JPS58168025A - Optical fiber tunable etalon - Google Patents

Optical fiber tunable etalon

Info

Publication number
JPS58168025A
JPS58168025A JP5006782A JP5006782A JPS58168025A JP S58168025 A JPS58168025 A JP S58168025A JP 5006782 A JP5006782 A JP 5006782A JP 5006782 A JP5006782 A JP 5006782A JP S58168025 A JPS58168025 A JP S58168025A
Authority
JP
Japan
Prior art keywords
optical fiber
optical
optical fibers
etalon
finely adjusted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5006782A
Other languages
Japanese (ja)
Other versions
JPH0326333B2 (en
Inventor
Shigefumi Masuda
増田 重史
Akira Okamoto
明 岡本
Takeo Iwama
岩間 武夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP5006782A priority Critical patent/JPS58168025A/en
Publication of JPS58168025A publication Critical patent/JPS58168025A/en
Publication of JPH0326333B2 publication Critical patent/JPH0326333B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3873Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls
    • G02B6/3874Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls using tubes, sleeves to align ferrules

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To improve resolution, by cutting cylindrical ferrules for fixedly holding optical fibers axially in one body into round slices to prescribed length together with the optical fibers in such a manner than their end surfades are right angles to the optical axis of the optical fibers. CONSTITUTION:The optical fibers 11 and 12 are held fixedly in the cylindrical ferrules 13 and 14 coaxially along the axial lines. Then, the end surfaces of the optical fibers 11 and 12 are perpendicular to their optical axis lines and finished into precise planes together with the ferrules 13 and 14. The ferrules 13 and 14 are finished precisely to the same external diameter size and as long as the optical fibers 11 and 12. The ferrules 13 and 14 are arranged in series with a gap 18 between and held fixedly in an adapter 15. Thus, the optical axes of the optical fibers 11 and 12 are aligned to each other and an electric heater is equipped around the adapter 15.

Description

【発明の詳細な説明】 (1)発明の技術分野 本発明は光の多重反射効果を利用して光の微小な波長差
を検知する高分解能の干渉分光器として用いられるエタ
ロンに関し、特に単一モードの光ファイバを用いて構成
し、光の多重反射面相互間隔の調整が可能な光ファイバ
チ、−ナブルエタロンに関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical field of the invention The present invention relates to an etalon used as a high-resolution interference spectrometer that detects minute wavelength differences in light by utilizing the multiple reflection effect of light. The present invention relates to an optical fiber etalon that is constructed using a mode optical fiber and is capable of adjusting the distance between multiple light reflection surfaces.

(2)従来技術と問題 従来、きわめて微小な波長差(位相差、周波数差も同じ
意味に考えられる)を検知するこの種の干渉分光器とし
て、ファプリベローエタロント称されているものがある
。鮪1図にこのファプリエタロンの概略図を示す。図示
のように、平面度のよい2枚のガラス板1.2が互に平
行に向かい合って配置され、その反射面1m、lbは手
透鏡面に仕上られ、光軸3と直交して配置されている。
(2) Conventional technology and problems Conventionally, this type of interference spectrometer that detects extremely minute wavelength differences (phase differences and frequency differences can be considered to have the same meaning) is known as a Fabry Bellow etalont. . Figure 1 shows a schematic diagram of this Faprie Talon. As shown in the figure, two glass plates 1.2 with good flatness are arranged parallel to each other and facing each other, and their reflective surfaces 1m, 1b are finished as hand-transparent mirror surfaces and are arranged perpendicular to the optical axis 3. ing.

入射光線4aはレンズ5によって平行光線に修正されて
ガラス板IK入射する。そしてガラス板1を透過した入
射光−4aは反射111mと21の間で多重反射してそ
れぞれの反射点からガラス2を透過して透過光−4aと
なる。この場合、入射光414mの入射角を一1反射面
1m、lb間の屈折率をn1反射面1aと1bの間隔を
Iとすれば、相隣る2本の透過光線4b間の光路差Xは
次式で与えられる。
The incident light beam 4a is corrected into a parallel light beam by the lens 5 and enters the glass plate IK. The incident light -4a transmitted through the glass plate 1 undergoes multiple reflections between the reflection points 111m and 21, and passes through the glass 2 from each reflection point to become transmitted light -4a. In this case, if the incident angle of the incident light 414m is 1m of the reflective surface 1m, the refractive index between lb is n1, and the distance between the reflective surfaces 1a and 1b is I, then the optical path difference between the two adjacent transmitted light rays 4b is is given by the following equation.

x = 2*Iama        (1)従って、
光路差Xが入射光J14mの波長(λ)の整数倍であれ
ば透過光線4には互に位相が一散するので亙に強め合う
ことになる。また、光路差Xが入射光線4aOkIP波
長(λ/2)の奇数倍であれば透過光線4bは互に弱め
合う(打ち消し合う)ことになる。このような干渉特性
を利用して、例えば波長が0.8〜ljm台の光波の波
長差を検知することができる。式(1)から明らかなよ
うに、光路差xFi反射面間隔lの変化、すなわちこの
1を調整することによって影響を受ける。すなわち入射
光線4aの透過特性に対してこの反射面間隔lが一つの
/#ラメータになっている。この従来例の場合、この反
射面間隔!が、例えば、マイクロメータねじ(図示なし
)又はガラス板1.2間を書封して内部に封入した気体
の内圧を変化させること勢によって調整可能(チューナ
ブル)に構成されている。また、この種の干渉分光器は
、反射面1a。
x = 2*Iama (1) Therefore,
If the optical path difference X is an integral multiple of the wavelength (λ) of the incident light J14m, the phases of the transmitted light rays 4 will be dispersed, so that they will strengthen each other. Furthermore, if the optical path difference X is an odd multiple of the wavelength (λ/2) of the incident light beam 4aOkIP, the transmitted light beams 4b will weaken (cancel each other out) each other. By utilizing such interference characteristics, it is possible to detect a wavelength difference between light waves having a wavelength of, for example, 0.8 to ljm. As is clear from equation (1), the optical path difference xFi is affected by a change in the reflective surface spacing l, that is, by adjusting this 1. That is, the reflective surface spacing l is one /# rameter for the transmission characteristic of the incident light beam 4a. In the case of this conventional example, this reflective surface spacing! However, it is configured to be adjustable (tunable) by, for example, changing the internal pressure of the gas sealed inside by using a micrometer screw (not shown) or a seal between the glass plates 1 and 2. Moreover, this type of interference spectrometer has a reflecting surface 1a.

2mの反射率が高く、反射面間隔Iが大きくなるほど、
分解能が大きくなるという特性をもっている。このよう
にこの干渉分光器は光波の非常に微小な波長差を検知す
ることができるものであるが下記のような好ましくない
問題点を有している。
The higher the reflectance at 2m and the larger the reflective surface interval I,
It has the characteristic of increasing resolution. Although this interference spectrometer is capable of detecting very small wavelength differences in light waves, it has the following undesirable problems.

正されても実際上は戒為寝度の広が松があり#±Δθの
誤差をもった入射光線が混合して入射する。
Even if it is corrected, there is actually a wide spread pine of the precept, and the incident light beams with an error of #±Δθ are mixed and incident.

このため実際上の透過率は低くなる(例えば80%)。Therefore, the actual transmittance is low (for example, 80%).

■ 入射光を平行光線に修正するためのレンズ5が必要
である。また、このため寸法的に大形化の傾向があ′り
重量も大きいろ ■ 分解能を大きくするため反射面間隔lを大きく構成
するKは、さらに巨大なレンズが必要となりますます大
形化される。
(2) A lens 5 is required to correct the incident light into parallel light. In addition, for this reason, there is a tendency for the dimensions to become larger and the weight to be large. K, which has a large reflective surface spacing 1 in order to increase the resolution, requires an even larger lens, which means that the size of the K becomes larger. Ru.

■ 非常に高価である。■ It is very expensive.

(3)発明の目的 本発明の目的は、上記従来の問題点に鑑み、単一モード
光ファイバを利用して構成することにより、小蓋、II
量、安価、かつレンズ等が不要で入射光値の入射角の依
存性がきわめて小さい高性能な光ファイバチ、−ナブル
エタロンを提供することにある。
(3) Purpose of the Invention In view of the above-mentioned conventional problems, an object of the present invention is to provide a small lid, II.
The object of the present invention is to provide a high-performance optical fiber, which is inexpensive, does not require lenses, and has extremely small dependence of the incident light value on the angle of incidence.

(4)発明の構成 そして、この目的を達成するために、本発明に依れば、
光ファイバを軸線に沿って一体的に保持固定する円筒状
のフェルールを前配光ファイバと共に所定長に輪切シし
てその端面を前記光ファイバの光軸線に直交する千1i
K形成し、少くとも2個の前記フェルールを所定間隔を
4って直列配置して円筒状・アダゲタ内に挿着固定する
ことKより、前記各党ファイバの光軸線を一直線上に整
列すると共に光フアイバ同士の突合せ端面間に空隙を設
け、かつ前記直列光ファイバの両最外儒端面1を反射面
に形成し、−記空隙の間隔を微小変化させる調整手段に
より前記反射面間隔の微調整を可能にしたことを特徴と
する光ファイバチ、−ナブルエタロンが提供される。
(4) Structure of the invention In order to achieve this object, according to the present invention,
A cylindrical ferrule that integrally holds and fixes the optical fiber along the axis is cut into a predetermined length along with the front light distribution fiber, and the end face is cut perpendicularly to the optical axis of the optical fiber.
By arranging at least two ferrules in series at a predetermined interval and inserting and fixing them into a cylindrical adapter, the optical axes of the respective fibers are aligned on a straight line and the optical axis is A gap is provided between the abutting end faces of the fibers, and both outermost end faces 1 of the series optical fibers are formed as reflective surfaces, and the spacing between the reflective surfaces is finely adjusted by means of adjusting means for minutely changing the spacing between the gaps. An optical fiber cable is provided, which is characterized in that it enables.

(5)発明の実施例 以下、本発明の実施例を図面に基づいて詳細に説明する
(5) Embodiments of the invention Hereinafter, embodiments of the invention will be described in detail based on the drawings.

第2図は本発明による光ファイバチ、−ナブルエタロン
の一実施例を示す図である。同図において、符号10は
光ファイバチ、−ナブルエタロン、11.12は単一モ
ード光ファイバ、13.14は光ファイバ11.12を
それぞれ保持するフェルール、15はフェルール13.
14を整列(lI列)保持するアダプタ、16は電熱器
、17a#i入射光線、17bは透過光線、18は光フ
ァイバ11と12の突合せ端面間の空隙をそれぞれ示す
〇光ファイバ11と12はそれぞれ円筒状の7エルール
13と14内部に軸線に沿って同軸状に保持固定されて
いる。そして、光ファイ/fll#12の端面はそれぞ
れその光軸線に直交しかつ精度のよい平面に7エルール
13.14と共に仕上加工されている。フェルール13
.14は共に同一外径寸法に精度良く仕上加工され光フ
ァイバ11゜12と同一長さに形成されている。そして
フェルール13と14は空隙18を介して直列配置され
てアダプタ15内に保持固定されている。このようにし
て、党ファイノfllと12はそれぞれの光軸線が一直
纏上に一散して整列されている・アゲデフ15の外周に
は電熱器16が装着されている。
FIG. 2 is a diagram illustrating an embodiment of the optical fiber bundle or optical fiber etalon according to the present invention. In the figure, reference numeral 10 denotes an optical fiber, -nable etalon, 11.12 a single mode optical fiber, 13.14 a ferrule that holds the optical fibers 11.12, respectively, and 15 a ferrule 13.12.
16 is an electric heater, 17a is an incident light beam, 17b is a transmitted light beam, and 18 is a gap between the abutting end faces of optical fibers 11 and 12. 〇 Optical fibers 11 and 12 are They are held and fixed coaxially along the axis inside the cylindrical seven errules 13 and 14, respectively. The end faces of the optical fibers/fll#12 are each finished to have a plane perpendicular to the optical axis and with good precision along with 7 errules 13 and 14. Ferrule 13
.. The optical fibers 14 and 14 are both precisely finished to have the same outer diameter and are formed to have the same length as the optical fibers 11 and 12. The ferrules 13 and 14 are arranged in series with a gap 18 interposed therebetween and are held and fixed within the adapter 15. In this way, the optic axes of the optics 12 and 12 are aligned in a straight line. An electric heater 16 is attached to the outer periphery of the age def 15.

光ファイバ11.12のそれぞれの外側端面11a。Outer end face 11a of each optical fiber 11.12.

12eFi牟透遥鏡INK反射面として形成され、反射
面間隔が1として設定されている。従って、入射光線1
7mはこの反射1111m、12e間を多重反射して透
過光線17bとなって透過する。この場合、空−18は
間隔が非常に微小(−えば、1μrlA11度)なので
、前記多重反射に封する空隙18の光学的影響は集際上
無視できる。フェルール13.14とアダプタ15はい
づれもセラミックス材から形成されている。例えば、ア
ダプタ15の材料として、温度に対して精度良く微妙に
伸縮するアルミナセラミックスが選定され、フ。
It is formed as a 12eFi mirror INK reflective surface, and the interval between reflective surfaces is set to 1. Therefore, the incident ray 1
The light beam 7m undergoes multiple reflections between the reflections 1111m and 12e and is transmitted as a transmitted light beam 17b. In this case, since the spacing between the gaps 18 is very small (for example, 1 μrlA 11 degrees), the optical influence of the gaps 18 that prevent the multiple reflections can be collectively ignored. The ferrules 13, 14 and the adapter 15 are both made of ceramic material. For example, as the material for the adapter 15, alumina ceramics, which expands and contracts slightly with high precision with temperature, is selected.

ルール13.14の材料としては比較的温度変化の小さ
いセラミックス材が選定される。電熱器16によって、
アダゲタ15が予め定め九温度に上昇されると、アダプ
タ15t;i軸方向に膨張する。
As the material for Rule 13.14, a ceramic material with relatively small temperature change is selected. By the electric heater 16,
When the adapter 15 is raised to a predetermined temperature, the adapter 15t expands in the i-axis direction.

このことによりフェルール13と14は互に遠ざかり空
1918の間隔が増大される。この結果、反射面間隔I
が増大される。また、逆にアダプタ15の温度を下降さ
せると、アダゲタ15の収縮により、反射面間隔ノが減
少される。このようにアダゲタ15の温度調整によって
反射面間隔jを微妙(例えば0.02〜0.03μm台
)に調整することが可能である。尚、この場合、フェル
ール13.14にも熱膨張精度のよい材料を選定して本
よく、またフェルール13.14とアダプタ15それぞ
れの熱膨張係数が異なる材料を選定してもよい。また、
反射面間隔jの設定寸法を大きくすることも光ファイ”
11+12の長さをフェルール13.14と共に長く形
成するのみで容易に可能である。
This causes the ferrules 13 and 14 to move away from each other, increasing the gap 1918. As a result, the reflective surface interval I
is increased. Conversely, when the temperature of the adapter 15 is lowered, the adapter 15 contracts and the distance between the reflective surfaces is reduced. In this way, by adjusting the temperature of the adder 15, it is possible to finely adjust the reflective surface spacing j (for example, on the order of 0.02 to 0.03 μm). In this case, it is advisable to select a material with good thermal expansion accuracy for the ferrules 13, 14, or it is also possible to select materials with different coefficients of thermal expansion for the ferrules 13, 14 and the adapter 15. Also,
It is also possible to increase the setting dimension of the reflective surface spacing j.
This is easily possible by simply forming the ferrules 13 and 14 to have a length of 11+12.

第3図は第2図の単一モード光ファイバ11゜12の特
性を説明するための図である。尚、この光ファイバ11
と12は同一に形成されているので光ファイバ11につ
いて説明する。同図において、(ハ)Fi党ファイバ1
1の縦断面図、(ロ)はコア11bの半径方向距離xK
おける屈折率唸)の変化を示す図である。←)図に示す
ようにコアllbの屈折率n(x)は中心部が最大で外
周に向かって除除に小さくなる2乗分布に形成されてい
る。従って、(イ)図に示すように反射面111に垂直
に入射する入射光−17mと、入射角0で斜めから入射
する入射光1117eのコア内にシける見かけ上の進行
距−をそれぞれlIと!雪とすると、jt<1mである
。しかし屈折率”(z)が(ロ)図のように2乗分布し
ている九め、入射光@17mと17eのコアllb内の
経路におけるそれぞれの平均屈折率′をal *11m
 とすると、111>11雪となる。つt6、入射光、
1117mと17 eoココア l b内におけるそれ
ぞれの光路長(光学距fm ) at ilと171が
nl 4 = nl bとなるように1コアllbは形
成されている0従って、コア11b内を進行する光線全
体は平面波が通っでいるのと同様な状IMKなる。この
ため、単一モード光ファイバの場合は、入射光線の入射
角による依存性がほとんどなく、かつ従来例の如き平面
波を作るためのレンズが不要である。
FIG. 3 is a diagram for explaining the characteristics of the single mode optical fibers 11 and 12 shown in FIG. Furthermore, this optical fiber 11
Since optical fibers 11 and 12 are formed identically, only optical fiber 11 will be explained. In the same figure, (c) Fi party fiber 1
1, (b) is the radial distance xK of the core 11b
FIG. ←) As shown in the figure, the refractive index n(x) of the core Ilb has a square distribution that is maximum at the center and gradually decreases toward the outer periphery. Therefore, as shown in the figure, the apparent traveling distance of the incident light -17m that is perpendicularly incident on the reflecting surface 111 and the apparent traveling distance of the incident light 1117e that is incident obliquely at an incident angle of 0 into the core is lI and! Assuming snow, jt<1m. However, the refractive index ``(z) has a square distribution as shown in the figure (b).9th, the average refractive index ``of the incident light @17m and 17e in the path inside the core Ilb is al *11m
Then, 111>11 snow. t6, incident light,
1117m and 17 eo Cocoa 1 core llb is formed such that the respective optical path lengths (optical distance fm) in b and il and 171 become nl 4 = nl b0 Therefore, the light ray traveling in core 11b The entire structure is IMK, which is similar to that of a plane wave. Therefore, in the case of a single mode optical fiber, there is almost no dependence on the angle of incidence of the incident light beam, and there is no need for a lens for creating a plane wave as in the conventional example.

尚、本発明は上記実施例に限定されるものではなく、例
えば、空[18内に窒素等の気体、又は屈折率整合液体
を刺入し、これら気体又は液体の内圧を変化させて反射
面間隔lの調整を行なうこと亀できる。また、フェルー
ル13.14及び/又tt7/7’夕150材料に圧電
体のセラ2.クス材を選定して、これに電界をかけピエ
ゾ効果を利用して反射面間隔Iの像調整を行なうことも
できる。さらに1フェルールト3.14の材料に磁性体
のセラミックス材を選定して磁力によりフェルール13
.14を互に引張り又は押圧して反射面間81の*m整
を行なうこともできる。そのうえ、前記各方法を組含せ
て構成することもできる。
Note that the present invention is not limited to the above-mentioned embodiments, and for example, a gas such as nitrogen or a refractive index matching liquid is inserted into the air [18], and the internal pressure of the gas or liquid is changed to create a reflective surface. It is possible to adjust the interval l. In addition, ferrules 13, 14 and/or tt7/7' 150 materials are made of piezoelectric ceramics 2. It is also possible to select a material and apply an electric field to it to utilize the piezo effect to adjust the image of the reflective surface interval I. In addition, a magnetic ceramic material is selected as the material for the first ferrule 3.14, and the ferrule 13 is activated by magnetic force.
.. It is also possible to adjust the *m distance between the reflective surfaces 81 by pulling or pressing the reflective surfaces 14 together. Moreover, it is also possible to configure a combination of the above methods.

第4図と第5図は本発明の光ファイバチ、−ナブルエタ
ロンの適用例を示す概略図である・第4図は本発明によ
る光フアイバチューナプルエタロン10をファイバジャ
イロに適用した例を示す0レーデダイオード21の出射
光はエタロン10を透過し、その透過光がファイバコイ
ル22に入射する。このとき透過光はモニター23を介
してエタロン10によって調整される。ファイバコイル
22を通過した透過は再びエタロン10にaシ、エタロ
ンlOを透過しこの戻シの透過光が光検知器24(例え
ば、光の・fワーメータ)によって検知される。7アイ
バコイル22がエタロンlO+の他と共に回転すると 
ファイバコイル22を通過した戻シの透過光はエタロン
lOに達した時点で位相のずれが生ずる。すなわち、フ
ァイバコイル22内を遂行する戻りの透過光はその11
1 進行方向がファイバコイル22の回転方向と同一方向の
場合は時間的に少しをくれてエタロン10に戻抄、そし
て逆方向の場合は少し早目に4どることになり、これが
位相のずれとして現われる。
4 and 5 are schematic diagrams showing an example of application of the optical fiber tuner pull etalon 10 of the present invention. FIG. 4 shows an example of applying the optical fiber tuner pull etalon 10 of the present invention to a fiber gyro. The emitted light from the radar diode 21 is transmitted through the etalon 10, and the transmitted light is incident on the fiber coil 22. At this time, the transmitted light is adjusted by the etalon 10 via the monitor 23. The transmitted light that has passed through the fiber coil 22 is transmitted again to the etalon 10 and through the etalon 10, and the transmitted light of this return is detected by a photodetector 24 (for example, an optical power meter). 7 When the eyeva coil 22 rotates together with the etalon lO+
A phase shift occurs in the returned transmitted light that has passed through the fiber coil 22 when it reaches the etalon IO. That is, the returning transmitted light passing through the fiber coil 22 is 11
1 If the direction of travel is the same as the rotation direction of the fiber coil 22, it will return to the etalon 10 with a little time, and if it is in the opposite direction, it will return to the etalon 10 a little earlier, and this will be referred to as a phase shift. appear.

このような位相のずれを検知することによりファイバコ
イル22の微小な回転角速度が測定される。
By detecting such a phase shift, the minute rotational angular velocity of the fiber coil 22 is measured.

例えば、エタロン100反射面間隔jが、j=1〇−相
変のもので10  (ra4/I@e)のファイバジャ
イロの回転角速度を測定することができる。
For example, it is possible to measure the rotational angular velocity of a fiber gyro of 10 (ra4/I@e) when the etalon 100 has a reflective surface spacing j of j=10-phase change.

第5図は光ファイバチ、−ナブルエタロンlOを加速度
センサに適用し九例を示す。この場合も、前記と同様な
原理で加速度の変化が光の位相差として現われ、この位
相差を検知して加速度を測定することができる。
FIG. 5 shows nine examples in which the optical fiber cable and optical fiber etalon IO is applied to an acceleration sensor. In this case as well, changes in acceleration appear as a phase difference in light based on the same principle as described above, and acceleration can be measured by detecting this phase difference.

(6)発明の効果 以上詳細に説明したように、本発明の光フアイバチュー
ナプルエタロンは簡易構成で、小型、@量、安価、レン
ズ不要、かつ入射角の依存性がほとんどなく、さらに分
解能の高いものも容易に形成できるといった効果大なる
ものがある。
(6) Effects of the Invention As explained in detail above, the optical fiber tuner pull etalon of the present invention has a simple structure, is small in size, low in quantity, inexpensive, does not require a lens, has almost no dependence on the angle of incidence, and has a high resolution. It has great effects such as being able to easily form tall objects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のエタロンの説明図、第2図は本発明の光
ファイバチ、−ナブルエタロンの縦断面図、第3図は第
2図の単一モードファイバの特性をト明するための断面
図、第4図と第5図は本発明(7)t7アイパチ、−ナ
ブルエタロンの適用例を示す概略図で第4図はファイバ
ジャイロシステムへの適用、第5図は加速度センサへの
適用を示す図である。 11.12・・・単一モード光ファイバ、11a。 12 a ・・・反射面、11b、12b−iア、11
C912C・・・クラ、ド、13.14・・・フェルー
ル、15−・・アダ!り、16−・・電熱器、17m、
17c・・・入射光線、17b・・・透過光−118・
・・空隙。 特許出願人 富士通株式会社 特許出願代理人 弁理士  ! 木   網 弁理士 曹舘和之 弁理士  内 1)幸 男 弁理士   山  口  昭  之 手続補正書 昭和58年2月1 日 特許庁長官 若杉和夫 殿 1、事件の表示 昭和57年 特許願  第050067号′20発明の
名称 元ファイバチェーナブルエタロン 3、補正をする者 事件との関係  特許出願人 名称 (522)富士通株式会社 4、代理人 (外 3 名) 5、補止り対象 明細誉の[発明のi1+細な説明」の掴6、細土の内容 明細簀の「発明の評細な説明」の欄奮ド表kC記載の通
り補正する。
Fig. 1 is an explanatory diagram of a conventional etalon, Fig. 2 is a longitudinal cross-sectional view of the optical fiber of the present invention, a double-table etalon, and Fig. 3 is a cross-sectional view to clarify the characteristics of the single mode fiber of Fig. 2. Figures 4 and 5 are schematic diagrams showing application examples of the present invention (7) T7 Eye Patch and -Nable Etalon. Figure 4 shows its application to a fiber gyro system, and Figure 5 shows its application to an acceleration sensor. FIG. 11.12...Single mode optical fiber, 11a. 12 a...Reflecting surface, 11b, 12b-i a, 11
C912C...Kura, Do, 13.14...Ferrule, 15-...Ada! ri, 16-... electric heater, 17m,
17c...Incoming light ray, 17b...Transmitted light-118.
...Void. Patent applicant Fujitsu Ltd. Patent application agent patent attorney! Kiami Patent Attorney Kazuyuki Sodate Patent Attorney 1) Yukio Patent Attorney Aki Yamaguchi Procedural Amendment February 1, 1980 Commissioner of the Patent Office Kazuo Wakasugi 1, Indication of Case 1982 Patent Application No. 050067 '20 Name of the invention Fiber Chainable Etalon 3, Relationship with the amended person's case Patent applicant name (522) Fujitsu Ltd. 4, Agent (3 others) 5. 6 for "i1 + Detailed Explanation", the column for "Detailed Explanation of the Invention" in Hosotoshi's contents list will be corrected as described in table kC.

Claims (1)

【特許請求の範囲】 1、光ファイバを軸線に沿りて一体的に保持固定する円
筒状のフェルールを前記光ファイバと共に所定jK輪切
りしてその端面を前記光ファイバの光軸線に直交する平
面に形成し、少くと42個の前記フェルールを所定間隔
をもって直列配置して円筒状アダプタ内に挿着固定する
ことKより、前記各党ファイバの光軸線を一直線上に整
列すると共に光フアイバ同士の突合せ端面間に!2!隙
を設け、かつ前記直列光ファイバの両最外儒端面を反射
面に形成し、前記空隙の間隔を徽小変化させる調整手段
により前記反射面間隔の微調整を可能にしたことを特徴
とする光ファイバチ、−ナブルエタロン。 2、前配空隙内に窒素等の気体を封入し、該気体の内圧
を変化させることにより、前記反射面間隔の微調整を行
なうようにした特許請求の範囲第1項に記載の光ファイ
バチ、−ナブルエタロン。 3、前記空隙内に屈折率整合液体を封入し、該液体の内
圧を変化させることによシ、前記反射面間隔の微調整を
行なうようにした特許請求の範囲第1項に記載の光ファ
イ/f f、−ナブルエタロン。 4、前記フェルール及びアダ/りのうち少くとも1優が
圧電体材料から形成され、ピエゾ効果を利用して前記反
射面間隔の微調整を行なうようにし九特許錆求OIm囲
第1項から第3項までのいずれかに記載の光ファイバチ
、−ナブルエタロン05、前記フェルール及びアダプタ
のうち少くとも1個が一度賓化に対し精度よく伸縮可能
な材料から形成され、温度変化によるアダプタ又はフェ
ルールの伸縮を利用して前記反射面間隔の微調整を行な
うようにし九特許請求の範囲第1項から第3璃までのい
づれかに記載の光ファイバチ、−ナブルエタロン・ 6、前記フェルールが磁性体材料から形成され、磁力を
利用して前記反射面間隔の微調整を行なうようにした特
許請求の範囲第1項から第3項までのいずれかに記載の
光ファイバチ、−ナブルエタロン・
[Claims] 1. A cylindrical ferrule that integrally holds and fixes the optical fiber along its axis is cut into a predetermined length of JK along with the optical fiber, and its end face is made into a plane perpendicular to the optical axis of the optical fiber. By arranging at least 42 ferrules in series at predetermined intervals and inserting and fixing them into the cylindrical adapter, the optical axes of the respective fibers can be aligned on a straight line, and the butt end surfaces of the optical fibers can be aligned. Between! 2! A gap is provided, and both outermost end faces of the serial optical fibers are formed as reflective surfaces, and the spacing between the reflective surfaces can be finely adjusted by adjusting means for changing the spacing between the gaps by a small amount. Optical fiber bee, -nable etalon. 2. The optical fiber bundle according to claim 1, wherein the space between the reflecting surfaces is finely adjusted by filling a gas such as nitrogen into the front gap and changing the internal pressure of the gas. -Nable etalon. 3. The optical fiber according to claim 1, wherein a refractive index matching liquid is sealed in the gap, and the distance between the reflective surfaces is finely adjusted by changing the internal pressure of the liquid. /f f, -Nable etalon. 4. At least one of the ferrule and the adder is made of a piezoelectric material, and the spacing between the reflective surfaces is finely adjusted by utilizing the piezoelectric effect. The optical fiber cable according to any one of items 3 to 3, wherein at least one of the ferrule and the adapter is made of a material that can be expanded and contracted with high precision once the temperature changes, and the adapter or the ferrule is 9. The optical fiber according to any one of claims 1 to 3, wherein the spacing between the reflecting surfaces is finely adjusted by utilizing expansion and contraction. The optical fiber tip according to any one of claims 1 to 3, wherein the optical fiber is formed so that the distance between the reflecting surfaces is finely adjusted using magnetic force.
JP5006782A 1982-03-30 1982-03-30 Optical fiber tunable etalon Granted JPS58168025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5006782A JPS58168025A (en) 1982-03-30 1982-03-30 Optical fiber tunable etalon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5006782A JPS58168025A (en) 1982-03-30 1982-03-30 Optical fiber tunable etalon

Publications (2)

Publication Number Publication Date
JPS58168025A true JPS58168025A (en) 1983-10-04
JPH0326333B2 JPH0326333B2 (en) 1991-04-10

Family

ID=12848644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5006782A Granted JPS58168025A (en) 1982-03-30 1982-03-30 Optical fiber tunable etalon

Country Status (1)

Country Link
JP (1) JPS58168025A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56624A (en) * 1979-06-14 1981-01-07 Mitsubishi Electric Corp Fabry-perot interference spectrometer
JPS56112617A (en) * 1980-01-29 1981-09-05 Thomson Csf Interference microscope with tuning type optical resonator into which single mode optical fiber is incorporated and its application to light filtration and spectral diffraction

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56624A (en) * 1979-06-14 1981-01-07 Mitsubishi Electric Corp Fabry-perot interference spectrometer
JPS56112617A (en) * 1980-01-29 1981-09-05 Thomson Csf Interference microscope with tuning type optical resonator into which single mode optical fiber is incorporated and its application to light filtration and spectral diffraction

Also Published As

Publication number Publication date
JPH0326333B2 (en) 1991-04-10

Similar Documents

Publication Publication Date Title
US4850666A (en) Slab-type optical device
EP1949154B1 (en) Single aperture multiple optical waveguide transceiver
US20090232450A1 (en) Simple fiber optic cavity
WO2022199637A1 (en) Optical fiber temperature sensor and sensing head structure
CN111121838A (en) Double-core optical fiber Michelson interferometer for inclined grating beam splitting
US6317265B1 (en) Multi-path interference filter
US6816315B1 (en) Optical path length tuner
US6392807B1 (en) Tunable chromatic dispersion compensator utilizing a virtually imaged phased array and folded light paths
US6909511B2 (en) Athermal interferometer
US9915786B2 (en) Transmissive photonic crystal fiber ring resonator employing single optical beam-splitter
EP2385403A2 (en) Polarization maintaining optical rotary joint
US4444503A (en) Ring interferometer with a mode diaphragm
EP0449193A1 (en) Optical coupling apparatus for coupling light into a waveguide
US8818193B2 (en) Multichannel tunable optical dispersion compensator
US3517327A (en) Laser output coupler
JPS58168025A (en) Optical fiber tunable etalon
CN208207285U (en) A kind of integrated coupling module
EP1411334A2 (en) Residual stress measuring system for optical fibers
NO157752B (en) RLG.
JPH03185402A (en) Optical frequency filter
US6864987B2 (en) Interferometer having improved modulation depth and free-spectral range and method of manufacturing
JPH0456250B2 (en)
JPH0926556A (en) Faraday rotation mirror
US20040076370A1 (en) Micro optical design for DWDM interleavers with narrow channel spacing
KR100188710B1 (en) Optical attenuator