JPS58163421A - Treatment of exhaust gas of fluidized combustion boiler - Google Patents

Treatment of exhaust gas of fluidized combustion boiler

Info

Publication number
JPS58163421A
JPS58163421A JP57046553A JP4655382A JPS58163421A JP S58163421 A JPS58163421 A JP S58163421A JP 57046553 A JP57046553 A JP 57046553A JP 4655382 A JP4655382 A JP 4655382A JP S58163421 A JPS58163421 A JP S58163421A
Authority
JP
Japan
Prior art keywords
desulfurization
coal
combustion
exhaust gas
fluidized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57046553A
Other languages
Japanese (ja)
Other versions
JPH026964B2 (en
Inventor
Hiromi Tanaka
田中 裕実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP57046553A priority Critical patent/JPS58163421A/en
Publication of JPS58163421A publication Critical patent/JPS58163421A/en
Publication of JPH026964B2 publication Critical patent/JPH026964B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Chimneys And Flues (AREA)

Abstract

PURPOSE:To reduce the amount of a desulfurization agent fluidized along coal particle in a fluidized combustion boiler, by reducing the load of in-furnace desulfurization in said boiler. CONSTITUTION:A combustion exhaust gas from a boiler 1 is sent to a cyclone 2 and noncombustion coal accompanied by the exhaust gas is collected to be returned to the boiler 1. The exhaust gas issued from the cyclone 2 is heat exchanged in an air heater 3 and, after dust removal is carried out in a dust collector 4, the dust removed gas is supplied to a regenerable desulfurization apparatus 5. As the desulfurization apparatus, a wet desulfurization apparatus using an alkali liquid as an absorbent or an activated carbon adsorbing type desulfurization apparatus is used and the purpose can be attained by injecting a predetermined amount of ammonia in the exhaust gas supplied thereto. The exhaust gas treated in the desulfurization apparatus is discharged to the atmosphere from a chimney 6. A conc. SO2 gas recovered during regeneration of the desulfurization apparatus 5 is mixed in boiler combustion air to be recycled to the boiler 1.

Description

【発明の詳細な説明】 石油の資源枯渇及び高騰に伴って、代替エネルギー源と
して石炭が見直されている。従来、石炭焚−イラでは微
粉炭バーナーが広く使用されているが、微粉炭/々−ナ
ーを用いる燃焼方式は適用できる炭種に制約があるため
、現在では流動(床)燃焼方式が注目を集めている。こ
の燃焼方式は、(イ)石炭の燃焼性や灰の溶融性に起因
する制約が少ないので、広範囲に亘る炭機が使用できる
、(→石炭粒と共に成る檜の脱硫剤を流動化させる仁と
kよシ、炉内脱硫を行なうことができる、といつ九利点
があるほか、低温燃焼を行なわせれば、NOxの発生を
抑制できる点でも好都合である。尚、石炭火力の問題点
の一つは、石油火力に比べて煤塵、80x、NOxの排
出量が多いことであるが、近い将来の排ガス規制での許
容濃度は、それぞれ1owg/N−以下、50 ppm
以下及び60 ppm以下とされている。
DETAILED DESCRIPTION OF THE INVENTION Coal is being reconsidered as an alternative energy source as petroleum resources become depleted and prices soar. Conventionally, pulverized coal burners have been widely used in coal-fired furnaces, but combustion methods using pulverized coal/charners have restrictions on the types of coal that can be applied, so fluidized (bed) combustion methods are currently attracting attention. are collecting. This combustion method has (a) fewer restrictions due to the combustibility of coal and the meltability of ash, so a wide range of coal machines can be used; In addition to being able to perform in-furnace desulfurization, it is also advantageous in that low-temperature combustion can suppress the generation of NOx.One of the problems with coal-fired power is that The emissions of soot, dust, 80x, and NOx are higher than that of oil-fired power plants, but the permissible concentrations under future exhaust gas regulations are 1 owg/N- or less and 50 ppm, respectively.
and 60 ppm or less.

ところで上述した炉内脱硫は、OaO,Bad、 Mg
Oなどのアルカリ土類金属酸化物やそれらの炭酸塩等を
脱硫剤に使用してヒれを石炭粒と共KtIL動化させ、
例えば次式に示すような反応によって、石炭の燃焼で生
ずる80xを脱硫剤に固定させるものである。
By the way, the above-mentioned in-furnace desulfurization is performed using OaO, Bad, Mg
Using alkaline earth metal oxides such as O and their carbonates as desulfurization agents, the fins are activated with KtIL together with coal grains,
For example, 80x produced in the combustion of coal is fixed to the desulfurization agent by the reaction shown in the following formula.

OaO+ Bow + /20m−→0a804BaO
+ Sow + /20m−→Ba804MtO+ B
ow + /20s→Mg804しかしながら、この反
応は脱硫剤内部への80゜及びO諺の拡散が律速になる
ため、炉内脱硫によって高い脱硫率を得るには、墳論化
学i量の数倍以上もの多量の脱硫剤を流動化させなけれ
ばならない。しかも多量の脱硫剤を流動化させることは
必然的に大量の未使用脱硫剤や廃脱硫剤が石炭アッシユ
と共に流動床から排出される結果を招くので、2次公害
を防止する意味でこれらの処理も問題となる。
OaO+ Bow + /20m-→0a804BaO
+ Sow + /20m-→Ba804MtO+ B
ow + /20s→Mg804 However, this reaction is rate-limited by the diffusion of 80° and O proverbs into the desulfurizing agent, so in order to obtain a high desulfurization rate by in-furnace desulfurization, the amount of Mg804 must be several times or more A large amount of desulfurization agent must be fluidized. Moreover, fluidizing a large amount of desulfurization agent inevitably results in a large amount of unused desulfurization agent and waste desulfurization agent being discharged from the fluidized bed along with the coal ash, so these treatments are necessary to prevent secondary pollution. is also a problem.

尤も、流動床から未使用のti排出される脱硫剤を適尚
な手段で回収し、これを流動床に改めて循環したり、あ
るいけまた廃脱硫剤を再生して循環使用する態様を採用
すれば、上記した不利益をある程度は軽減させることが
できる。
Of course, it is necessary to recover the unused desulfurization agent discharged from the fluidized bed by appropriate means and recirculate it to the fluidized bed, or alternatively, adopt a mode in which the waste desulfurization agent is regenerated and reused. For example, the above disadvantages can be alleviated to some extent.

しかし、こうした態様を採用したところで、炉内脱硫に
よって951以上の脱硫率を得るためには、石炭の燃焼
によって生ずる80xを固定するOK必要な理論化学当
量の少なくとも5倍もの脱硫剤を流動させなければなら
ない。
However, even if such an embodiment is adopted, in order to obtain a desulfurization rate of 951 or higher by in-furnace desulfurization, it is necessary to flow a desulfurizing agent with an amount at least five times the theoretical chemical equivalent required to fix 80x produced by combustion of coal. Must be.

さらに付は加えれば、流動燃焼方式の利点の一つは、9
00℃前後の低温度での燃焼が可能であり、この低温燃
焼を行なえば新開サーマルNOxの発生を抑止できるこ
とであるが、フューエルNOxの発生までは防止できな
い。従って、このNOxの除去を目的として、2段燃焼
法を採用し、フューエルNOxを還元性雰囲気で分解す
る方法が提案されている。とζろが、この方法は還元性
雰囲気を維持するために、全体の空気過剰率を低く抑え
る必要があり、仁のことは炉内の酸素濃度に依存する炉
内脱硫と相反する条件となるの′で、□これを相殺する
九めKは炉内で流動させる脱硫剤をさらに増量しなけれ
ばならない。
In addition, one of the advantages of the fluidized combustion method is 9
Combustion is possible at a low temperature of around 00° C., and if this low temperature combustion is performed, the generation of new thermal NOx can be suppressed, but the generation of fuel NOx cannot be prevented. Therefore, for the purpose of removing this NOx, a method has been proposed in which a two-stage combustion method is adopted and fuel NOx is decomposed in a reducing atmosphere. However, in this method, in order to maintain a reducing atmosphere, it is necessary to keep the overall excess air ratio low, which is a condition that conflicts with in-furnace desulfurization, which depends on the oxygen concentration in the furnace. To offset this, the amount of desulfurizing agent fluidized in the furnace must be further increased.

つt、b、石炭だき流動燃焼−イラに於て、炉内脱硫だ
けで高い脱硫率を達成せんとする場合には、大過鯛の脱
硫剤を流動化させねばならない不利を免れないのである
。ちなみに、#!1図は炉内脱硫剤としてOaOを使用
した場合の炉内のOaO/80xモル比と脱硫率との関
係を示すグラフである。N1図から明らかな通夛、モル
比がはソIK遍するまでは、モル比の増大に伴って脱硫
率は直線的に上昇するものの、その後は次jlK上昇率
が低下し、モル比約1付近で−打ちとなる。従って、炉
内脱硫率が60〜10@でよい場合はOaO/80xの
モル比は1.0〜2. OO範囲に維持すれば充分であ
るけれども、elI慢以上の脱硫率を望む場合は前記の
モル比を5以上に保持する必要がある。この理由はOa
O4−80m+ ”/20*→0a804なる反応は8
偽濃度の一次反応であり、尚切条孔質であったOaOの
表面が0a804で破われ、SOlのOmO内部への拡
散が阻害されるため、ある程!fまで反応は急速に進む
が、SO2濃度が低下するに従い、反応速度が低下する
ためと考えられる。
In coal-fired fluidized combustion combustion, if a high desulfurization rate is to be achieved through in-furnace desulfurization alone, the disadvantage of having to fluidize the desulfurization agent from large sea bream cannot be avoided. . By the way,#! FIG. 1 is a graph showing the relationship between the OaO/80x molar ratio in the furnace and the desulfurization rate when OaO is used as the in-furnace desulfurization agent. It is clear from the N1 diagram that the desulfurization rate increases linearly as the molar ratio increases until the molar ratio reaches IK, but after that the rate of increase in JlK decreases and the molar ratio reaches approximately 1. It will be a negative hit in the vicinity. Therefore, if the in-furnace desulfurization rate is 60-10@, the OaO/80x molar ratio is 1.0-2. Although it is sufficient to maintain the desulfurization rate within the OO range, if a desulfurization rate higher than elI is desired, it is necessary to maintain the above molar ratio at 5 or more. The reason for this is Oa
The reaction O4-80m+ ”/20*→0a804 is 8
This is a first-order reaction with a false concentration, and the surface of OaO, which was keratinized, is broken by 0a804, and the diffusion of SOI into OmO is inhibited, so to a certain extent! This is thought to be because the reaction proceeds rapidly up to f, but as the SO2 concentration decreases, the reaction rate decreases.

本発明は炉内脱硫のみで流動燃焼Iイツの排ガスを処理
する場合の不利を解消させた新しい排ガス処理方法を提
案するものであって、その特徴とするとζろは石炭の流
動燃焼−イラ内で石炭粒と共に比較的少量の脱硫剤を流
動化させることKよシ石炭の燃焼によって生ずる80x
の一部を脱硫剤で固定し、ゼイラから出る排ガスを再生
可能な脱硫装置に供給して処理し、該脱硫装置の再生時
に回収される濃縮S08ガスを流動態11i、J?イラ
にリサイクルすることKある。この方法によれば流動燃
焼Iイラでの炉内脱硫の負担を軽減させることができる
ため、−イラ内で石炭粒と共に流動化させる脱硫剤の量
を減少させることができる。加えて再生可能な脱硫装置
の再生時に回収される濃縮80Iガスは、流動態1@d
イラにリサイクルすることができるので、該脱硫装置に
通常付設される硫酸製造装置や巣体イオク製造装復を省
略することができる。
The present invention proposes a new exhaust gas treatment method that eliminates the disadvantages of treating flue gas from fluidized combustion by in-furnace desulfurization alone. Fluidizing a relatively small amount of desulfurization agent along with the coal particles at 80x
A part of the S08 gas is fixed with a desulfurizing agent, and the exhaust gas emitted from Zeira is supplied to a regenerable desulfurization device for treatment, and the concentrated S08 gas recovered during regeneration of the desulfurization device is converted into a fluidized state 11i, J? There is something wrong with recycling. According to this method, the burden of in-furnace desulfurization in the fluidized combustion I-ira can be reduced, and therefore the amount of desulfurization agent to be fluidized together with the coal grains in the I-ira can be reduced. In addition, the concentrated 80I gas recovered during regeneration of the renewable desulfurization equipment has a flow rate of 1@d
Since the desulfurization equipment can be recycled, it is possible to omit the sulfuric acid production equipment and nest ion production equipment that are normally attached to the desulfurization equipment.

本発明に於て、Iイラ内で流動化せしめられる脱硫剤の
量は、石炭の燃焼によって生ずる80x及びiイラにリ
サイクルされる80歳を固定するのに必要な理論化学当
量の1.0〜2.0倍を町とし、これによって炉内脱硫
の脱硫率を60〜70−に維持することができる。
In the present invention, the amount of desulfurization agent fluidized in the I-ira is 1.0 to 1.0 to the theoretical chemical equivalent necessary to fix the 80x produced by combustion of coal and the 80-year-old recycled to the I-ira. By setting the ratio to 2.0 times, the desulfurization rate of in-furnace desulfurization can be maintained at 60 to 70.

本発明の方法は石炭の流動燃焼dイラすべてに適用可能
でめるが、NOxの発生を抑制し、未燃石炭を少なくす
るために、2段燃焼方式が採用可能なゼイラであること
が好ましい、脱硫剤としては、炉内脱硫で従来使用され
て来たものがすべて使用0T能であって、典型的にはO
aO。
The method of the present invention can be applied to all types of fluidized coal combustion zeilers, but in order to suppress the generation of NOx and reduce the amount of unburned coal, it is preferable to use zeilers that can adopt a two-stage combustion method. As for the desulfurization agent, all the desulfurization agents conventionally used for in-furnace desulfurization have 0T capacity, and typically O
aO.

MgO,BaOなとのアルカリ土類金*酸化物やそれら
の炭酸塩等が使用される。再生可能な脱硫着し九廃吸着
剤を加熱再生して濃縮80重ガスを回収する乾式装置と
、KOL(、NaOHなどのアルカリ液を吸収剤とし、
S偽を吸収した廃吸収剤を再生して8偽を回収する湿式
装置が知られている1本発明ではこの両者がいずれも使
用可能であるけれども、特に前者の活性炭吸着法式脱硫
装置は、辷れに導入されるゼイラ排ガスにアンモニアを
注入すると、脱硫と同時に脱硝も可能になるので、本発
明の脱硫装置として好ましい。
Alkaline earth gold* oxides such as MgO and BaO, their carbonates, etc. are used. A dry device that recovers concentrated 80 heavy gas by heating and regenerating the reproducible desulfurization and nine-waste adsorbent, and a dry device that recovers concentrated 80 heavy gas by desulfurizing and regenerating nine waste adsorbents,
There is a known wet type device that regenerates the waste absorbent that has absorbed the S-sulfur and recovers the S-sulfur. Although both of these can be used in the present invention, the former activated carbon adsorption desulfurization equipment is particularly difficult to use. If ammonia is injected into the Zeila exhaust gas introduced into the system, it is possible to perform denitrification at the same time as desulfurization, which is preferable as the desulfurization apparatus of the present invention.

進んで第2図にそって本発明の方法を釈明する。1け石
炭だき流動燃焼2イラであって、ここには石炭粒と脱硫
剤が供給され、石炭粒は流動燃焼せしめられると共に、
その燃焼によって生ずる80xの一部Fiセイラ内で脱
硫剤に固定される。dイラ内で流動化せしめられる脱硫
剤の使用量は、石炭の燃焼によって生ずる80x及びI
イブllICリサイクルされる8偽を固定するのに必要
な理論化学当量の1.0〜2.0倍である。
The method of the present invention will now be explained with reference to FIG. This is a 1-layer coal-fired fluidized combustion 2-layer, in which coal grains and desulfurization agent are supplied, and the coal grains are fluidized and combusted.
A portion of the 80x produced by its combustion is fixed to the desulphurizer in the sailor. The amount of desulfurization agent fluidized in the
IllC is 1.0 to 2.0 times the theoretical chemical equivalent needed to immobilize the recycled 8 pseudo.

−イラ1ではNOxの発生を抑制し、未燃石炭を少なく
するために2段燃焼方式を採用し、1次空気比を1.0
前後、全空気比を1.2前後とすることが好ましい。
-Ira 1 adopts a two-stage combustion method to suppress the generation of NOx and reduce unburned coal, and the primary air ratio is set to 1.0.
It is preferable that the front and rear total air ratios be around 1.2.

Iイラ]からの燃焼排ガスはサイクロン2に送られ、排
ガスに同伴される未燃石炭などけとこで捕集されてlイ
ラ1に戻される。サイクロン2を出た排ガスはエアヒー
タ3で熱交換された後、集塵器4で除塵され、次いで再
生可能な脱硫装Of5に供給される。脱硫装置5には既
述の通り、アルカIJ iを吸収剤とする湿式脱硫装置
も使用できるが、排ガスの脱硝を脱硫と同時に希望する
場合には、活性炭吸着法式脱硫装置を1!!!用し、こ
れに供給される排ガスに所定量のアンモニアta人する
ことKよって目的を4成させることかできる。脱硫装置
で処理された排ガスは煙突6妙・ら大気中に放出される
。脱Wt装厘5の再生時に回収されるll!lI縮80
.ガスは、図ポの通り、lイラの燃焼用空気r(混合し
てIイラ1ヘリサイクルされる。
The combustion exhaust gas from the exhaust gas is sent to the cyclone 2, where unburned coal accompanying the exhaust gas is collected and returned to the exhaust gas. The exhaust gas exiting the cyclone 2 undergoes heat exchange with an air heater 3, is removed with a dust collector 4, and is then supplied to a regenerable desulfurizer Of5. As mentioned above, a wet desulfurization device using Alka IJ i as an absorbent can be used as the desulfurization device 5, but if you wish to denitrate the exhaust gas at the same time as desulfurization, an activated carbon adsorption desulfurization device can be used. ! ! By adding a predetermined amount of ammonia to the exhaust gas supplied thereto, four purposes can be achieved. The exhaust gas treated by the desulfurization equipment is released into the atmosphere through a chimney. ll collected when regenerating the de-Wt outfit 5! lI contraction 80
.. As shown in the figure, the gas is mixed with combustion air (R) and recycled to IRA 1.

以上の通り、本発明は石炭だ!!流流動燃焼ゼブラ再生
可能な脱硫装置を組合わせ、燃焼排ガスの脱硫を一イラ
と脱硫装置に分担させているので、炉内脱硫に要する脱
硫剤の使用量を従来の4〜4に低減させても全体として
は為い脱硫率を確保することができる。また脱硫装置に
ついて言えば、本発明ではIイラでの炉内脱硫によっで
ある程1i:80x量が減少せしめられた排ガスを処理
すれば足りるので、吸着剤乃至吸収剤の補給量を少なく
することができ、さらに該脱流装置の再生時に回収され
る@@SO,ガスも一イラにリサイクルすることができ
るので、硫#製造装置中単体イオウ製造装置の設置を省
略できる利点もある。
As mentioned above, the present invention is coal! ! By combining the fluid-fluid combustion Zebra regenerable desulfurization equipment, the desulfurization of the flue gas is shared between the desulfurization equipment and the desulfurization equipment, reducing the amount of desulfurization agent required for in-furnace desulfurization to 4 to 4 compared to conventional methods. However, overall a high desulfurization rate can be ensured. Regarding the desulfurization equipment, in the present invention, it is sufficient to treat exhaust gas whose amount has been reduced to a certain extent by 1i:80x due to in-furnace desulfurization in the I-ira, so the amount of adsorbent or absorbent replenishment can be reduced. Furthermore, since the @@SO and gas recovered during regeneration of the deflowing device can also be recycled, there is an advantage that the installation of an elemental sulfur production device in the sulfur # production device can be omitted.

実施例 燃焼量100に47時の流動燃焼−イラと、活性炭吸着
法式脱硫装置を組合わせて次のような結果を得た。
EXAMPLE The following results were obtained by combining a fluidized combustion furnace with a combustion amount of 100 at 47 hours and an activated carbon adsorption desulfurization device.

流動態fi/イラでは燃焼性イオク分1rs窒嵩分!、
4優の歴實炭を850Cで2段燃焼させ(1次空気比!
 1.0 、全空気比fi 1.2 )、炉内脱硫剤に
は平均粒径0.2園の石灰石を使用し、前記歴實炭の燃
焼によって生ずる80x及び脱硫装置からリサイクルさ
れる8偽を固定するのに必要な化学量論量の1.4倍に
和尚する石灰石を歴青炭と共に流動化させた。−イラか
もの排ガスをサイクロンに通して固形分を分離し、これ
を全量−イラに戻した。サイクロンから出たガスを14
0℃に冷却し、さらに除塵後!60ppmのアン4!ア
を注入して脱硫装置で処理し、骸脱硫装置の再生時に回
収される鎖線80.ガスを一イラにリサイクルした。
In fluid dynamics fi/ira, the combustible ion content is 1rs nitrogen volume! ,
4-grade Rekiji coal is burned in two stages at 850C (primary air ratio!
1.0, total air ratio fi 1.2), limestone with an average particle size of 0.2 was used as the desulfurization agent in the furnace, and 80x produced by combustion of the above-mentioned coal and 8x recycled from the desulfurization equipment were used. Limestone containing 1.4 times the stoichiometric amount required to fix the coal was fluidized with bituminous coal. - The exhaust gas from the Ira was passed through a cyclone to separate the solid content, and the entire amount was returned to the Ira. The gas released from the cyclone is 14
After cooling to 0℃ and removing dust! 60ppm Anne 4! The chain line 80. The gas was completely recycled.

仁の場合、−イラ出ロガスの801浪度は3501)I
)Wb Now@&は140 ppmとなシ、歴青炭の
燃焼による理論発生SotmKK対する炉内脱硫率は5
7.1vI、 リサイクル80.を加味し九場合のそれ
は5tO−となった、を九脱硫装置の脱硫率は8&lチ
、脱硝率は51LO哄であった。ヒれらを総合すると、
全体としての脱硫率は9s−となシ、脱硫装置から煙突
に送られるガスのNoz濃度は!I I ppmとなっ
た。
In the case of jin, -801 rondo of ira de logas is 3501) I
) Wb Now@& is 140 ppm, and the in-furnace desulfurization rate for SotmKK theoretically generated by combustion of bituminous coal is 5.
7.1vI, Recycling 80. The desulfurization rate of the 9th case was 5tO-, and the desulfurization rate of the 9th desulfurization device was 8.1ch, and the denitrification rate was 51LO. Putting all the fins together,
The overall desulfurization rate is 9s-, and the Noz concentration of the gas sent from the desulfurization equipment to the chimney is! I I ppm.

比較例 上記実施例に於ける脱硫装置を取除き、流動燃焼−イラ
の華独運転により次の結果を得た。
Comparative Example The desulfurization equipment in the above example was removed, and the following results were obtained by operating the fluidized combustion furnace in China.

ぜイラでの1次空気比をO,Sとし、歴青炭と共に流動
化せしめる石灰石の量を理論化学当量の5.0倍とした
以外は実施例と同じ条件で歴青炭を流動燃焼させたとζ
ろ、ぜイラ出ロガスの80に濃度は41 ppm%NO
x濃度は100 ppmとな妙、理論発生SO1濃度に
対する脱硫率は95鴫と六つた。
The bituminous coal was fluidized and combusted under the same conditions as in the example except that the primary air ratio in the zeira was O, S, and the amount of limestone fluidized together with the bituminous coal was 5.0 times the theoretical chemical equivalent. and ζ
The concentration of 80% of the gas emitted from the gas is 41 ppm%NO.
The x concentration was 100 ppm, and the desulfurization rate was 95% compared to the theoretically generated SO1 concentration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は炉内脱硫に於ける脱硫剤(Oat’)の使用量
と脱硫率との関係を示すグラフであり、第2図は本発明
方法のフローシートである2、1:流動燃焼ゼイラ  
2;サイクロン3;ヱアヒータ    4;集塵器 5;脱硫装肯     6;煙 突
Figure 1 is a graph showing the relationship between the amount of desulfurization agent (Oat') used and the desulfurization rate in in-furnace desulfurization, and Figure 2 is a flow sheet of the method of the present invention.
2; Cyclone 3; Heater 4; Dust collector 5; Desulfurization equipment 6; Chimney

Claims (1)

【特許請求の範囲】 1、 石炭だき流動燃焼メイラ内で石炭粒と共に脱硫剤
を流動化させることにょ)石炭の燃焼によって生ずる8
0xの一部を脱硫剤で固定し、該2イラから出る排ガス
を再生可能な脱減装f111ンこ供給して処理し、該脱
硫装置の再生時に回収される濃縮SO,ガスを該−イラ
にリサイク声・することを特徴とする流動燃焼ゼイラの
排ガス処理方法。 2、メイラ内で流動せしめられる脱硫剤の量を、石炭の
燃焼によって生ずる80x及びリサイクルされる8偽を
固定するのに必要な理論化学当量の1.0〜2.0倍と
して流動態mメイラでの炉内脱硫率を60−以上とする
特許請求の範囲第1項記載の方法。 3、石炭だき流動燃焼メイラ内で石炭粒と共に脱硫剤を
流動化させる仁とにょう石炭の燃焼によって生ずる80
xの一部を脱硫剤で固定し、該−イラかも排出される排
ガス中にアンモニアを付加混入して炭素質吸着−剤吸着
法式脱硫装fK供給して脱硫および脱硝処理し、該脱硫
装置の再生時K[I鶴される濃縮80.ガスを該ゼイラ
にリサイクルすることを特徴とする石炭だ自流動燃焼I
イラの排ガス処理方法。
[Claims] 1. Fluidized desulfurization agent together with coal grains in a coal-fired fluidized combustion mailer) produced by combustion of coal.
A part of the 0x is fixed with a desulfurization agent, and the exhaust gas emitted from the two furnaces is supplied to a recyclable de-reducing unit for treatment, and the concentrated SO and gas recovered during regeneration of the desulfurization equipment are transferred to the furnace. A method for treating exhaust gas from a fluidized combustion zeira, which is characterized by recycling. 2. The amount of desulfurization agent fluidized in the mailer is set to 1.0 to 2.0 times the theoretical chemical equivalent required to fix 80x produced by coal combustion and 8x recycled. The method according to claim 1, wherein the in-furnace desulfurization rate is 60 or more. 3. 80 produced by the combustion of kerosene coal that fluidizes the desulfurization agent along with coal grains in a coal-fired fluidized combustion mailer.
A part of Concentration 80. Coal self-flowing combustion I characterized by recycling gas into the zeira
Ira's exhaust gas treatment method.
JP57046553A 1982-03-24 1982-03-24 Treatment of exhaust gas of fluidized combustion boiler Granted JPS58163421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57046553A JPS58163421A (en) 1982-03-24 1982-03-24 Treatment of exhaust gas of fluidized combustion boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57046553A JPS58163421A (en) 1982-03-24 1982-03-24 Treatment of exhaust gas of fluidized combustion boiler

Publications (2)

Publication Number Publication Date
JPS58163421A true JPS58163421A (en) 1983-09-28
JPH026964B2 JPH026964B2 (en) 1990-02-14

Family

ID=12750506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57046553A Granted JPS58163421A (en) 1982-03-24 1982-03-24 Treatment of exhaust gas of fluidized combustion boiler

Country Status (1)

Country Link
JP (1) JPS58163421A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6280411A (en) * 1985-10-04 1987-04-13 Electric Power Dev Co Ltd Operation process for fluidized bed type combustion device with low volume of discharging of sox, and nox and high efficiency of combustion
JPS6275312U (en) * 1985-10-29 1987-05-14
KR100880576B1 (en) * 2002-08-29 2009-01-30 재단법인 포항산업과학연구원 Recycling system for reducing the nox contained in the combustion gas

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008072787A2 (en) 2006-12-14 2008-06-19 Cta Technology (Proprietary) Limited Manufacturing method for a multi-channel copper tube, and manufacturing apparatus for the tube

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5584403U (en) * 1978-12-08 1980-06-11
JPS5833368U (en) * 1981-08-31 1983-03-04 日産デイ−ゼル工業株式会社 Handle shaft position adjustment device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5584403U (en) * 1978-12-08 1980-06-11
JPS5833368U (en) * 1981-08-31 1983-03-04 日産デイ−ゼル工業株式会社 Handle shaft position adjustment device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6280411A (en) * 1985-10-04 1987-04-13 Electric Power Dev Co Ltd Operation process for fluidized bed type combustion device with low volume of discharging of sox, and nox and high efficiency of combustion
JPS6275312U (en) * 1985-10-29 1987-05-14
KR100880576B1 (en) * 2002-08-29 2009-01-30 재단법인 포항산업과학연구원 Recycling system for reducing the nox contained in the combustion gas

Also Published As

Publication number Publication date
JPH026964B2 (en) 1990-02-14

Similar Documents

Publication Publication Date Title
CN100503013C (en) Method and system for combinedly removing SO2, NOx and Hg in coal smoke gas by using recombustion of biomass
KR930003212B1 (en) Dry-type treating method for exhaust gas
ES2602988T3 (en) Desulfurization in a regenerative calcium cycle system
JP3504674B2 (en) Method for removing carbon dioxide and sulfur oxides from flue gas
WO2021088526A1 (en) Flue gas multi-pollutant synergistic purification process and apparatus
BG64460B1 (en) Circulating fluidized bed reactor with selective catalytic reduction
CN103263828A (en) Fume gas denitration system of coal-fired boiler based on SNCR (Selective Non-catalytic Reduction) and SCR (Selective Catalytic Reduction) combination method
US4839148A (en) Method of removing SOx and NOx from effluent gas
CN104403697A (en) Flue gas emission pollutant control process device for coal-fired boiler in power plant and control method
CN102537945B (en) Burning system and flue gas system for circulating fluidized bed boiler
JP2977759B2 (en) Exhaust gas dry treatment method and apparatus
JPS58163421A (en) Treatment of exhaust gas of fluidized combustion boiler
JP5944042B2 (en) Exhaust gas treatment system and exhaust gas treatment method
CN115950270A (en) Heating furnace desulfurization and denitrification collaborative carbon monoxide removal system and process
JPH0467085B2 (en)
CN210855981U (en) Dry quenching coke and coke oven flue gas combined purification system
CN210601658U (en) Active burnt activation tail gas processing system
CN112113220A (en) Solid-gas waste efficient utilization and treatment system
JPS62209193A (en) Method for simultaneously performing production of coke and power generation
JPH026963B2 (en)
CN212467729U (en) Cremation tail gas clean-up system
JPS59121104A (en) Recovery of sulfur in coal-fired boiler
RU2796494C1 (en) Method and installation for joint flue gas cleaning with several pollutants
JPS6146392Y2 (en)
CN212523614U (en) Be applicable to nearly zero discharge system of circulating fluidized bed boiler