JPS58164909A - Reduction and combustion method for nitrogen oxide - Google Patents

Reduction and combustion method for nitrogen oxide

Info

Publication number
JPS58164909A
JPS58164909A JP4565682A JP4565682A JPS58164909A JP S58164909 A JPS58164909 A JP S58164909A JP 4565682 A JP4565682 A JP 4565682A JP 4565682 A JP4565682 A JP 4565682A JP S58164909 A JPS58164909 A JP S58164909A
Authority
JP
Japan
Prior art keywords
burner
air
stage burner
fuel injected
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4565682A
Other languages
Japanese (ja)
Inventor
Tadahisa Masai
政井 忠久
Shoichi Masuko
益子 庄一
Toshio Uemura
俊雄 植村
Shigeki Morita
茂樹 森田
Takeo Mita
三田 武雄
Hitoshi Migaki
三垣 仁志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP4565682A priority Critical patent/JPS58164909A/en
Publication of JPS58164909A publication Critical patent/JPS58164909A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/04Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
    • F23C6/045Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection with staged combustion in a single enclosure
    • F23C6/047Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection with staged combustion in a single enclosure with fuel supply in stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2201/00Staged combustion
    • F23C2201/10Furnace staging
    • F23C2201/101Furnace staging in vertical direction, e.g. alternating lean and rich zones

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To obtain a combustion method, through which NOx in exhaust gas can be reduced efficiently, by a method wherein a plurality of burners and an after air port disposed above the burners are set up into a furnace, the air ratios of each burner are made to reach 1 or less, exhaust gas is reduced and burnt while the quantity of fuel injected just under the after air port is increasd relatively and the oxidation of radical products is inhibited. CONSTITUTION:The quantity of fuel injected just under the after air port 5, i.e. the amt. of injected fuel 15 at just under the upper-stage burner in this case is made more than that of a lower section, the quantity of radicals generated by the upper-stage burner 4 is increased, and a denitration reaction is executed effectively. The quantity of fuel injected in the upward direction of the upper-stage burner 4 is increased in consideration of involute air from the front after air 5 and the quantity of fuel injected in the downward direction is reduced in the denitration reaction, thus increasing the quantity of radicals generated in the upper-stage burner 4. That is, the denitration reaction is executed effectively by giving a bias of the quantity of fuel injected in the vertical direction of the upper-stage burner 4. The quantity of fuel injected from the upper-half section of the upper-stage burner 4 may be increased while the quantity of fuel injected from a lower-half section may be reduced in fuel supplied just under the after air port. It is preferable that the air ratio of the upper-stage burner or the burner corresponding to said burner is made to reach 0.4-0.6 which is suitable for the denitration reaction.

Description

【発明の詳細な説明】 本発明は窒素酸化物還元燃焼方法に係り、特にボイラ装
置のような竪型燃焼装置における排ガス中の窒素酸化物
を低減させる燃焼法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a nitrogen oxide reduction combustion method, and particularly to a combustion method for reducing nitrogen oxides in exhaust gas in a vertical combustion device such as a boiler device.

従来、この種の燃焼装置の排ガス中の窒素酸化物を低減
させる方法としては、(1)排ガス再循環法、(2)二
段燃焼法、(3)水噴射法、および(4)脱硝燃焼法な
どが知られている。このうち、脱硝燃焼法は空気比1以
下の還元雰囲気下で燃料(炭化水素)を燃焼させ、生成
したラジカル生成物で窒素酸化物の還元を行なうもので
、還元剤を用いずに燃料自体によって炉内脱硝を行なう
ことができるので有利である。
Conventionally, methods for reducing nitrogen oxides in the exhaust gas of this type of combustion equipment include (1) exhaust gas recirculation method, (2) two-stage combustion method, (3) water injection method, and (4) denitrification combustion. The law is known. Among these, the denitrification combustion method burns fuel (hydrocarbons) in a reducing atmosphere with an air ratio of less than 1, and reduces nitrogen oxides with the generated radical products, using the fuel itself without using a reducing agent. This is advantageous because denitrification can be carried out within the furnace.

第1図および第2図は、このような脱硝燃焼法に用いら
れる火炉1の断面図、およびその人視図を示すもので、
火炉1内の前部に下段、(−す2、中段バーナ3、およ
び上段バーナ4が配置され、さらにその上方に前部アフ
タエアポート5、およびこれに対向して後部アフタエア
ポート6が配置されている。また火炉1の下方にはホツ
ノくロアが設けられ、その下段のホツノく導管8かち空
気または排ガスと空気との混合ガスが導入されるように
なっている。なお、上記火炉l内の燃焼ガスは上方の過
熱器9で一部吸熱されて高温ガス10となり、この高温
ガスは、その後、図示されない再熱器や節炭器を通して
熱交換される。ボイラ装置の場合にはその負荷に応じて
伝熱割合が調節される。
Figures 1 and 2 show a cross-sectional view of a furnace 1 used in such a denitrification combustion method and a human view thereof.
A lower stage burner 2, a middle stage burner 3, and an upper stage burner 4 are arranged at the front part of the furnace 1, and a front after air port 5 is arranged above it, and a rear after air port 6 is arranged opposite thereto. In addition, a hot lower is provided below the furnace 1, and air or a mixed gas of exhaust gas and air is introduced through 8 hot conduits at the bottom. Part of the combustion gas is absorbed by the upper superheater 9 to become high-temperature gas 10, and this high-temperature gas is then heat-exchanged through a reheater and an economizer (not shown). The heat transfer rate is adjusted accordingly.

上記装置を用いて還元燃焼を行なう場合には、各バーナ
の空気比(理論燃焼空気量に対する割合)を1以下にし
、一方、最上段のアフタエアポート5.6からは未燃分
を完全燃焼させるための空気が供給される。この場合ア
フターエアが上段バーナ4へ巻き込まれ、このため上段
バーナ4で生成した、窒素酸化物を還元するための燃焼
中間生成物(以下、ラジカルと称する)が一部酸化され
る埃象が見出された。
When performing reductive combustion using the above device, the air ratio (ratio to the theoretical combustion air amount) of each burner is set to 1 or less, while unburned matter is completely combusted from the after air port 5.6 at the top stage. Air is supplied for the purpose. In this case, the after air is drawn into the upper burner 4, and a dust phenomenon is observed in which combustion intermediate products (hereinafter referred to as radicals) generated in the upper burner 4 for reducing nitrogen oxides are partially oxidized. Served.

本発明の目的は、このような窒素酸化物還元燃焼法の欠
点をなくし、最上段のアフターエアボートから供給され
る空気に影醤、されずに排ガス中の:、: 窒素酸化物を効率よく低減することができる燃焼・j1
゛ 法を提供することにある。、1さ 上記目的を達成するため、本発明者らは、脱硝反応を起
こさせるための各段のバーナの動作条件について極々の
実験を行なった。その結果、各バーすの空気比(理論燃
焼空気量に対する割合)は下段バーナでは0.8〜1.
0、中段バーナでは0.6〜0.8、および上段バーナ
では0.4〜0.6の組み合わせ条件下で排ガス中の窒
素酸化物濃度が最低となることがわかった。しかし、さ
らに検討したところ、このような条件下においても、前
部アフターエア5から上段バーナ4の火炎内に空気が巻
き込まれ、該上段バーナ4の火炎の上半分の領域のラジ
カルが酸化され、窒素酸化物の還元反応を半減している
ことがわかった。
The purpose of the present invention is to eliminate such drawbacks of the nitrogen oxide reduction combustion method, and to efficiently reduce nitrogen oxides in exhaust gas without affecting the air supplied from the after air boat on the top stage. Combustion that can be done
The goal is to provide a method. , 1. In order to achieve the above object, the present inventors conducted extensive experiments regarding the operating conditions of the burners in each stage for causing the denitrification reaction. As a result, the air ratio (ratio to the theoretical combustion air amount) of each bar was 0.8 to 1.
It was found that the nitrogen oxide concentration in the exhaust gas was lowest under the combination of 0.0, 0.6 to 0.8 for the middle burner, and 0.4 to 0.6 for the upper burner. However, further investigation revealed that even under such conditions, air is drawn into the flame of the upper burner 4 from the front after-air 5, and radicals in the upper half of the flame of the upper burner 4 are oxidized. It was found that the reduction reaction of nitrogen oxides was halved.

第3図は、第1図の拡大部110B方向矢視図であり、
前部アフターエア5からの空気の巻き込み状況を示した
ものである。炉下部の下段/(−す2および中段バーナ
3で燃焼が行なわれる結果、火炉1には上昇、流12が
誘起する。この上昇流12は、上段バーナ、:1lll
11.4からの噴出流により部分的に阻::1゜ 止され、下部巻ぎ、込み流13および前部アフターエア
5からの上部巻き込み流14(1種のカルマ   □ン
渦)が誘起され、上段バーナ4へ一部のアフターエアが
供給される。このため、上段ノく−ナ4の空気比を仮り
に0.4としても、上段バーナ(マルチバーナ)4の上
半分の燃焼条件は0.6、場合によっては0.8程度に
なり、上段バーナ4の上半部で生成したラジカルが酸化
され、脱硝反応が阻害されることになる。この上部巻き
込み流14は、上昇流速や上段バーナ4と前部アフター
エア5間の距離によって変化し、上昇流速が大きい場合
は上部巻き込み流14は増加し、また上段バーナ4と前
部アフターエア5間の距離が小さい程、上部巻き込み流
14が増加することが分った。
FIG. 3 is a view taken in the direction of the enlarged portion 110B in FIG.
This shows how air is drawn in from the front after-air 5. As a result of combustion occurring in the lower stage burner 2 and the middle stage burner 3 in the lower part of the furnace, an upward flow 12 is induced in the furnace 1.
It is partially blocked by the jet flow from 11.4, and the lower winding, inrush flow 13 and upper winding flow 14 (a kind of Karma vortex) from the front afterair 5 are induced. , some after air is supplied to the upper stage burner 4. Therefore, even if the air ratio of the upper stage burner 4 is assumed to be 0.4, the combustion condition in the upper half of the upper stage burner (multi-burner) 4 will be 0.6, or in some cases about 0.8, Radicals generated in the upper half of the burner 4 are oxidized and the denitrification reaction is inhibited. This upper entrainment flow 14 changes depending on the upward flow velocity and the distance between the upper stage burner 4 and the front afterair 5. When the upward flow velocity is large, the upper entrainment flow 14 increases, and the upper stage burner 4 and the front afterair 5 It has been found that the smaller the distance between the two, the more the upper entrainment flow 14 increases.

本発明は、前述のように上段バーナ4では空気比を0.
4より以下に低下させることができず、また上記アフタ
ーエアによる上記巻き込み流14を避けることができな
いことに鑑み、第4図に模式的に示すように、アフター
エアポート5の直下の燃焼噴射量、この場合は上段バー
ナ(マルチツク−す)の上部噴射燃料15を下部よりも
多くシ、上段バーナ4のラジカル生成量を増加させ、脱
硝反応を効果的に行なうものである。
In the present invention, as described above, the air ratio in the upper stage burner 4 is set to 0.
4, and in view of the fact that the entrainment flow 14 caused by the after air cannot be avoided, as schematically shown in FIG. 4, the combustion injection amount directly below the after air port 5, In this case, more fuel 15 is injected into the upper part of the upper stage burner (multiple combustion chamber) than the lower part, thereby increasing the amount of radicals produced in the upper stage burner 4 and effectively carrying out the denitrification reaction.

典型的には、本発明は、前記第1図にお(・て、前部ア
フターエア5からの巻き込み空気を勘案して上段バーナ
4の上方向への燃料噴射量を多くし、下方向の燃料噴射
量を少な(することにより、上段バーナ4でのラジカル
発生量を多くするものである。すなわち、上段バーナ4
の上下方向に燃料噴射1のバイアスをもたせることによ
り、効果的な脱硝反応を行なわせるものである。
Typically, in the present invention, as shown in FIG. By reducing the amount of fuel injection, the amount of radicals generated in the upper burner 4 is increased.
By biasing the fuel injection 1 in the vertical direction, an effective denitrification reaction can be carried out.

本発明において、アフターエアポート直下に供給する燃
料は、第4図に示すように上段バーナ(マルチバーナ)
4の上半部の燃料噴射量を多くし、一方、下半部の燃料
噴射量を相対的に小さくしてもよいし、また上段バーナ
4とアフターエアポート50間のプラネットバーナを設
けてこのバーナの燃料噴射量を多くしてもよい。いずれ
の場合も上段バーナ、またはこれに相当するバーナの空
気比は脱硝反応に好適な0.4〜o、6iすることが好
ましい。なお、上段バーナ(マルチバーナ)の空気比は
上半分と下半分でほぼ等しくすることができるので、上
半分の燃料噴射量を増加してもCOや煤塵の発生は抑制
することができる。
In the present invention, the fuel supplied directly below the after-airport is supplied to the upper stage burner (multi-burner) as shown in Fig. 4.
The amount of fuel injected in the upper half of 4 may be increased, while the amount of fuel injected in the lower half of 4 may be relatively small, or a planet burner may be provided between the upper stage burner 4 and the after air port 50 to The fuel injection amount may be increased. In either case, the air ratio of the upper stage burner or a burner equivalent thereto is preferably 0.4 to 6, which is suitable for the denitrification reaction. Note that since the air ratio of the upper stage burner (multi-burner) can be made almost equal between the upper half and the lower half, the generation of CO and soot can be suppressed even if the fuel injection amount in the upper half is increased.

本発明は、第1図のように、炉前面にバーナを配置した
フロントファイアリング方式の燃焼装置(典型的にはボ
イラ)のみならず、炉両面にバーナを配置した対向燃焼
方式や、炉のコーナにバーナな配置するコーナファイア
リング方式(またはタンゼンシャル方式)でも全く同様
に適用することができる。なお、本発明は、ガス、石油
、石炭等、いずれの燃料にも適用可能である。
As shown in Fig. 1, the present invention applies not only to a front-firing type combustion device (typically a boiler) in which burners are placed in front of the furnace, but also in a facing combustion type combustion device in which burners are placed on both sides of the furnace, and in a furnace. A corner firing method (or tangential method) in which burners are arranged at corners can be applied in exactly the same manner. Note that the present invention is applicable to any fuel such as gas, oil, and coal.

以上、本発明によれば、アフターエアの巻き込みの影響
な少なくし、上段バーナ4で発生するラジカル量を増加
させ、中、下段バーナで発生した窒素酸化物を効果的に
還元させることができる。
As described above, according to the present invention, the influence of after air entrainment can be reduced, the amount of radicals generated in the upper burner 4 can be increased, and nitrogen oxides generated in the middle and lower burners can be effectively reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、マルチバーナを具備した火炉の断面図、第2
図は第1図の拡大部分11のA夜回、第3図は、拡大部
分110B視図で、炉内のガス流れを説明する図、第4
図は、本発明による上段バーナの燃料噴射状況を模式的
に示す図である。 l・・・火炉、2・・・下段バーナ、3・・・中段バー
ナ、4・・・上段バーナ、5・・・前部アフターエ、7
$−)a第1図  第2図 第3図   第4図 弓
Figure 1 is a cross-sectional view of a furnace equipped with a multi-burner;
The figure shows the A night view of the enlarged portion 11 in FIG.
The figure is a diagram schematically showing the fuel injection situation of the upper stage burner according to the present invention. l...Furnace, 2...Lower burner, 3...Middle burner, 4...Upper burner, 5...Front after-burner, 7
$-)a Fig. 1 Fig. 2 Fig. 3 Fig. 4 Bow

Claims (1)

【特許請求の範囲】[Claims] (1)火炉内の空気の流通方向に複数のバーナな上下多
段に配置し、かつその上部にアフターエアポートを備え
た燃焼装置の燃焼法において、上記各バーナの空気比を
1以下にして還元燃焼を行なうと共に前記アフターエア
ポート直下の燃料噴射量を相対的に増大させ、その部分
のラジカル生成物の酸化を抑制することを特徴とする窒
素酸化物還元燃焼方法。 (2、特許請求の範囲第1項において、前記多段バーナ
の空気比を下段バーナで1.0〜0.8、中段バーナで
0.8〜0.6、および上段バーナで0.6〜0.4と
することを特徴とする窒素酸化物還元燃焼方法。
(1) In the combustion method of a combustion device in which a plurality of burners are arranged in upper and lower stages in the direction of air flow in a furnace and equipped with an after-air port at the top, the air ratio of each burner is set to 1 or less to perform reductive combustion. A nitrogen oxide reduction combustion method characterized in that the amount of fuel injected directly below the after-air port is relatively increased to suppress oxidation of radical products in that portion. (2. In claim 1, the air ratio of the multi-stage burner is 1.0 to 0.8 for the lower stage burner, 0.8 to 0.6 for the middle stage burner, and 0.6 to 0 for the upper stage burner. A nitrogen oxide reduction combustion method characterized by: .4.
JP4565682A 1982-03-24 1982-03-24 Reduction and combustion method for nitrogen oxide Pending JPS58164909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4565682A JPS58164909A (en) 1982-03-24 1982-03-24 Reduction and combustion method for nitrogen oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4565682A JPS58164909A (en) 1982-03-24 1982-03-24 Reduction and combustion method for nitrogen oxide

Publications (1)

Publication Number Publication Date
JPS58164909A true JPS58164909A (en) 1983-09-29

Family

ID=12725417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4565682A Pending JPS58164909A (en) 1982-03-24 1982-03-24 Reduction and combustion method for nitrogen oxide

Country Status (1)

Country Link
JP (1) JPS58164909A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6193311A (en) * 1984-10-15 1986-05-12 Hitachi Ltd Monitoring method of combustion state and device thereof
US4881753A (en) * 1987-11-30 1989-11-21 Toyota Jidosha Kabushiki Kaisha Air suspension system with an air drier

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6193311A (en) * 1984-10-15 1986-05-12 Hitachi Ltd Monitoring method of combustion state and device thereof
US4881753A (en) * 1987-11-30 1989-11-21 Toyota Jidosha Kabushiki Kaisha Air suspension system with an air drier

Similar Documents

Publication Publication Date Title
RU2067724C1 (en) Low-emission swirling-type furnace
JPS624606B2 (en)
JPS58164909A (en) Reduction and combustion method for nitrogen oxide
JP2773831B2 (en) Low NOx boiler
JPS5924106A (en) Burner
JP2667607B2 (en) Structure of low NOx boiler
JPS62182507A (en) Burning device of boiler
JP3308618B2 (en) Low NOx combustion method and apparatus
JPH0263124B2 (en)
JPS58164911A (en) Denitration combustion method
JPS6021606Y2 (en) Low NO↓x heat sintering equipment
JPH07301403A (en) Combustion device of boiler furnace
JP2895061B2 (en) Combustion method for boiler combustion device
JPS604704A (en) Combustion device
JP3059289B2 (en) Low nitrogen oxide boiler equipment
JPH0225084B2 (en)
JP3040846B2 (en) Gas fuel combustion method and combustion apparatus
JPS6151201B2 (en)
JPH0235888B2 (en)
JPS58219308A (en) Burner
JPH05264040A (en) Discharging gas recombustion type complex power generating plant
JPH0240921B2 (en)
JP2781684B2 (en) Two-stage combustion method
JPS599413A (en) Combustion device
JPS5986805A (en) High load burner device