakino
先納 治文
Eiichi Hirota
広田 栄一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57055799A priority Critical patent/JPS58172286A/en
Publication of JPS58172286A publication Critical patent/JPS58172286A/en
Publication of JPS6215516B2 publication Critical patent/JPS6215516B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/02Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Soft Magnetic Materials (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To make mass production of a single crystal having less segregation of compsn. and homogeneously controlled crystal orientation inexpensively in subjecting a single crystal body and a polycrystal body in a joined state to a heat treatment, and growing the same to a single crystal body by contg. a small amt. of Na or Ca in the polycrystal body. CONSTITUTION:A single crystal body 1 and a polycrystal body 2 having the same or approximately same crystalline structure and compsn. as the structure or compsn. of the body 1 are joined by hot pressing, hot hydrostatic pressing in an inert atmosphere or a heat treatment under the control of the atmosphere. The boundary 3 to be joined of the bodies 1 and 2 is beforehand finished to a specular surface in this stage. The joined body of both is heat-treated at high temp. to grow the body 2 to a single crystal body 5. If the body 2 incorporated with 0.01-0.25wt% Na or Ca alone or both thereof is used in this stage, the moving speed of the boundary 4 and the moving distance L thereof are increased.

Description

【発明の詳細な説明】 本発明は、酸化物単結晶体の製造法に関するもので、そ
の目的は、従来の単結晶体の製造法に比して組成偏析の
少ない、均質な制御された結晶方位を有する単結晶体を
、安価で多量に市場に提供することにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an oxide single crystal, and an object of the present invention is to produce a homogeneous, controlled crystal with less compositional segregation compared to conventional methods for producing single crystals. The purpose of the present invention is to provide the market with a large quantity of oriented single crystals at low cost.

現在、各種の無機化合物単結晶体が比較的高価にもかか
わらず、機械的特性、物理的特性、および化学的特性等
が多結晶体に比べて優れているため、電子部品構成材料
として非常に多く使用されており、その使用量は、年々
増加の一途をたどっでいる。すなわち、半導体素子にお
ける単結晶体シリコン、磁気ヘッド用磁性材料のMn−
Zn−フェライト単結晶体、発光素子用のGaP単結晶
体、発振素子用の単結晶体水晶等その他多くの単結晶体
が工業的規模で生産されている。これらの単結晶体の製
造法としては、チョクラルスキー法、プク リッジマン法、ベルヌーイ法、フラッ→ス法、オよび水
熱合成法等各種の方法があるが、いずれの方法も単結晶
体育成に相当な時間を要し、また育成期間中の製造装置
の制御には細心の注意を必要とする。得られた単結晶体
にも、組成の偏析、クラックの発生、多結晶体の混在と
いった問題がある。また、ルツボを用いるものでは、溶
解用ルツボから混入する不純物、フラックスを用いる場
合では、フラックスの混入等、多数の欠陥を生じゃすく
、そのため良品の歩留り率が低い。さらに、結晶方位の
制御も充分なされないものが多いなど、解決されなけれ
ばならない問題が多く残されている。
Currently, although various single crystal inorganic compounds are relatively expensive, their mechanical, physical, and chemical properties are superior to polycrystalline materials, making them extremely popular as constituent materials for electronic components. It is widely used, and its usage continues to increase year by year. That is, single crystal silicon in semiconductor elements, Mn- in magnetic materials for magnetic heads,
Many other single crystals, such as Zn-ferrite single crystals, GaP single crystals for light emitting devices, and single crystal quartz for oscillation devices, are produced on an industrial scale. There are various methods for producing these single crystals, such as the Czochralski method, the Pukridgeman method, the Bernoulli method, the Fruss method, and the hydrothermal synthesis method, but all methods are difficult to grow single crystals. It takes a considerable amount of time and requires great care in controlling the manufacturing equipment during the growing period. The obtained single crystal also has problems such as compositional segregation, cracking, and the presence of polycrystals. Furthermore, in the case of using a crucible, many defects occur such as impurities mixed in from the melting crucible, and in the case of using flux, contamination of flux, etc., resulting in a low yield rate of good products. Furthermore, many problems remain to be solved, such as insufficient control of crystal orientation in many cases.

本発明は、これら従来からある単結晶体の製造法とは異
なった、同相反応による単結晶体の育成法、すなわち、
希望する単結晶体と、この単結晶体と同組成、もしくは
それに近い組成で、かつそれと同じ結晶構造を有する多
結晶体とを接合し、この接合体を熱処理することにより
、多結晶体を、単結晶と同じ結晶方位、結晶構造をもつ
単結晶体に育成する(以後、この方法を1接合型単結晶
体製造法」と呼ぶ)に際して、多結晶体にNaもしくは
Caの少なくともいずれか一方を0.01〜2.5重量
%含有させておくことを特徴とする。
The present invention provides a method for growing a single crystal by an in-phase reaction, which is different from these conventional methods for producing a single crystal.
By joining a desired single crystal and a polycrystal having the same composition, or a composition close to it, and the same crystal structure as the single crystal, and heat-treating this joined body, the polycrystal can be made into a polycrystal. When growing a single crystal with the same crystal orientation and crystal structure as a single crystal (hereinafter this method will be referred to as the "one-junction single crystal manufacturing method"), at least one of Na or Ca is added to the polycrystal. It is characterized by containing 0.01 to 2.5% by weight.

以下に、さらに詳しく本発明の製造法について説明する
Below, the manufacturing method of the present invention will be explained in more detail.

第1図は本発明の詳細な説明するための図で、同図^は
単結晶体と多結晶体の接合体を、また同図(B)はこの
接合体を適当な条件下で熱処理した後の様子を示してい
る。図において、1は単結晶体、2は多結晶体で、単結
晶体1と同組成、もしくはほぼ同じ組成であって、それ
と同じ結晶構造を有する。3は単結晶体1と多結晶体2
との接合界面である。単結晶体1、多結晶体2とも接合
面の表面は凹凸が少ないものである程よく、鏡面にまで
仕上げられるのが好ましい。単結晶体1と多結晶体2と
の接合方法にはホットプレス、不活性雰囲気中での熱間
静水圧プレス、雰囲気制御下での熱処理等の方法がある
。なお、同図(B)において、4は多結晶体2側に移動
してきた接合界面、6は界面4が移動した後に形成され
た多結晶体から単結晶体に変化した部分である。
Figure 1 is a diagram for explaining the present invention in detail, and Figure 1 shows a bonded body of a single crystal and a polycrystalline body, and Figure 1 (B) shows this bonded body heat-treated under appropriate conditions. It shows what happens after. In the figure, 1 is a single crystal, and 2 is a polycrystal, which has the same composition or almost the same composition as the single crystal 1, and has the same crystal structure. 3 is single crystal 1 and polycrystal 2
This is the bonding interface between the In both the single crystal body 1 and the polycrystalline body 2, the surface of the bonded surface should have as few irregularities as possible, and it is preferable that the surface be finished to a mirror surface. Methods for joining the single crystal body 1 and the polycrystal body 2 include hot pressing, hot isostatic pressing in an inert atmosphere, heat treatment under controlled atmosphere, and the like. In the same figure (B), 4 is the bonding interface that has moved to the polycrystalline body 2 side, and 6 is the part that has changed from the polycrystalline body formed after the interface 4 has moved to the single crystalline body.

本発明の方法で用いられる多結晶体としては、接合界面
の移動がスムーズに行なわれるように、粒径が小さく、
気孔のほとんどないものであることが望ましい、粒径が
小さい程、接合界面が多結晶体側に移動するための駆動
力が大きい。そして、気孔は界面が移動するときにその
抵抗として働くため、これが少ない程、単結晶体化しや
すい。
The polycrystalline material used in the method of the present invention has a small grain size so that the bonding interface can move smoothly.
It is desirable that the particles have almost no pores, and the smaller the particle size, the greater the driving force for moving the bonding interface toward the polycrystalline body. Since pores act as resistance when the interface moves, the smaller the number of pores, the easier it is to form a single crystal.

発明者等は、この「接合型単結晶体製造法」において、
いかに効率よく、均質な単結晶体を育成するかについて
種々検討した結果、多結晶体にある種の添加物を含有さ
せておくと、界面移動速度をいちぢるしく高めることが
できることを発見した。これまで、多結晶体に不純物を
含有させると、この不純物が粒界に析出し、結晶粒界の
移動を阻止する効果をもつと考えられていた。発明者等
は、たとえば磁気ヘッド用材料の立方晶スピネル型構造
のMn−Zn−フェライトを実験材料として用い、添加
物として、S 102 、 Caω3. Na2COa
 、 At 208゜TtO2,Cu2O,NtO、C
r2O3を0.001〜1.0重量%(以下wt% を
記す)の範囲で、多結晶体に加えたものを作り、接合型
単結晶体製造法の実験を行なった。その結果、CaCO
aとNa2CO3を加えて作製した多結晶体において、
界面移動速度が無添加の多結晶体に比べて6〜10倍と
いちぢるしく大きくなり、しかも添加量の有効範囲が存
在することを新たに見出した。また、得られた単結晶体
は、物理的、化学的、機械的特性の点でも優れたもので
あることが明らかになった。
The inventors, in this "joint type single crystal production method",
As a result of various studies on how to efficiently grow homogeneous single crystals, we discovered that by incorporating certain additives into polycrystals, the speed of interfacial movement can be significantly increased. . Until now, it has been thought that when a polycrystalline body contains impurities, these impurities precipitate at grain boundaries and have the effect of inhibiting grain boundary movement. The inventors used, for example, Mn-Zn-ferrite with a cubic spinel structure, which is a material for magnetic heads, as an experimental material, and added S 102 , Caω3. Na2COa
, At 208°TtO2,Cu2O,NtO,C
A polycrystal was prepared in which r2O3 was added in a range of 0.001 to 1.0% by weight (hereinafter referred to as wt%), and an experiment was conducted on a bonded single crystal manufacturing method. As a result, CaCO
In the polycrystalline body made by adding a and Na2CO3,
It has been newly discovered that the interfacial movement speed is significantly higher, 6 to 10 times that of a polycrystal without additives, and that there is an effective range of the amount added. It was also revealed that the obtained single crystal had excellent physical, chemical, and mechanical properties.

そこで、発明者等は、これらの多結晶体を化学分析する
ことにより、多結晶体に含まれている、Ca、Naの含
有量を求め、この含有量と界面移動速度との関係を調べ
た。その代表的な結果を第2図に示す。横軸は、多結晶
体中に含まれるNa。
Therefore, the inventors chemically analyzed these polycrystals to determine the content of Ca and Na contained in the polycrystals, and investigated the relationship between this content and the interfacial movement speed. . The typical results are shown in FIG. The horizontal axis represents Na contained in the polycrystal.

Caの含有量x (wt%)を表わし、縦軸はNa。The Ca content x (wt%) is represented, and the vertical axis is Na.

およびC&を無添加しなかった場合の界面移動距離LO
と、添加した場合の界面移動距離りの比L/Loを示し
たものである。多結晶体の種類が異なれば、若干の値の
変化があるが、全体の傾向としては同じである。Naお
よびCaの無添加の場合でも、この実験で使用した多結
晶体には、最初から不純物としてそれぞれ0,006w
tチ、 0.007wt%含まれていることが化学分析
、原子吸光分析等の方法により判明している。この第2
図では、Mn  Zn 7 xライトにNa、Caをそ
れぞれNa2Co3、CaC0aの形で単独添加した場
合の界面移動距離の比、すなわち界面移動速度の比との
関係を示すものであり、Naの含有量が0.01〜0.
25wt%の範囲内で、L/Loが6〜8の値となり、
Caの含有量についても同様に0.01−0.25w 
t %の範囲内で、L/Loの値がいちぢるしく大きく
なっている。Na、Caをともに添加含有させた場合の
効果はNaおよびCaからの効果の単純な和にはならず
ミそれぞれの値の1〜3割増になった。Na量が0.2
5wt%を越える範囲では、第1図(B)に示した多結
晶体2側の結晶粒が熱処理時に急激に非常に大きくなり
、そのため界面を移動させる駆動力がいちぢるしく小さ
くなるため、かえって移動距離りが小さくなった。C&
の場合、その量が0.26wt% を越える範囲では、
熱処理時に、多結晶体2の結晶粒の粒界にCaOが析出
し、界面移動の際の抵抗となり、移動速度が急激に低下
した。NaおよびCaの含有量が0.01wt%より少
なくなると、効果も薄れることがわかった。
and interfacial migration distance LO when C& is not added.
and the ratio L/Lo of the interfacial movement distance when added. Although the values vary slightly depending on the type of polycrystal, the overall trend is the same. Even if Na and Ca were not added, the polycrystalline material used in this experiment contained 0,006 w of each as an impurity from the beginning.
It has been determined by methods such as chemical analysis and atomic absorption spectrometry that it contains 0.007 wt%. This second
The figure shows the relationship between the ratio of interfacial migration distances, that is, the ratio of interfacial migration speeds, when Na and Ca are individually added in the form of Na2Co3 and CaC0a to MnZn7xlite, and the Na content is 0.01~0.
Within the range of 25wt%, L/Lo has a value of 6 to 8,
Similarly, the content of Ca is 0.01-0.25w.
Within the range of t%, the value of L/Lo becomes significantly large. When both Na and Ca were added, the effect was not simply the sum of the effects from Na and Ca, but increased by 10 to 30% of the respective values. Na amount is 0.2
In a range exceeding 5 wt%, the crystal grains on the polycrystalline body 2 side shown in FIG. On the contrary, the distance traveled has become smaller. C&
If the amount exceeds 0.26wt%,
During the heat treatment, CaO precipitated at the grain boundaries of the crystal grains of the polycrystalline body 2, creating resistance during interfacial movement and causing a rapid decrease in the movement speed. It was found that when the content of Na and Ca was less than 0.01 wt%, the effect was weakened.

このように、接合型単結晶体製造法では、多結晶体への
添加物の種類と、添加量をコントロールすることにより
、優れた特性をもつ単結晶が得られるものである。
Thus, in the bonded single crystal production method, a single crystal with excellent properties can be obtained by controlling the type and amount of additives added to the polycrystal.

本発明の方法を適用できる酸化物単結晶体は、単にMn
−Znフェライトだけではなく、たとえばNL−Znn
フジイ、ト、その他のフェライト、YIG(イツトリウ
ム鉄ガーネット)、MgA1204(スピネル)等であ
り、この方法は現在市場で使われている多数の単結晶体
の製造に応用できるものである。
The oxide single crystal to which the method of the present invention can be applied is simply Mn
-Not only Zn ferrite, but also NL-Znn
Fujii, To, other ferrites, YIG (yttrium iron garnet), MgA1204 (spinel), etc., and this method can be applied to the production of many single crystals currently used on the market.

次に、本発明の方法の実施例について説明する。Next, examples of the method of the present invention will be described.

実施例1 厚さ1.5mm、幅71m1.長さ20ymであって、
接合面(7X20−面)が(1oo)面で、1.5X7
−の面が(110)面であるMn−Znフェライト単結
晶体(組成: MnO25モ/l/% 、 ZnO2S
 %)L/%。
Example 1 Thickness: 1.5 mm, width: 71 m1. The length is 20 ym,
The joint surface (7X20-plane) is (1oo) plane, 1.5X7
- Mn-Zn ferrite single crystal whose plane is (110) (composition: MnO25mol/l/%, ZnO2S
%) L/%.

Fe20360モル% )と、同組成で平均結晶粒径が
16μm、気孔率が0.01%以下、不純物としてS 
102を0.01wt%以下、Al2O3を0.01w
t%以下、CaOを0.001wt%以下、NaOを0
.001wt% 以下含むホットプレス焼結体、NaO
を0.10wt%(Naとして約o、oewt%)含み
、他の条件は同じであるホットプレス焼結体、およびC
adio、1owtq6(Caとして約0.07wt%
 )含み、他のの寸法に切シ出した。これらの接合面を
鏡面に仕上けた後、希硝酸を塗布して接合し、この接合
体を昇温速度100’C/時間で1280℃まで昇温し
、0.3 % N2ガスを含むN2ガス中(流量は0.
22A+ で、試料を内径60閣の炉芯管内に設置)で
12時間熱処理した。なお、昇温、降温時の雰囲気は、
N2ガス(流量はo、21/fk )を用いた。
Fe20360 mol%) with the same composition, average crystal grain size of 16 μm, porosity of 0.01% or less, and S as an impurity.
0.01wt% or less of 102, 0.01w of Al2O3
t% or less, CaO 0.001wt% or less, NaO 0
.. Hot pressed sintered body containing 001wt% or less, NaO
A hot pressed sintered body containing 0.10 wt% (about o, oewt% as Na), other conditions being the same, and C
adio, 1owtq6 (approximately 0.07wt% as Ca
) included and cut to other dimensions. After finishing these bonded surfaces to a mirror surface, dilute nitric acid was applied to bond them, and this bonded body was heated to 1280°C at a heating rate of 100'C/hour, and then heated using N2 gas containing 0.3% N2 gas. Medium (flow rate is 0.
The sample was heat-treated for 12 hours at 22A+ (installed in a furnace core tube with an inner diameter of 60 mm). The atmosphere during temperature rise and fall is as follows:
N2 gas (flow rate: o, 21/fk) was used.

降温は約り00℃/時間の速度で行なった。熱処理後、
試料体の中央部分をダイヤモンドカッターで切断し、こ
の切断面を鏡面ラップした後、60℃J の8 N−Hw*溶液を用いてエッチし、単結晶体化距
離L′l&−測定した。その結果、Na、Caを添加し
ていない試料を用いた場合では、LO”151111で
あり、Na添加の試料を用いた場合ではL = 10m
mで、Ca添加の試料を用いた場合ではL=14msで
あった。熱処理後、多結晶体の単結晶化していない部分
の平均結晶粒径を光学顕微鏡観察で調べたところ、約2
0μmと大きくなっていた。また、単結晶化した部分の
7エライトの磁気特性は、接−合に用いた単結晶体とほ
ぼ同じであった。
The temperature was lowered at a rate of approximately 00°C/hour. After heat treatment,
The center portion of the sample body was cut with a diamond cutter, the cut surface was lapped to a mirror finish, and then etched using an 8 N-Hw* solution at 60°C, and the distance L'l&- of single crystal formation was measured. As a result, when using a sample with no addition of Na or Ca, the LO was 151111, and when using a sample with Na addition, L = 10 m.
m, and when a Ca-added sample was used, L=14 ms. After heat treatment, the average crystal grain size of the portion of the polycrystalline body that has not become a single crystal was examined using an optical microscope, and was found to be approximately 2.
It was as large as 0 μm. Furthermore, the magnetic properties of the single crystallized portion of 7-elite were almost the same as those of the single crystal used for bonding.

実施例2 実施例1と同様の形状に加工したYIG(イツトリウム
鉄ガーネット)単結晶体(7X20−の面を接合面とし
、(11o)を利用)と、このYIG単結晶体と同組成
で、平均結晶粒径が5μm、気孔率がo、os%、不純
物としてSiO2を0.01wt%以下、CaOを0.
005w t %以下、NaOを0.001w t %
 以下含むホットプレス焼結体、NaOを0.20wt
%(Naとして約0.12wt%)含み、他の諸条件が
同じホットプレス焼結体、およびCaOを0.06wt
%(Caとして約0.036wt% )、0.20wt
%(Caとして約0.17wt% )含み、他の条件に
ついては最初合肥したものと同一のホットプレス焼結体
の四種類の多結晶体を、互いに接合面(7×20−の面
)をラップにより鏡面仕上げにした後、6Nの硝酸を接
合面に塗布して接合した。この接合体をN2ガス中(流
量0.21A+)において1ω℃/時間で1350℃に
まで昇温し、次にN2−0..3%N2ガス中(流i 
0.2 It/分)で12時間加熱を行なった後、再度
N2ガス中で400℃/時間で降温した。熱処理後、単
結晶化距離りを測定したところ、無添加の場合では3 
gB 、 Na添加の場合では20wR,0,05wt
 % CaO(0,036wt%Ca )添加のもので
は21 mm 、 0.20wt%CaO(0,17w
t%Ca )添加のものでは19簡であった。なお、比
較のため、N a Oを0.50wt%(N aとして
029w t % )含むもの、CaOを0.70wt
% (Caとして0.50wt%)含む多結晶体を用い
て前述と同じ実験をした結果、Lはそれぞれ3.5mm
 、 3.3mmであった。
Example 2 A YIG (yttrium iron garnet) single crystal processed into the same shape as in Example 1 (with the 7x20- plane as the bonding surface and (11o) used), with the same composition as this YIG single crystal, The average crystal grain size is 5 μm, the porosity is o, os%, and the impurities include SiO2 of 0.01 wt% or less and CaO of 0.
0.005wt% or less, NaO 0.001wt%
Hot pressed sintered body containing the following, 0.20wt NaO
% (approximately 0.12 wt% as Na) and other conditions are the same, and 0.06 wt% of CaO.
% (approximately 0.036wt% as Ca), 0.20wt
% (approximately 0.17 wt% as Ca), and other conditions were the same as those originally produced in Hefei. After giving a mirror finish by lapping, 6N nitric acid was applied to the bonding surfaces to bond them. This bonded body was heated to 1350°C at a rate of 1ω°C/hour in N2 gas (flow rate 0.21A+), and then N2-0. .. In 3% N2 gas (flow i
After heating at 0.2 It/min) for 12 hours, the temperature was lowered again at 400°C/hour in N2 gas. After heat treatment, the single crystallization distance was measured, and it was 3 in the case without additives.
gB, 20wR, 0.05wt in case of Na addition
% CaO (0,036 wt% Ca) added 21 mm, 0.20 wt% CaO (0,17 w
t%Ca) addition was 19 times. For comparison, one containing 0.50wt% NaO (029wt% as Na) and 0.70wt% CaO
As a result of conducting the same experiment as above using a polycrystal containing % (0.50 wt% as Ca), L was 3.5 mm in each case.
, 3.3 mm.

施するための単結晶体と多結晶体の接合体を示す斜視図
、同図(B)は同じく熱処理した後の様子を示す斜視図
である。第2図は本発明の方法で用いられる多結晶体中
に含まれるNaならびにCaの含有量Xと、単結晶体化
距離L:/Loとの関係を示す曲線図である。
A perspective view showing a bonded body of a single crystal and a polycrystalline body to be subjected to heat treatment, and FIG. FIG. 2 is a curve diagram showing the relationship between the content X of Na and Ca contained in the polycrystalline material used in the method of the present invention and the distance L:/Lo of forming a single crystal.

1・・・・・・単結晶体、2・・・・・・多結晶体、3
,4・・・・・・−合界面、6・・・・・・単結晶体化
した部分。
1...Single crystal, 2...Polycrystal, 3
, 4...--combination surface, 6...--portion that has become a single crystal.

第1図   42 トー一安−門Figure 1 42 Toichian Gate

Claims (1)

【特許請求の範囲】 単結晶体と、前記単結晶体と同一またはほぼ同一の結晶
構造および組成を有する多結晶体とを接合した状態で熱
処理することにより、前記多結晶体を単結晶体に育成す
るに際して、前記多結晶体一 晶体製造法。
[Scope of Claims] A single crystal and a polycrystal having the same or almost the same crystal structure and composition as the single crystal are heat-treated in a bonded state, thereby converting the polycrystal into a single crystal. When growing, the polycrystalline monocrystalline manufacturing method.
JP57055799A 1982-04-02 1982-04-02 Production of single crystal body Granted JPS58172286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57055799A JPS58172286A (en) 1982-04-02 1982-04-02 Production of single crystal body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57055799A JPS58172286A (en) 1982-04-02 1982-04-02 Production of single crystal body

Publications (2)

Publication Number Publication Date
JPS58172286A true JPS58172286A (en) 1983-10-11
JPS6215516B2 JPS6215516B2 (en) 1987-04-08

Family

ID=13008955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57055799A Granted JPS58172286A (en) 1982-04-02 1982-04-02 Production of single crystal body

Country Status (1)

Country Link
JP (1) JPS58172286A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5792591A (en) * 1980-11-28 1982-06-09 Ngk Insulators Ltd Production of single crystal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5792591A (en) * 1980-11-28 1982-06-09 Ngk Insulators Ltd Production of single crystal

Also Published As

Publication number Publication date
JPS6215516B2 (en) 1987-04-08

Similar Documents

Publication Publication Date Title
US4402787A (en) Method for producing a single crystal
US20030177975A1 (en) Rare earth-iron garnet single crystal material and method for preparation thereof and device using rare earth-iron garnet single crystal material
JPWO2002022920A6 (en) Rare earth-iron garnet single crystal, method for producing the same, and device using rare earth-iron garnet single crystal
JPS60138708A (en) Magnetic head core and its manufacture
JP2003267796A (en) Oxide having perovskite structure and method for producing the same
US4900393A (en) Process for producing single-crystal ceramics
JP2003267800A (en) Oxide ion-conducting crystal and method for producing the same
JPS58172286A (en) Production of single crystal body
KR0143799B1 (en) Single crystal growth method for bariumtitanikm oxide using noncrystalline solio growth
JPH0475879B2 (en)
JPS5921591A (en) Production of single crystal ferrite
US4331548A (en) Ferrite single crystal and magnetic head containing the same
JPS59152285A (en) Preparation of single crystal
JPS58155719A (en) Manufacture of single crystal body
JPS63117985A (en) Production of single crystal of oxide
JP2000119100A (en) Nonmagnetic garnet single crystal and magnetic garnet single crystal
JPH0336798B2 (en)
US3894142A (en) Method for producing gadolinium molybdate single crystals having high transparency
JPH0440318B2 (en)
JP6819862B2 (en) Method for growing bismuth-substituted rare earth iron garnet single crystal film and bismuth-substituted rare earth iron garnet single crystal film
JP2018095486A (en) Bismuth-substituted type rare earth iron garnet crystal film, production method thereof, and optical isolator
JPS5918188A (en) Preparation of ferrite of single crystal
JPS5926994A (en) Preparation of oxide single crystal
JPS6163530A (en) Production of hard magnetic material
JPS61186297A (en) Production of ferrite single crystal