JPS58170079A - Semiconductor photodetecting element - Google Patents

Semiconductor photodetecting element

Info

Publication number
JPS58170079A
JPS58170079A JP57053280A JP5328082A JPS58170079A JP S58170079 A JPS58170079 A JP S58170079A JP 57053280 A JP57053280 A JP 57053280A JP 5328082 A JP5328082 A JP 5328082A JP S58170079 A JPS58170079 A JP S58170079A
Authority
JP
Japan
Prior art keywords
type
znte
gasb
layer
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57053280A
Other languages
Japanese (ja)
Other versions
JPS6328504B2 (en
Inventor
Sadao Adachi
定雄 安達
Hiroshi Kanbe
神戸 宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP57053280A priority Critical patent/JPS58170079A/en
Publication of JPS58170079A publication Critical patent/JPS58170079A/en
Publication of JPS6328504B2 publication Critical patent/JPS6328504B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To enable to use a semiconductor photodetecting element in the wide wavelength range containing visible light range and to improve the reliability and characteristics of the element by constructing the element by utilizing the hetero junction between ZnTe and GaSb or the hetero junction between ZnTe and GaInSb having equal grating constant to ZnTe. CONSTITUTION:An element is sequentially grown with a P type GaSb layer 2, an N type GaSb layer 3 on a P type ZnTe substrate 1. Since the grating constants of the ZnTe and GaSb are substantially equal (ZnTe=6.103Angstrom , GaSb= 6.096Angstrom ), no distortion is produced nor boundary level density does not become large as the conventional element utilizing the hetero junction between ZnTe and ZnSe, thereby improving the reliability and reverse voltage resistance characteristic of the element. Since the element shown utilizes the reverse current to detect the light, it can improve the responding characteristic as compared with photovoltaic type or photoconductive type of the conventional element utilizing CdS crystal.

Description

【発明の詳細な説明】 発明の技術分野 本発明は可視光領域を含む広範囲の波長領域(0,55
戸罵〜1.8μm)で使用可能な半導体受光素子に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention is applicable to a wide range of wavelengths including the visible light region (0,55
The present invention relates to a semiconductor light-receiving element that can be used with a diameter of 1.8 μm.

従来技術i問題点 可視光を受光することができる従来の素子としては、G
dS結晶を用いた光起電力型、光導電型の素子、或は1
lsT−とZn&−とのへテロ接合を利用した素子があ
る。このうち、CdS結晶を用いた素子は、光から電気
への交換効率及び応答特性に間層がある。また、zST
・とZ%S−とのへテロ接合な利用した素子は、両者の
格子定数(In?’g −6,103A。
Prior art i Problems As a conventional element that can receive visible light, G
Photovoltaic type or photoconductive type element using dS crystal, or 1
There is an element that utilizes a heterojunction between lsT- and Zn&-. Among these, elements using CdS crystals have poor light-to-electricity exchange efficiency and response characteristics. Also, zST
The device used is a heterojunction of .

Z*5a−5,667A)が大きく異なるものであるか
ら、格子不整合に起因した欠点(例えば、素子の機械的
な歪み一二伴なう信頼性の低下、界面準位密度の増加に
伴なう耐逆電圧特性の低下等)があった。
Z*5a-5,667A) are significantly different from each other, so defects caused by lattice mismatch (e.g., decreased reliability due to mechanical distortion of the device, increased interface state density) There was a decrease in reverse voltage resistance, etc.).

発明の目的 本発明は前述の如き欠点を改善したものであり、その目
的は、信頼性、応答特性(;優れ、且つ可視光領域を含
む広範囲の波長領域(0,55声簿〜1.8μ罵)で使
用可能な半導体受光素子を提供すること6二ある。以下
実施鋼重=ついて詳細1二説明する。
Purpose of the Invention The present invention has been made to improve the above-mentioned drawbacks.The purpose of the present invention is to improve reliability, response characteristics (; It is an object of the present invention to provide a semiconductor light-receiving device that can be used in the following.

発明の実施例 第1図は本発明の実施例の断面図であり、1はP形11
nTg基板、2はP形Ga5h層、3はル形Gush層
、4はル側電極、5はP側電極、6は凹部であり、該凹
部6より光を入射させるものである。尚、同図6=示し
た素子は逆バイアスを印加しておき、光が入射すること
(二より増加する逆方向電流に基づいて光の検出を行な
うものである。第2図は第1図に示した素子のエネルギ
ーバンド図であり、光の入射により励起されたキャリア
のうち、少し、これ6:より逆方向電流が増加するもの
である。
Embodiment of the invention FIG. 1 is a sectional view of an embodiment of the invention, where 1 is a P-type 11
In the nTg substrate, 2 is a P-type Ga5h layer, 3 is a square-shaped Gush layer, 4 is a square-side electrode, 5 is a P-side electrode, and 6 is a concave portion through which light is incident. The element shown in Figure 6 is applied with a reverse bias and detects light based on the reverse current which increases from the incidence of light (2). Figure 2 is similar to Figure 1. 6 is an energy band diagram of the device shown in FIG. 6. Of the carriers excited by the incidence of light, the reverse current increases slightly.

第1図I:示した素子を製造するにはP形;ZnTg面
(−マスクを設け、次に例えばHCt : HNO,亡
1:1のエツチング液を用いてエツチングを行ない、凹
部6を形成する。そして、この後、ル側電極4、P形電
極5を形成し、第1図に示した素子を得る。尚、ZnT
−は自己補償作用の為、p形の結晶しか作成できないが
、気相成長法、液相成長法により、品質の良い結晶を得
ることができる。
FIG. 1 I: To manufacture the device shown, a P-type; ZnTg surface (- mask is provided and then etching is performed using an etching solution of, for example, HCt:HNO, 1:1 to form the recesses 6. Then, after this, a side electrode 4 and a P-type electrode 5 are formed to obtain the element shown in FIG.
- is self-compensating, so only p-type crystals can be produced, but high-quality crystals can be obtained by vapor phase growth or liquid phase growth.

第3図は第1図の光電変換素子の光波長(二対する外部
量子効率を示したも1のであり、同図から明1   6
カ、ヶよう。ユ、第、9゜光電変、素子、よ、ユ視域(
緑色)である波長が0.55μ肩の光から赤外域である
波長が1.8μmの光まで、広範囲の波長領域の光を受
光することができる。また第1図(二示した素子は、P
形ZsT−基板1上Cp形Ga5h層2、話形Gush
 ymBを順次成長させたものであり、flareとG
ushとの格子定数(ZnTg −6,1051,Ga
5tb−b、0961)は、はぼ等しいものであるから
、ZルTa−ZnS−のへテロ接合を利用した従来素子
のよう(二、素子d:歪みが生じたり、或は界面単位密
度が大となるようなことはなく、従って、素子の信頼性
、耐逆電圧特性を向上させることができる。また、第1
図の素子は逆方向電流を利用して光を検出するようにし
ているものであるから、CdS結晶を利用した光起電力
型、光導電型の従来素子よりも応答特性を向上させるこ
とができる。
Figure 3 shows the external quantum efficiency for the optical wavelength (2) of the photoelectric conversion element in Figure 1.
Ka, let's go. Yu, No. 9 photoelectric conversion element, Yo, Yu viewing zone (
It is possible to receive light in a wide range of wavelengths, from light with a wavelength of 0.55 μm (green) to light with a wavelength of 1.8 μm in the infrared region. In addition, the elements shown in FIG. 1 (2) are P
Cp type Ga5h layer 2 on type ZsT-substrate 1, talk type Gush
ymB is grown sequentially, flare and G
ush and the lattice constant (ZnTg -6,1051,Ga
5tb-b, 0961) are almost the same, so it looks like a conventional element using a Z-Ta-ZnS- heterojunction (2. Element d: distortion occurs or the interface unit density Therefore, the reliability and reverse voltage resistance characteristics of the device can be improved.
Since the device shown in the figure detects light using a reverse current, it can improve response characteristics compared to conventional photovoltaic and photoconductive devices that use CdS crystals. .

尚、実施例に於いては、P形ZnTa基板1上感二p形
Gg5h層2.3形Gg5h層3を設けるようシニした
が、P形、格形Ga5h層2,6の代わり一=P形、n
形Gap、?・Iル0,0284層を設けるようC1,
ても良い。
In the example, a p-type Gg5h layer 2 and a 3-type Gg5h layer 3 were provided on the P-type ZnTa substrate 1, but instead of the P-type and lattice-shaped Ga5h layers 2 and 6, shape, n
Shape Gap,?・C1, so that 0,0284 layers are provided.
It's okay.

GIIO,?I zso、02 Shはその格子定数が
ZnT−の格子定数と厳密4二等しいものであるから、
前述したと同様(=、従来素子と比較して信頼性、耐逆
電圧特性を向上させることができる。また、GGQ、9
@11”0.0284の禁制帯幅はGushの禁制帯幅
とほぼ等しいものであり(Gao、p@I*0.。2S
bm Q、4f3mV、 Ga5h=−Q、69mV)
、素子の受光範囲は素子材料の禁制帯幅(:より決定゛
されるものであるから、G(!O,?$IsO,g2S
jを用いた受光素子も、Ga5hを用いた受光素子とほ
ぼ同様の受光波長範囲を有することl二なる。また、実
施例に於イテは、P形ZnTa基板上Cp形GttSb
層、s形Gush層を設けるよう4二したが、P形Zn
Ta基板上に直接亀形Ga5h層、或はn形Gao、g
8I%o、0284層を設けるよう一二シても良いこと
は勿論である。また、格子定数がZルT−とほぼ等しい
ものであればG”0.98In(4,(3284以外の
GcB−xrl露、shを用いても良いことは勿論であ
る。また、実施例は通常のフォトダイオードに本発明を
適用した場合についてのものであるが、アバランシェフ
ォトダイオード等にも本発明を適用できることは勿論で
ある。
GIIO,? Since the lattice constant of I zso,02 Sh is exactly 42 equal to the lattice constant of ZnT-,
As mentioned above (=, reliability and reverse voltage resistance characteristics can be improved compared to conventional elements. Also, GGQ, 9
The forbidden band width of @11”0.0284 is almost equal to the forbidden band width of Gush (Gao, p@I*0..2S
bm Q, 4f3mV, Ga5h=-Q, 69mV)
, the light-receiving range of the element is determined by the forbidden band width (:) of the element material, so G(!O,?$IsO,g2S
The light receiving element using Ga5h also has a light receiving wavelength range that is almost the same as the light receiving element using Ga5h. In addition, in the example, it is Cp type GttSb on P type ZnTa substrate.
42 was used to provide an s-type Gush layer, but a p-type Zn
A tortoise-shaped Ga5h layer or an n-type Gao, g layer directly on the Ta substrate.
Of course, one or two layers may be provided. Furthermore, as long as the lattice constant is approximately equal to ZrT-, it goes without saying that G"0.98In(4,(3284) may be used instead of GcB-xrl, sh. Although the present invention is applied to a normal photodiode, it goes without saying that the present invention can also be applied to an avalanche photodiode and the like.

発明の詳細 な説明したよう(:、本発明はZnT−とGa5hとの
ヘテロ接合、或はZsT−とZnTgとほぼ格子定数の
等しいGa1nShとのへテロ接合を利用して受光素子
を構成したものであるから、可視光領域を含む広範囲の
波長領域(0,55μ落〜1.8μ風)での使用が可能
であり、且つ信頼性、素子特性を向上できる利点がある
As described in detail of the invention (:, the present invention utilizes a heterojunction between ZnT- and Ga5h, or a heterojunction between ZsT-, ZnTg, and Ga1nSh, which has approximately the same lattice constant, to construct a light-receiving element. Therefore, it can be used in a wide wavelength range (0.55 μm to 1.8 μm) including the visible light region, and has the advantage of improving reliability and device characteristics.

また、この素子は応答波長範囲が0.55μ簾から1.
8μmと非常I:広い為、新しい可視領域の受光素子と
して、或は最近目ざましい発展をとげている光通信用の
GaAz/GaAIAz レーザやInGttAtP/
InP L/−ザの光の受光素子への応用が期待される
Additionally, this element has a response wavelength range from 0.55 μm to 1.5 μm.
8 μm and extremely wide, it can be used as a new photodetector in the visible range, or for GaAz/GaAIAz lasers and InGttAtP/
Application of InP L/-Z to light receiving elements is expected.

【図面の簡単な説明】[Brief explanation of drawings]

w11図は本発明の実施例の断面図、第2図は第1図(
二示した素子のエネルギーバンド図、第5図は光の波長
と外部量子効率との関係を示す図である。 1はP形ZnTa基板、2はP形Ga5h層、3は亀形
Ga5h層、4は路側電極、5はP側電極、6は凹部で
ある。
Figure w11 is a cross-sectional view of an embodiment of the present invention, and Figure 2 is a cross-sectional view of the embodiment of the present invention.
FIG. 5 is an energy band diagram of the device shown in FIG. 2, and is a diagram showing the relationship between the wavelength of light and the external quantum efficiency. 1 is a P-type ZnTa substrate, 2 is a P-type Ga5h layer, 3 is a tortoise-shaped Ga5h layer, 4 is a roadside electrode, 5 is a P-side electrode, and 6 is a recess.

Claims (1)

【特許請求の範囲】[Claims] P形Z%T−基板上に直接、或は、P形Gg5h層或は
1lnT−とほぼ格子定数の等しいP形Ga1SS4三
元化舎物半導体層を介して、3形Gush層或は1nT
aとほぼ格子定数の等しい筒形Ga1%sh三元化合物
半導体層を設けたことを特徴とする半導体受光素子。
A 3-type Gush layer or 1nT is formed directly on the P-type Z%T-substrate, or via a P-type Ga1SS4 ternary semiconductor layer having approximately the same lattice constant as the P-type Gg5h layer or 1lnT-.
1. A semiconductor light-receiving element comprising a cylindrical Ga1%sh ternary compound semiconductor layer having a lattice constant substantially equal to a.
JP57053280A 1982-03-31 1982-03-31 Semiconductor photodetecting element Granted JPS58170079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57053280A JPS58170079A (en) 1982-03-31 1982-03-31 Semiconductor photodetecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57053280A JPS58170079A (en) 1982-03-31 1982-03-31 Semiconductor photodetecting element

Publications (2)

Publication Number Publication Date
JPS58170079A true JPS58170079A (en) 1983-10-06
JPS6328504B2 JPS6328504B2 (en) 1988-06-08

Family

ID=12938321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57053280A Granted JPS58170079A (en) 1982-03-31 1982-03-31 Semiconductor photodetecting element

Country Status (1)

Country Link
JP (1) JPS58170079A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02222500A (en) * 1988-12-22 1990-09-05 Hoechst Ag Manufacture of readily soluble, granular bleaching activator having long shelf life

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5320881A (en) * 1976-08-11 1978-02-25 Nippon Telegr & Teleph Corp <Ntt> Photo semiconductor device
JPS5475995A (en) * 1977-11-10 1979-06-18 Thomson Csf Electron avalanche photodiode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5320881A (en) * 1976-08-11 1978-02-25 Nippon Telegr & Teleph Corp <Ntt> Photo semiconductor device
JPS5475995A (en) * 1977-11-10 1979-06-18 Thomson Csf Electron avalanche photodiode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02222500A (en) * 1988-12-22 1990-09-05 Hoechst Ag Manufacture of readily soluble, granular bleaching activator having long shelf life

Also Published As

Publication number Publication date
JPS6328504B2 (en) 1988-06-08

Similar Documents

Publication Publication Date Title
JPH05160426A (en) Semiconductor light receiving element
JP3828982B2 (en) Semiconductor photo detector
JPH01183174A (en) Semiconductor photodetctor
JPS62259481A (en) Semiconductor light receiving device
JPH07123170B2 (en) Light receiving element
JPH09283786A (en) Waveguide-type semiconductor light-receiving element and its manufacture method
JPS58170079A (en) Semiconductor photodetecting element
JPS60247979A (en) Semiconductor optical element
JPS62254473A (en) Iii-v multi-element compound semiconductor pin photo diode
US4399448A (en) High sensitivity photon feedback photodetectors
JP2000223736A (en) Metal/semiconductor/metallic light receiving element
JPH04342174A (en) Semiconductor photoelectric receiving element
JPH03291979A (en) Avalanche photodiode
JPH10233523A (en) Photodetector
JPS63140588A (en) Semiconductor light emitting device
JP2694487B2 (en) Light receiving element
JP2004247620A (en) Semiconductor light receiver element
JPS59149070A (en) Photodetector
JPH0265279A (en) Semiconductor photodetecting element
JPS6180875A (en) Semiconductor device
JPS63187671A (en) 1.3mum-range semiconductor photodetector
JPS62282469A (en) Semiconductor photodetector
JP2711052B2 (en) Semiconductor waveguide photodetector
CN118198170A (en) Semiconductor photoelectric detector with controllable current polarity and device provided with semiconductor photoelectric detector
JPS62169376A (en) Photodiode