JPS58171536A - Production of distilled zinc of high purity - Google Patents

Production of distilled zinc of high purity

Info

Publication number
JPS58171536A
JPS58171536A JP5367682A JP5367682A JPS58171536A JP S58171536 A JPS58171536 A JP S58171536A JP 5367682 A JP5367682 A JP 5367682A JP 5367682 A JP5367682 A JP 5367682A JP S58171536 A JPS58171536 A JP S58171536A
Authority
JP
Japan
Prior art keywords
zinc
downcomer
vapor
condenser
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5367682A
Other languages
Japanese (ja)
Inventor
Hidenori Nagasaki
英範 長崎
Mitsuo Ogami
光生 大上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP5367682A priority Critical patent/JPS58171536A/en
Publication of JPS58171536A publication Critical patent/JPS58171536A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To decrease the inclusion of high b.p. impurities such as lead and iron considerably and to recover zinc of high grade by condensing part of zinc vapor in the flow passage of a downcomer and flowing the same down into a well part. CONSTITUTION:The vapor of Zn reduced and formed in a vertical retort is fed through a downcomer 16 into a condenser 17, and is subjected to shock cool by the zinc splash in a sump, whereby Zn is condensed and is recovered as a base metal. During this time, part of the vapor of Zn is condensed with a cooling body 20 suspended in the downcomer 1. The gaseous flow is brought into collision against the body 20 to change flow so as to flow into the condenser 17. The fine particle dust and Pb drop contained in the gaseous flow are adsorbed and captured on the molten zinc drop condensed on the body 20 and are separated from the gaseous flow. Such molten zinc is flowed down into the well 21 in the lower part of the downcomer 16 from which the zinc is discharged continuously into a depositing furnace. As a result, only the zinc vapor of high purity is fed into the condenser 17, and the base metal having high zinc grade is recovered.

Description

【発明の詳細な説明】 ・本発明はダウンカマーに亜鉛蒸気の凝縮機構を付加し
、鉛及び鉄などの高沸点不純物の混入量を大幅に低減し
、高品位の亜鉛を回収する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of adding a zinc vapor condensation mechanism to a downcomer, greatly reducing the amount of high-boiling point impurities such as lead and iron, and recovering high-grade zinc.

亜鉛の乾式製錬法には水平蒸留法、竪型蒸留法。Zinc pyrometallurgy methods include horizontal distillation method and vertical distillation method.

電熱蒸留法および溶鉱炉法などがある。これらの製錬法
はいずれも亜鉛を含む焼鉱を処理して高温でコークスな
どの還元剤と反応させ、亜鉛分を還元蒸発させ、発生し
た亜鉛蒸気を亜鉛コンデンサーで冷却凝縮させ、亜鉛地
金として回収しているが、その方法−?設備については
それぞれの方法によって異なり、それがそれぞれの製錬
法の特徴となっている。
Examples include electrothermal distillation method and blast furnace method. In all of these smelting methods, burned ore containing zinc is treated and reacted with a reducing agent such as coke at high temperature, the zinc content is reduced and evaporated, and the generated zinc vapor is cooled and condensed in a zinc condenser to form zinc ingots. However, how? Equipment differs depending on each method, and this is a characteristic of each smelting method.

ここで従来行なわれている竪型蒸留法について第1図に
よシ説明する。堅型蒸11111炉10は、直立型のレ
トルト11の外側に加熱室12が設けられ。
Here, the conventional vertical distillation method will be explained with reference to FIG. The vertical steamer 11111 furnace 10 includes a heating chamber 12 outside an upright retort 11.

該加熱室12に電熱1i113が接続し、一方レトルト
11の上部は除鉛塔14が設けられると共にその上部に
装入ホッパ15が取付けられ、更に除鉛塔14の上部側
端にダウンカマ−16が接続し、該ダウンカマー16の
下部にスプラッシュコンデンサ17が設けられてなる。
An electric heating unit 1i113 is connected to the heating chamber 12, while a lead removal tower 14 is provided in the upper part of the retort 11, a charging hopper 15 is attached to the upper part, and a downcomer 16 is further installed at the upper end of the lead removal tower 14. A splash capacitor 17 is provided at the bottom of the downcomer 16.

亜鉛鉱石は焙焼された後。After the zinc ore is roasted.

石灰と混合されて団鉱に形成され、上記装入ホッパtS
からレトルト内部に投入され、残渣は炉の底部から排出
される。加熱によ抄炉内には亜鉛蒸気やCOガス等が発
生する。これをレトルト上部からダウンカマー16を通
じてコンデンサ1Tに導き熔融亜鉛の飛沫を用いて亜鉛
蒸気を凝縮させ亜鉛地金として回収される。
Mixed with lime and formed into a briquette, the charging hopper tS
from the inside of the retort, and the residue is discharged from the bottom of the furnace. Zinc vapor, CO gas, etc. are generated in the papermaking furnace due to heating. This is introduced from the upper part of the retort through the downcomer 16 to the condenser 1T, and the zinc vapor is condensed using droplets of molten zinc and recovered as zinc ingots.

又、亜鉛蒸気と集に蒸留炉からコンデン+17に流れて
くるCO,CO2,H2,H2O,N2.02などのガ
スは第2図に示すようにコンデンサITを通じて排気筒
1魯を通9抜け、次工程のガス洗浄装置で処理される。
In addition, gases such as CO, CO2, H2, H2O, and N2.02 flowing from the distillation furnace to the condenser +17 along with the zinc vapor pass through the exhaust stack 1 through the condenser IT as shown in Figure 2. Processed in the next step, a gas cleaning device.

ここで、焼鉱中に含まれる亜鉛以外の成分のうち、低沸
点の成分や蒸気圧の高い成分は亜鉛蒸気と共にコンデン
サ1F’に人や、コンデンサ17で冷却されて、溶融亜
鉛19の中に入り、不純分となる。
Here, among the components other than zinc contained in the burnt ore, components with low boiling points and components with high vapor pressure are cooled by people or condenser 17 in condenser 1F' together with zinc vapor, and are poured into molten zinc 19. enters and becomes impurities.

また焼鉱のうち粉状のものは一部蒸貿炉からコンダン−
?17へ流れるガス流にのってコンデンサ1Tへ入り、
溶融亜鉛1!1に接触する過程で亜鉛に溶解する成分が
混入し、不純分となる。
In addition, some of the powdered ore is transferred from steaming furnaces to condensers.
? It enters the condenser 1T along with the gas flow flowing to 17,
In the process of contacting the molten zinc 1!1, components that dissolve in zinc are mixed in and become impurities.

上記竪型蒸留法は蒸留炉の上部に除鉛I&14があり、
蒸留炉に装入された直後の比較的温度の低い装入物の層
があって、蒸留炉で発生した亜鉛蒸気はこの装入物の層
を通過する過程で、ガスの温度が下がり、沸点の高い鉛
を亜鉛蒸気の気流° から除くことができるため他方式
からの製品亜鉛品質に比べてpb品位が低く、比較的高
純度め蒸留亜鉛地金を得ることができる。以上のように
i型蒸貿法は他の乾式製錬法に比べ一般に亜鉛地金のz
n品位がよいが、それでも電解製錬法に比べると依然と
してPbやその他の不純物含量が高□ い、他方電解製
錬法は製造コストが高いため、上紀堅型蒸貿法において
亜鉛品位を高めることかできれば製造コスト上非常に有
利である。
The above vertical distillation method has lead removal I&14 at the top of the distillation furnace.
Immediately after being charged into the distillation furnace, there is a layer of relatively low-temperature charging material, and as the zinc vapor generated in the distillation furnace passes through this layer of charging material, the temperature of the gas decreases, and the boiling point Since high lead content can be removed from the zinc vapor stream, it is possible to obtain distilled zinc ingots with a relatively high purity and a lower lead quality compared to zinc products produced by other methods. As mentioned above, compared to other pyrometallurgical smelting methods, the i-type steaming method generally reduces the
Although the zinc quality is good, the content of Pb and other impurities is still higher than that of the electrolytic smelting method.On the other hand, the production cost of the electrolytic smelting method is high, so it is necessary to increase the zinc quality using the Joki hard steaming method. If possible, this would be very advantageous in terms of manufacturing costs.

本発明は上記技術背景のもとに高品位の亜鉛地金を得る
灸造法を提供するものであって、その構成は、ダウンカ
マ功流路内に冷却体を設置する一方、該ダウンカマ℃下
部に湯溜を設はダウンカマの流路内で亜鉛蒸気の一部を
凝縮し、#h池部に流下させて鉛及び鉄などの高沸点成
分を分離することを特徴とする高純度蒸留亜鉛の灸造法
である。
The present invention provides a moxibustion method for obtaining high-grade zinc metal based on the above technical background, and its configuration is such that a cooling body is installed in the downcomer flow path, and the downcomer is Moxibustion of high-purity distilled zinc is characterized in that a hot water reservoir is installed in the flow path of the downcomer to condense a part of the zinc vapor, and the vapor is allowed to flow down to the #h pond section to separate high boiling point components such as lead and iron. It is a construction method.

以下に本発明を図面に示す一実施例に基づき詳細に説明
する。第3図に本発明に係る竪型蒸留炉のダウンカマー
とコンデンサとの概略断面図を示す。ダウンカマ−16
の天井から流路内に冷却体20が設置される。冷却体は
熱伝導の良い煉瓦あるいは冷却パイプなど公知の方法が
使用出来る。
The present invention will be explained in detail below based on an embodiment shown in the drawings. FIG. 3 shows a schematic sectional view of a downcomer and a condenser of a vertical distillation furnace according to the present invention. Downcomer 16
A cooling body 20 is installed from the ceiling into the flow path. As the cooling body, known methods such as bricks or cooling pipes with good heat conductivity can be used.

更に該ダウンカマー16の下部に湯溜21が形成される
Furthermore, a trough 21 is formed below the downcomer 16.

上記構成において、竪型レトルト内で還元生成される亜
鉛蒸気と還元ガスはダウンカマ−16を通ってコンダン
fITに入り、サンプ内で亜鉛スプラッシュによってシ
ョッククールされて2.は凝縮し地金として回収される
In the above configuration, the zinc vapor and reducing gas produced by reduction in the vertical retort enter the conduit fIT through the downcomer 16, and are shocked cooled by zinc splash in the sump. is condensed and recovered as bullion.

この時ガス中のC02あるいはH2Oがzn蒸気を酸化
させて生成したznOはコンデンサードロス(浮環)と
なる。
At this time, the ZnO produced by CO2 or H2O in the gas oxidizes the Zn vapor becomes a condenser loss (floating ring).

又コンデンサ温度(550−600℃)で平衡するzn
蒸気によって相当分の亜鉛蒸気はコンデンサ1Tを通勤
ぬけて、次工程であるスタックサイクロンにてスタック
ダスト(亜鉛末)として回収され、更にその次のガス洗
浄工程(OVC)でOvC亜鉛末として回収される。
Also, zn is balanced at the capacitor temperature (550-600℃)
A considerable amount of zinc vapor passes through the condenser 1T and is recovered as stack dust (zinc dust) in the next process, the stack cyclone, and is further recovered as OvC zinc dust in the next gas cleaning process (OVC). Ru.

上記ガス流において理論的K Pbの沸点a 1740
℃であり、一方ZnO沸点は907℃と沸点のちがいが
大きく、コンデンサ一温度550℃前後でのPb蒸気圧
は95 X I Q−6wxH7l  と非常に低い。
In the above gas flow, the theoretical K Pb boiling point a 1740
On the other hand, the boiling point of ZnO is 907°C, which is a large difference in boiling point, and the Pb vapor pressure at a condenser temperature of around 550°C is very low, 95×IQ-6wxH7l.

因にkwP=−10130T”−+(−0,985)b
gT+11.16(謔Hg)お2転 一方、ダクン力マー11iO温曳は通常800C前後で
ある。Pb tit除鉛塔14で大部分&kiL、除去
されるが、一部扛ダクン力・ト16を通じて流出する。
Incidentally, kwP=-10130T"-+(-0,985)b
gT+11.16 (謔Hg) On the other hand, the temperature of Dakun Rikimar 11iO is usually around 800C. Most of the Pb is removed in the lead removal tower 14, but some of it flows out through the lead removal tower 16.

ここて本発明線熱伝導の艮い冷却体20をダウンカマー
16に吊下げているので、この部分でガスの1iliy
Lが僅かながら低下し、亜鉛蒸気の一部がm輪する。こ
の際ガス流は上記冷却体20に嬌笑し、流れを変えてコ
ンデンサ17に流入する。このときガス流に含まれる微
粒ダストやPbffaは冷却体上に凝縮した溶融亜鉛滴
に吸着して捕捉され、ガス流から分離除去される。上記
溶融亜鉛はダウンカマーT部O#Ih滴21に流れ落ち
、連続的に溶捏炉へ排出される。これによりPbの分離
はもちろんダストとして気流で連はれてきた不純分特に
FcなとやCO2刊20などによって再鹸化して生成し
たドロスなどもこの#11漸に回収される。従って^純
良な礎鉛蒸気か冨ンデン夛に送られ、亜鉛品位の高い地
金が得られる。
Here, since the heat conduction cooling body 20 of the present invention is suspended from the downcomer 16, the gas
L decreases slightly, and some of the zinc vapor leaks. At this time, the gas flow flows into the cooling body 20, changes its flow, and flows into the condenser 17. At this time, particulate dust and Pbffa contained in the gas flow are adsorbed and captured by molten zinc droplets condensed on the cooling body, and are separated and removed from the gas flow. The molten zinc flows down into the downcomer T section O#Ih droplet 21 and is continuously discharged to the kneading furnace. As a result, not only Pb is separated, but also impurities that have been entrained in the airflow as dust, particularly dross generated by re-saponification with Fc, CO2, etc., are recovered in this step #11. Therefore, the pure base lead vapor is sent to Tominden, and a high-grade zinc ingot is obtained.

以上のように本発明はコンデンサーを併設することなく
、単にダウンカマーで亜鉛蒸気の一部を冷却して凝縮さ
せ、生じた亜鉛熔体を湯溜に受けるだけの簡単な設備で
ありながら極めて品持の高い肋鉛地金を得ることができ
る。
As described above, the present invention is a simple equipment that simply cools and condenses a part of the zinc vapor using a downcomer without installing a condenser, and receives the resulting molten zinc in a hot water reservoir, but it is extremely high quality. You can obtain high-quality ribbed metal.

次に本発明O実施例を比較例と共に示す。Next, examples of the present invention will be shown together with comparative examples.

実施例 次に示す操業条件にて本発明に係る竪型蒸留炉を用いて
亜鉛鉱を製錬したところ、次表に示す結果が得られた。
Example When zinc ore was smelted using the vertical distillation furnace according to the present invention under the operating conditions shown below, the results shown in the following table were obtained.

操業条件  ダウンカマー人ロガス温度 820℃ダウ
ンカマー下部謳溜直上が丙鼠度 810℃同il!i#
Ii出口湯温   520〜540℃コンデンサー内湯
@    530〜b※ 但しコンデンサー湯温は水冷
蛇管により湯温自動コントロールを行なう。
Operating conditions: Downcomer temperature: 820℃ Just above the bottom of the downcomer, the temperature is 810℃! i#
Ii Outlet hot water temperature 520-540℃ Condenser internal hot water @ 530-b* However, the condenser hot water temperature is automatically controlled by the water cooling spiral pipe.

上記結果から明らかなように 低Pb、低F@の純度の良い亜鉛が9割回収され、その
まま熔融亜鉛メッキ用の調合亜鉛の原料として使用でき
、製造コストの高い電気亜鉛や精留亜鉛は使用しなくて
よい。
As is clear from the above results, 90% of high-purity zinc with low Pb and low F@ is recovered and can be used as raw material for mixed zinc for hot-dip galvanizing, while electrolytic zinc and rectified zinc, which are expensive to manufacture, can be used. You don't have to.

Pb、F、などの不純物を製動した亜鉛が1割回収され
るがこれtit溶析法によりPbとF・を幾分除去し九
あと精留炉へ供用すれば精留亜鉛(Zn 99.99.
% )として回収される。
10% of the zinc produced with impurities such as Pb and F is recovered, but if some of the Pb and F are removed by the tit melting method and then used in a rectification furnace, rectified zinc (Zn 99.9%) is recovered. 99.
%).

【図面の簡単な説明】[Brief explanation of drawings]

It図は竪型蒸留炉の外&図、第2図は従来のダウンカ
マーとコンデンサとの構造を示す概略断面図、第3図は
本発明に係るダウンカマーとコンデンサーとの構造を示
す概略断面図である。図中、10・・・竪型蒸留炉、1
1・・・レトルト、12・・・加熱炉、13・・・電熱
炉、14・・・除鉛塔、15・・・装入ホッパ、16・
・・ダウン力竿、17・・・コンデンサ、18・・・排
気筒、1ト・・溶融亜鉛、20・・・冷却体、21・・
・湯溜。 特許出願人 三井金属鉱業株式会社 代理人弁理士 光石士部(他1名) I7 氾3図
The It diagram is an outside view of the vertical distillation furnace, Figure 2 is a schematic sectional view showing the structure of a conventional downcomer and condenser, and Figure 3 is a schematic sectional view showing the structure of the downcomer and condenser according to the present invention. It is a diagram. In the figure, 10... Vertical distillation furnace, 1
DESCRIPTION OF SYMBOLS 1... Retort, 12... Heating furnace, 13... Electric heating furnace, 14... Lead removal tower, 15... Charging hopper, 16...
...down power rod, 17...condenser, 18...exhaust pipe, 1t...molten zinc, 20...cooling body, 21...
・Hot water tank. Patent applicant: Mitsui Kinzoku Mining Co., Ltd. Representative Patent Attorney: Shibe Mitsuishi (and 1 other person) I7 Flood 3

Claims (1)

【特許請求の範囲】[Claims] ダクンカマー〇流路内に冷却体を設置する一方、該ダウ
ンカマーの下部に湯溜を設はダクンカマー〇流路内で亜
鉛蒸気の一部を凝縮し、湯溜部に流下させて鉛及び鉄な
どの高沸点成分を分離することを特徴とする高純度蒸留
亜鉛の良造法。
A cooling body is installed in the flow path of the downcomer, and a hot water reservoir is installed at the bottom of the downcomer. A method for producing high-purity distilled zinc, which is characterized by separating high-boiling point components.
JP5367682A 1982-04-02 1982-04-02 Production of distilled zinc of high purity Pending JPS58171536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5367682A JPS58171536A (en) 1982-04-02 1982-04-02 Production of distilled zinc of high purity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5367682A JPS58171536A (en) 1982-04-02 1982-04-02 Production of distilled zinc of high purity

Publications (1)

Publication Number Publication Date
JPS58171536A true JPS58171536A (en) 1983-10-08

Family

ID=12949420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5367682A Pending JPS58171536A (en) 1982-04-02 1982-04-02 Production of distilled zinc of high purity

Country Status (1)

Country Link
JP (1) JPS58171536A (en)

Similar Documents

Publication Publication Date Title
US3251676A (en) Aluminum production
US2328202A (en) Process for producing magnesium metal
US3449117A (en) Method of purifying metals and recovery of metal products therefrom
CN105925805A (en) Lead-zinc ore smelting method
CN103069023A (en) Method and apparatus for recovering metal from electric furnace dust
US2464262A (en) Production of zinc
JPS58171536A (en) Production of distilled zinc of high purity
CA1200396A (en) Method of cleaning a gas flow containing zinc vapour
US2671725A (en) Production of zinc
US4548621A (en) Condensing zinc vapor
US4514221A (en) Method of smelting zinc by injection smelting
US2331988A (en) Continuous furnace for the separation of a metal alloyed with other metals
CN206089775U (en) Lead zinc ore 's melting equipment
CN206089768U (en) Lead zinc ore 's melting equipment
US2457552A (en) Vertical retort process for zinc smelting
JPH0633156A (en) Preparation of easily volatile metals such as zinc, lead and cadmium from sulfide material
CN206089776U (en) Lead zinc ore 's melting equipment
US3463473A (en) Installation for extracting zinc from fumes rich in zinc vapour
CN106086464B (en) The smelting equipment of Pb-Zn deposits
CN106086463B (en) The smelting equipment of Pb-Zn deposits
US1994352A (en) Purifying zinc metal
US1718378A (en) Method of producing zinc
US3448972A (en) Apparatus for refining impure metals
US2207779A (en) Process and apparatus for zinc smelting
US859132A (en) Smelting process.