JPS581627A - Method of sterilizing sealed package - Google Patents

Method of sterilizing sealed package

Info

Publication number
JPS581627A
JPS581627A JP9603281A JP9603281A JPS581627A JP S581627 A JPS581627 A JP S581627A JP 9603281 A JP9603281 A JP 9603281A JP 9603281 A JP9603281 A JP 9603281A JP S581627 A JPS581627 A JP S581627A
Authority
JP
Japan
Prior art keywords
temperature
measured
phosphor
sterilization
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9603281A
Other languages
Japanese (ja)
Other versions
JPS6339225B2 (en
Inventor
山口 尹通
博 上野
遠山 巍
杉山 征男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP9603281A priority Critical patent/JPS581627A/en
Publication of JPS581627A publication Critical patent/JPS581627A/en
Publication of JPS6339225B2 publication Critical patent/JPS6339225B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は密封包装体の殺一方法に関するもので、より詳
細には密封包装体をAイクロ波により殺菌する方法の改
良に関する。 :: 近年、包装食品の加熱殺菌にマイクロ波加熱を応用する
試みがなされている。マイクロ波はプラスナック等の誘
電体損失の少ない包装材を殆んど加熱せず透過する特徴
を有する一方で、その発熱機構が食品内部の双極子が、
交流電界中(こおかれると、電界の時間的変化に対応し
て双極子の回転振動が起こり、分子の摩擦によって発熱
する特徴を有しているために、誘電損失の大きい食品は
内部から効率よく加熱できる。この特徴によって、マイ
クロ波は食品工業の分野において広く利用されており、
食品の乾燥、冷凍食品の解凍、殺菌加工が実用化されて
いる。たとえば、加熱殺菌では、ハムソーセージの殺菌
、パン菓子のカビ発生防止、イカ珍味のカビ防止のため
の殺菌などの応用例が知られている。しかし、これら公
知の方法では、殺菌対象となる微生物は耐熱性が極めて
低く、80〜90℃で10〜20分程度で完全に殺滅す
ることが出来るため、マイクロ波加熱によって100℃
付近まで品温を上昇させれば、殺菌効果が得られるため
特に品温を測定する必要がなかった。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for sterilizing sealed packages, and more particularly to an improvement in the method for sterilizing sealed packages using A microwave. :: In recent years, attempts have been made to apply microwave heating to heat sterilization of packaged foods. Microwaves have the characteristic of passing through packaging materials with low dielectric loss, such as plastic snacks, with little heating, but the heat generation mechanism is caused by dipoles inside the food.
When placed in an alternating current electric field, dipoles undergo rotational oscillation in response to temporal changes in the electric field, and heat is generated by the friction of molecules, so foods with a large dielectric loss can be heated from the inside. Because of this characteristic, microwaves are widely used in the food industry.
Drying of food, thawing of frozen food, and sterilization have been put into practical use. For example, heat sterilization has applications such as sterilization of ham sausages, prevention of mold growth in pastries, and sterilization of squid delicacies to prevent mold growth. However, in these known methods, the microorganisms to be sterilized have extremely low heat resistance and can be completely killed in about 10 to 20 minutes at 80 to 90°C.
There was no need to specifically measure the temperature of the product because a sterilization effect could be obtained if the temperature of the product was raised to a temperature close to that level.

しかしながら、包装食品を変敗させる微生物には100
℃以下の加熱では殺滅できない高い耐熱性を有するもの
が存在しており、缶詰、びん詰レトルト食品同様100
℃以上の高温で処理しなければ完全に保存し得る包装食
品を製造することが不可能なことはマイクロ波加熱殺菌
においても同様である。このため、法律的にも100℃
以上で加熱殺菌する包装食品にあっては、加熱処理時の
厳密な温度を記録することが義務づけられている。
However, microorganisms that spoil packaged foods have a 100%
There are some foods that have a high heat resistance that cannot be killed by heating below ℃, and as with canned and bottled retort foods,
The same holds true for microwave heat sterilization, as it is impossible to produce packaged foods that can be completely preserved unless the food is treated at a high temperature of .degree. C. or higher. For this reason, legally speaking, 100℃
For packaged foods that are heat sterilized in the above manner, it is mandatory to record the exact temperature during the heat treatment.

る公知の方法及び装置においては有効な温度測定方法は
明示されているものはない。
Among the known methods and devices, no effective temperature measurement method is specified.

現在までマイクロ波で包装食品及び食品を加熱殺菌する
場合に使用されている側温方法としては、ある温度にな
ると変色する感温ラベル又はサーモペイント、グリシン
−グルコース混合m 7fflの変色、蛋白凝固物の凝
固点等が利用されているがこれらの方法では、最高到達
温度や工程中で蒙むった全熱履歴がわかるのみで、熱電
対やサーミスターを使用する従来の側温方法のように加
熱の時間的経過にともなった加熱温度を連続的に測定す
ることが不可能であり、殺菌程度を温度一時間関係で管
理することは不可能であった。このため、マイクロ波加
熱による包装食品の100℃以上の温度での殺菌は確実
に包装食品が殺菌できたかどうかの管理が不可能であっ
たため実用化されないでいる。
The side temperature methods currently used to heat sterilize packaged foods and foods using microwaves include temperature-sensitive labels or thermopaints that change color at a certain temperature, discoloration of glycine-glucose mixture m7ffl, and protein coagulates. However, with these methods, only the maximum temperature reached and the total heat history experienced during the process can be determined, and unlike the conventional side temperature method using thermocouples and thermistors, the heating time cannot be determined. It has been impossible to continuously measure the heating temperature over time, and it has been impossible to control the degree of sterilization in relation to temperature over time. For this reason, sterilization of packaged foods by microwave heating at temperatures of 100° C. or higher has not been put to practical use because it has been impossible to reliably control whether the packaged foods have been sterilized.

従って、本発明の目的は、容器内に充填され密封された
食品について、加熱の時間的経過にともなった加熱温度
を正確に測定しつつマイクロ波加熱殺菌する方法を提供
するにある。
Therefore, it is an object of the present invention to provide a method for sterilizing foods filled and sealed in containers by microwave heating while accurately measuring the heating temperature over time.

本発明の他の目的は、マイクロ波加熱殺菌に際して、マ
イクロ波の影響下においても食品の加熱履歴を正確に測
定して、長期間の保存に耐える品質良好な加熱殺菌包装
食品を製造し得る殺菌方法を提供するにある。
Another object of the present invention is to accurately measure the heating history of foods even under the influence of microwaves during microwave heat sterilization, and to produce heat sterilized packaged foods of good quality that can withstand long-term storage. We are here to provide you with a method.

本発明によれば、マイクロ波に対して透過性を有する容
器内に被殺菌物品を充填してなる密封包装体にマイクロ
波を照射し、マイクロ波照射下にある密封包装体の温度
の時間的経過を、螢光体温度センサーを用いて、螢光体
の螢光波長領域での光強度の温度依存性に基ずいて測定
し、該螢光体センサーで測定される温度が100℃以上
となり且つ式 式中、Tは螢光体センサーで測定される温度(℃)を表
わし、tはマイクロ波照射啼間を表わし、Zは微生物の
温度依存性値である、 で表わされる積“分値CF)が6.2以上となるにモ分
な時間マイクロ波の照射を続けることを特徴とする密封
包装体の殺菌方法が提供される。
According to the present invention, microwaves are irradiated to a sealed package formed by filling an article to be sterilized in a container that is transparent to microwaves, and the temperature of the sealed package under microwave irradiation is changed over time. The progress is measured using a phosphor temperature sensor based on the temperature dependence of the light intensity in the fluorescence wavelength range of the phosphor, and the temperature measured by the phosphor sensor is 100°C or higher. And in the formula, T represents the temperature (°C) measured by the fluorescent sensor, t represents the microwave irradiation duration, and Z is the temperature-dependent value of the microorganism. Provided is a method for sterilizing a sealed package, characterized in that microwave irradiation is continued for a sufficient period of time until the CF) is 6.2 or more.

本発明を以下に詳細に説明する。The invention will be explained in detail below.

本発明の重要な特徴の一つは、マイクロ波照射下にある
密封包装体の温度の時間的経過を、螢光体温度センサー
を用いて、螢光体の螢光波長領域での光強度の温度依存
性に基すいて測定することにある。先ず、加熱殺菌下に
ある密封包装体の温度を時間的経過に従って測定する普
通の方法は、温度センサーとして終電対やサーミスタを
用いる方法であるが、マイクロ波による加熱殺菌の場合
には、温度センサーからの電波漏洩があり、史に温度セ
ンサーの先端に電界が集中するため、正確な品温の測定
が困難となる。これζこ対して、本発明に従い、螢光体
温度センサーをマイクロ波照射下にある密封包装体の温
度の測定に使用すると、センサーへ電界が集中すること
もなく、また温度を螢光信号の形で取出せるため、電波
漏洩の問題も有効に解消され、密封包装体の品温を正確
にしかも時間的経過に従って測定できるようになる。
One of the important features of the present invention is that the time course of the temperature of a sealed package under microwave irradiation is measured using a phosphor temperature sensor, which measures the light intensity in the fluorescence wavelength region of the phosphor. The objective is to measure based on temperature dependence. First, the usual method of measuring the temperature of a sealed package under heat sterilization over time is to use a terminal couple or thermistor as a temperature sensor, but in the case of heat sterilization using microwaves, a temperature sensor There is radio wave leakage from the temperature sensor, and the electric field is concentrated at the tip of the temperature sensor, making it difficult to accurately measure the temperature of the product. In contrast, in accordance with the present invention, when a phosphor temperature sensor is used to measure the temperature of a sealed package under microwave irradiation, there is no electric field concentration on the sensor, and the temperature can be determined by the fluoroscopic signal. Since it can be taken out in the same shape, the problem of radio wave leakage is effectively resolved, and the temperature of the sealed package can be measured accurately and over time.

本発明に用いる螢光体温度センサー及びこれによる温度
測定の原理そのものは、米国特許第4.075,493
号及び第4.215,275号明細書ζこより既知のも
のであるが、これをマイクロ波殺菌条件下ζこある密封
包装体の品温の測定に使用し、しかも測定される温度の
時間的経過をマイクロ波照射と関連させることは本発明
前全く未知のことである。
The fluorescent temperature sensor used in the present invention and the principle of temperature measurement using it are disclosed in U.S. Pat. No. 4,075,493.
No. 4,215,275, this method is used to measure the temperature of a sealed package under microwave sterilization conditions, and the temperature to be measured is measured over time. Correlating the course with microwave irradiation was completely unknown prior to the present invention.

本発明において、被殺菌物品を充填する容器としてはマ
イクロ波に対して透過性を有する密封可能な容器であれ
ば、任意のものを用いることができる。かかる容器は、
袋のような可撓性容器であっても、或いはカップ、広口
ビンのような剛性のある容器であってもよい。これらの
容器は誘電損失の少ない材料、例えば熱町塑性或いは熱
硬化性のプラスチック、例えばポリエチレン、ポリプロ
ピレン等のオレフィン系樹脂;ポリエチレンテレフタレ
ートの如きポリエステル樹脂;ナイロン乙の如きポリア
ミド樹脂;ポリカーボネート;ポリ塩化ビニル、塩化ビ
ニリデン系樹脂等で構成されていることが好ましく、そ
の他ガラスから成る容器も用いることができる。
In the present invention, any container can be used to fill the article to be sterilized as long as it is transparent to microwaves and can be sealed. Such a container is
The container may be a flexible container such as a bag, or a rigid container such as a cup or a wide mouth bottle. These containers are made of materials with low dielectric loss, such as thermoplastic or thermosetting plastics, such as olefin resins such as polyethylene and polypropylene; polyester resins such as polyethylene terephthalate; polyamide resins such as nylon; polycarbonate; polyvinyl chloride. The container is preferably made of vinylidene chloride resin or the like, and containers made of other glass may also be used.

容器内に充填する被殺菌物品としては、これに限定され
るものでないが、液状或いはペースト状の食品や飲料、
例えばコーヒ、紅茶;し七ンジュース、オレンジジュー
ス、フ0ラムジュース、フ′ドージュース、イチゴジュ
ース等のストレート・ジュース、或いはネクター等の加
工果汁飲料を宮む果汁飲料;トマトジュース、各種野菜
ジュースを含む疏菜汁飲料;乳酸菌飲料;調理済カレー
、調理済ハヤシ、ボルシチ、ビーフシチューの9口きシ
チュー類;ミートソースの如きブレビル類;酊豚、スキ
ャキ、へ宝菜、中華風五目煮、アスパラガス煮、ピーン
ズ、マグロのクリーム煮等の水煮野菜、魚及び肉類;コ
ンソメスープ、ポタージュスープ、みそ汁、豚汁、ケン
チン汁の如きスープ;米飯、赤飯、ヤキ飯、五目飯、ピ
ラフ、カニの如き米食品;スパゲティ、ソバ、ラドン、
中華ソバ、マカロニの如きメン類;チャーハン・スープ
用或いは中華ツバ・スープ用複合調味料;ユデ小豆、ゼ
/ザイ、汁粉、アンミツ、ミツマメ、プリン、ゼリー、
水ヨウカン等の嗜好食品;肉団子、ノ・ンバーグ、コン
ビーフ、ハム、ソーセージ、焼魚、クンセイ、ベーコン
、カマボコ等の加工水産乃至畜産製品;ミカン、ピーチ
、パイナツプル、チェリー、オリーブ等の果実製品;例
えばショウ油、ソース、食酢、みりん、ドレッシング、
マヨネーズ、ケチャツプ、食用油、味噌、ラード、ケチ
ャツプなどの調味料;豆腐、ジャム、バター、マーガリ
ン等の嗜好品等を挙げることができる。
Items to be sterilized to be filled into containers include, but are not limited to, liquid or paste foods and beverages,
For example, coffee, tea; straight juices such as orange juice, orange juice, fruit juice, fruit juice, strawberry juice, or processed fruit juice drinks such as nectar; tomato juice, various vegetable juices. 9-bit stews such as cooked curry, cooked hash, borscht, and beef stew; Brevilles such as meat sauce; drunken pork, sukaki, heba na, Chinese-style gomoku stew, and asparagus Boiled vegetables, fish, and meat such as gas-boiled vegetables, peanuts, and cream-stewed tuna; Soups such as consommé soup, potage soup, miso soup, pork soup, and kenchin soup; Rice such as rice, red rice, grilled rice, gomoku rice, pilaf, and crab. Food; spaghetti, buckwheat, radon,
Menu such as Chinese buckwheat and macaroni; Composite seasoning for fried rice and soup or Chinese spit and soup; Yude red bean, ze/zai, shiruko, apricot, honey bean, pudding, jelly,
Favorite foods such as water yokan; Processed seafood and livestock products such as meatballs, pork belly, corned beef, ham, sausage, grilled fish, kunsei, bacon, and kamaboko; Fruit products such as mandarin oranges, peaches, pineapple, cherries, and olives; Shower oil, sauce, vinegar, mirin, dressing,
Examples include seasonings such as mayonnaise, ketchup, edible oil, miso, lard, and ketchup; luxury goods such as tofu, jam, butter, and margarine.

容器への内容物の充填は、冷間及び熱間でも行うことが
でき、容器の密封はヒートシール、巻締、密栓等のそれ
自体公知の方法で行うことができる。
The contents can be filled into the container either cold or hot, and the container can be sealed by a method known per se, such as heat sealing, seaming, and sealing.

伺、容器の密封に際して、容器のヘッドスペース内の酸
素を、水蒸気噴射、窒素置換等の手段で除去しておくこ
ともできる。
In addition, when sealing the container, oxygen in the head space of the container can be removed by steam injection, nitrogen replacement, or the like.

本発明に力いて、螢光体温度センサーとしては、螢光波
長領域での光強度が螢光体の温度によって変化する螢光
体の層が使用される。好適な螢光体は、希土類元素のオ
キシサルファイドであり、この化合物は希土類元素でド
ーピング処理されていてもよい。これらの螢光体は、下
記式 %式% 式中、Mはランタン、ガドリニウム、イツトリウム等の
希土類元素であり、Xは希土類元素から成るドーピング
成分を表わし、nはM当、ao、oi乃至10原子条と
なる数である、 で表わされるものである。上述した螢光体センサーから
温度を螢光信号として取出すために、紫外線光源及び螢
光検出機構を設け、この螢光体センサーと紫外線光源及
び螢光検出機構とを光ファイバーにより夫々接続する。
In accordance with the present invention, a phosphor temperature sensor employs a phosphor layer whose light intensity in the fluorescing wavelength region varies with the temperature of the phosphor. Suitable phosphors are rare earth oxysulfides, which compounds may be doped with rare earth elements. These phosphors are manufactured by the following formula % formula % where M is a rare earth element such as lanthanum, gadolinium, yttrium, etc., X represents a doping component consisting of a rare earth element, and n is M, ao, oi to It is a number that is an atomic strip, and is expressed as . In order to extract the temperature as a fluorescence signal from the above-mentioned fluorescent sensor, an ultraviolet light source and a fluorescence detection mechanism are provided, and the fluorescent sensor is connected to the ultraviolet light source and the fluorescence detection mechanism by optical fibers, respectively.

かぐして、光源からの紫外線は光ファイバーを通して螢
光体層に照射されて螢光体は励起され、螢光体層の温度
に特有の強度の螢光は、光ファイバーを通して螢光検出
機構に送られる。この螢光検出機構からの信号は、信号
プロセフフッ機構において、光強度の温度依存性に基す
いて、温度表示信号に変換され、温度として表示される
The ultraviolet light from the light source is irradiated through the optical fiber to the phosphor layer to excite the phosphor, and the fluorescent light with an intensity specific to the temperature of the phosphor layer is sent through the optical fiber to a fluorescence detection mechanism. . The signal from this fluorescence detection mechanism is converted into a temperature display signal in a signal processing mechanism based on the temperature dependence of light intensity, and is displayed as temperature.

加熱殺菌すべき包装体の温度を測定するために、上記螢
光体センサーを包装体に固定する。この固定の仕方を示
す第1図において、サンプリング用剛性容器1の器壁に
孔をあけ、この孔にポリテトラフルオロエチレン製のバ
ッキンググラウンド2を嵌込み、これを介して光ファイ
バーから成るプローブ6を通し、螢光体温度センサー4
が包装体中心に位置するように保持させる。また、パウ
チの如き柔軟な容器の場合には、第2図に示す通り、す
/ブリング容器1αの壁にやはシ孔をあけ、この孔(こ
バッキング・グラウンド2を嵌込み、これを介してプロ
ーブ3を通し、プローブホルダー5により、センサー4
がやはり包装中心に位置するよう番こする。
In order to measure the temperature of the package to be heat sterilized, the fluorescent sensor is fixed to the package. In FIG. 1 showing this fixing method, a hole is made in the wall of a rigid sampling container 1, a backing ground 2 made of polytetrafluoroethylene is fitted into the hole, and a probe 6 made of an optical fiber is inserted through this hole. Through, fluorescent temperature sensor 4
Hold it so that it is located at the center of the package. In addition, in the case of a flexible container such as a pouch, as shown in FIG. pass the probe 3 through the probe holder 5, and then attach the sensor 4 to the
Rub it so that it is located in the center of the package.

本発明においては、容器内の食品等は、通常の加熱殺菌
とは異なシ、全体にわたって一様な加熱が行われるため
、必らずしも温度センサーを包装中心に位置させること
が必らずしも必要でなく、例えば容器壁に近接した部分
に螢光体温度センサーを位置させても、或いは容器壁面
に温度センサーを接触させても、品温の測定がかなり正
確に行われることが理解されるべきである。
In the present invention, unlike normal heat sterilization, the food in the container is uniformly heated over the entire surface, so it is not always necessary to position the temperature sensor at the center of the package. It is understood that even if this is not necessary and, for example, the fluorescent temperature sensor is placed close to the container wall or the temperature sensor is placed in contact with the container wall, the temperature of the product can be measured fairly accurately. It should be.

本発明において、マイクロ波による加熱殺菌は任意の方
法で行なうことができる。マイクロ波としては、周波数
が915及び2450 MHzのものであるがこれ以外
の周波数の電磁波も勿論1・P用される。マイクロ波の
照射は、マグネトロン等のマイクロ波発生装置から、導
波管を介して投函室内にマイクロ波を導入することによ
り容易に行われ、この際、マイクロ波を殺菌室内に一様
に照射するためζこ、導波管出口或いは更に殺菌室の適
当な位置にファンを設けることもできる。マイクロ波の
出力は、殺菌に必要な熱量によっても著しく相違するが
、一般には、1個の包装体のマイクロ波照射による殺菌
が30秒乃至60分間の時間で完了するように、出力を
定めるのが望ましい。勿論、マイクロ波の照射は連続し
て行ってもよいし、断続して行って品温か一定の範囲に
あるようにしてもよい。
In the present invention, heat sterilization using microwaves can be performed by any method. The microwaves have frequencies of 915 and 2450 MHz, but electromagnetic waves of other frequencies can of course also be used. Microwave irradiation is easily performed by introducing microwaves from a microwave generator such as a magnetron into the mailing chamber via a waveguide, and at this time, the microwaves are uniformly irradiated into the sterilization chamber. Alternatively, a fan can be provided at the waveguide outlet or even at a suitable location in the sterilization chamber. The output of microwaves varies significantly depending on the amount of heat required for sterilization, but in general, the output is determined so that sterilization of one package by microwave irradiation is completed in 30 seconds to 60 minutes. is desirable. Of course, the microwave irradiation may be performed continuously or intermittently so that the product temperature remains within a certain range.

マイクロ波の照射は、連続的にもバッチ式にも行うこと
ができる。連続式の場合には、包装体をコンベヤベルト
等の搬送機構に載せてマイクロ波照射下の殺菌室内に連
続的°に或いは間欠的に送ればよく、バッチ式の場合に
は、殺菌室内に所定量の包装体を詰め込み、マイクロ波
の照射を行うのがよい。
Microwave irradiation can be performed continuously or batchwise. In the case of a continuous type, the package is placed on a transport mechanism such as a conveyor belt and sent continuously or intermittently into a sterilization chamber under microwave irradiation.In the case of a batch type, the package is placed on a conveyor belt or other transport mechanism and sent continuously or intermittently into a sterilization chamber. It is best to pack a fixed amount of packaging and irradiate it with microwaves.

殺菌室内の雰囲気は常圧でもよいし、空気加圧下でもよ
い。例えば、包装容器が耐圧容器である場合や、殺菌温
度が比較的低い場合には、殺菌室雰囲気は常圧であって
よい。勿論、殺菌雰囲気を、包装体内の蒸気圧の全部乃
至は一部を打消すように加圧しておけば殺菌時における
包装容器或いは密封部の破損を有効(こ防止することが
できる。一般には殺菌室内を1.2乃至3.0kg/c
In2ゲージ程度に加圧しておくことが望ましい。殺菌
室内を加圧し連続的にマイクロ波殺菌を行う場合には、
殺菌室の入口及び出口には、シール部を設けるのがよい
The atmosphere in the sterilization chamber may be at normal pressure or may be under air pressure. For example, when the packaging container is a pressure-resistant container or when the sterilization temperature is relatively low, the sterilization chamber atmosphere may be at normal pressure. Of course, if the sterilizing atmosphere is pressurized so as to cancel out all or part of the vapor pressure inside the package, damage to the packaging container or the sealed part during sterilization can be effectively prevented. 1.2 to 3.0 kg/c indoors
It is desirable to pressurize to about In2 gauge. When performing continuous microwave sterilization by pressurizing the sterilization chamber,
It is preferable to provide seals at the entrance and exit of the sterilization chamber.

本発明において、マイクロ波殺菌室内に導入する密封包
装体は、殺菌温度への昇温時間を短縮するために、予じ
め予備加熱しておくことが望ましい。一般に、密封包装
体の品温を60乃至90℃としておくことがこの目的番
こ好都合である。このためには、内容物の熱間充填や、
熱風や熱水蒸気による包装体の予備加熱が使用される。
In the present invention, it is desirable that the sealed package introduced into the microwave sterilization chamber be preheated in advance in order to shorten the heating time to the sterilization temperature. Generally, it is convenient for this purpose to maintain the temperature of the sealed package at 60 to 90°C. For this purpose, hot filling of the contents,
Preheating of the package with hot air or hot steam is used.

本発明によれば、マイクロ波殺菌すべき密封包装体のグ
ループに、前述した殺菌温度サンプリング用の密封包装
体を含ませることにより、マイクロ波照射条件下におい
て、品温の時間的経過をIE確に測定することがパきる
。即ち、この方法によれば、殺菌室内には、マイクロ波
の影響を受けない螢光体温度センサー及び光ファイバー
・プローブが位置するのみであり、しかもこれらの測温
具は、殺菌時における熱水、熱水蒸気、圧力等による影
響も何等受けることなく、マイクロ波殺菌下にある品温
のみを、螢光の強度として正確に測定できる。
According to the present invention, by including the above-mentioned sealed package for sterilization temperature sampling in a group of sealed packages to be microwave sterilized, the time course of product temperature can be confirmed by IE under microwave irradiation conditions. It can be measured accurately. That is, according to this method, only a fluorescent temperature sensor and an optical fiber probe, which are not affected by microwaves, are located in the sterilization chamber, and these temperature measuring instruments are not exposed to hot water or hot water during sterilization. It is not affected by hot steam, pressure, etc., and only the temperature of the product under microwave sterilization can be accurately measured as the intensity of fluorescent light.

本発明においては、螢光体センサーで測定される温度が
100℃以上となり且つ式 式中、Tは螢光体センサーで測定される温度(’C)を
表わし、tはマイクロ波照射時間を表わし、Zは微生物
の温度依存性値である、 で表わされる積分値CF)が6.2以上となるに十分な
時間マイクロ波の照射を続けることも極めて重要である
In the present invention, the temperature measured by the fluorescent sensor is 100°C or higher, and in the formula, T represents the temperature ('C) measured by the fluorescent sensor, and t represents the microwave irradiation time. It is also extremely important to continue the microwave irradiation for a sufficient period of time so that the integral value CF, expressed by , Z is the temperature dependence value of microorganisms, becomes 6.2 or more.

既に前述した如く、包装食品中の微生物の殺滅効果は、
温度と時間との組合せに依存することが知られている。
As mentioned above, the effect of killing microorganisms in packaged foods is
It is known that it depends on the combination of temperature and time.

本発明においては、マイクロ波殺菌下にある包装食品の
温度を刻々測定し、この温度が100℃以上、好適には
105乃至160°Cとなす、シかもこの温度と時間と
の相関を、前記式の積分値(F)として算出し、この積
分値CF)が一定値以上となる迄マイクロ波の照射を続
けることにより、長期間の保存に耐え、しかも品質良好
な加熱殺菌包装食品を製造することが可能となる。
In the present invention, the temperature of the packaged food under microwave sterilization is measured moment by moment, and the correlation between this temperature and time is determined so that the temperature is 100°C or higher, preferably 105 to 160°C. By continuing to irradiate microwaves until the integral value (F) of the formula becomes equal to or higher than a certain value, heat sterilized packaged foods that can withstand long-term storage and are of good quality are manufactured. becomes possible.

・この積分値CF)の算出は、マイクロ波照射開始後の
時間の信号と、この時間における温度検出信号とを、コ
ンピューターに入力させて演算を行わせることにより自
動的に行わせることができる。
- Calculation of this integral value CF) can be automatically performed by inputting the signal of the time after the start of microwave irradiation and the temperature detection signal at this time into a computer and performing the calculation.

前記式において、微生物の温度依存性値Zであ化し得る
In the above equation, the temperature dependence value Z of the microorganism can be determined.

本発明において、マイクロ波照射終了後の密封包装体は
、内容物の所謂点すぎによる品質劣[ヒを防止するため
に、強制冷却するのが望ましい。この冷却は例えば冷風
、冷水等の冷却媒体を用いて行うことができ、包装容器
の内圧による破損を防止するために、殺菌の場合と同様
に加圧下で行−うことができる。一般には、4乃至10
分間の時間内に、品温を50℃以下に迄冷却するのが好
ましいO 本発明によれば、マイクロ波照射下にある密封包装体の
品温を正確に測定でき、しかも長期貯蔵性のある殺菌包
装体が得られることは、次の実験例を参照することによ
り直ちに明白となろう。
In the present invention, it is desirable that the sealed package after microwave irradiation be forcedly cooled in order to prevent quality deterioration due to so-called overheating of the contents. This cooling can be performed using a cooling medium such as cold air or cold water, and can be performed under pressure as in the case of sterilization in order to prevent damage to the packaging container due to internal pressure. Generally 4 to 10
It is preferable to cool the product temperature to 50°C or less within a time period of 50°C.According to the present invention, the product temperature of a sealed package under microwave irradiation can be accurately measured, and the product can be stored for a long time. That sterile packages are obtained will be readily apparent by reference to the following experimental examples.

即ち、透明プラスチック袋状容器に、グリシン及びグル
コース本夫々Aモルの濃度で含有する7、7%小麦粉溶
液を充填し、密封して包装体を調製した。また、この密
封包装体の成るものをこ&i、市販の示温用のサーモラ
ベルを貼着した。更Gこ、上記密封包装体の調製時に、
螢光体温度センサー及ヒクロメルーアルメル(C−A)
熱電対を、第2図に示す位置関係で夫々取付けて、サン
プ1ノング用包装体を調製した。
That is, a transparent plastic bag-like container was filled with a 7.7% flour solution containing glycine and glucose at a concentration of A mol, and the container was sealed to prepare a package. Additionally, a commercially available thermolabel for temperature indication was attached to this sealed package. Furthermore, when preparing the above-mentioned sealed package,
Fluorescent temperature sensor and hycromeru alumel (C-A)
A package for Sump 1 nong was prepared by attaching thermocouples in the positional relationship shown in FIG.

かくして調製した4種類の密封包装体を空気カロ圧下で
2450 MHzのマイクロ波を照射し、4分経過後に
空気加圧下に冷却し、品温をfill定した。
The four types of sealed packages thus prepared were irradiated with 2450 MHz microwaves under air pressure, and after 4 minutes, they were cooled under air pressure to determine the product temperature.

この結果を第1表に示す。The results are shown in Table 1.

本発明及びC−A熱電対による方法では、他の二つの方
法に比べ、温度一時間関係が定量的に示すことが出来る
が、C−A熱電対を使用したものでは、同一内容物であ
るにもかかわらず本発明方法で測定したものより昇温か
早いことを示している。そこで、これら二つの方法から
得た加熱、冷却曲線から積分値(F〕が3.2となる条
件を求め、その条件で50袋を処理して貯蔵試験したと
ころ、C−A熟成対を使用して測温したものでは多数の
変敗をみた。
The method of the present invention and the method using the C-A thermocouple can quantitatively show the temperature-hour relationship compared to the other two methods, but the method using the C-A thermocouple shows the same content. Nevertheless, it shows that the temperature rise is faster than that measured by the method of the present invention. Therefore, we determined the conditions under which the integral value (F) was 3.2 from the heating and cooling curves obtained from these two methods, and when we processed 50 bags under these conditions and conducted a storage test, we found that the C-A aging pair was used. Many changes in temperature were observed when the temperature was measured.

この理由を知るため、C−A熱電対を使用した温度曲線
を検討したところ、第3図に示すようζこ、熟成対を使
用したものでは、マグネトロンへの通電を市め、マイク
ロ波発振を止めた瞬間、熱起電力は急激に下がることが
わかった。この様な立ち下りの現象は、熱電対の先端に
電界が集中し、先端部分が極度に加熱されるためで、立
ち下り現象後の熱起電力が正しい温度と思われ、熱電対
では、正しい品温か測定できないことがわかった。これ
に対して本発明では、マグネトロンへの通電の有無にか
かわらず温度の上昇、下降は安定しており、極めて正確
に測定されることが明らかとなった。
In order to understand the reason for this, we examined the temperature curve using a C-A thermocouple and found that, as shown in Figure 3, in the case of a thermocouple using a thermocouple, the microwave oscillation is stopped when the magnetron is energized. It was found that the moment the heat was stopped, the thermoelectromotive force dropped rapidly. This falling phenomenon occurs because the electric field concentrates at the tip of the thermocouple, causing the tip to become extremely heated.The thermoelectromotive force after the falling phenomenon is considered to be the correct temperature; It turned out that it was not possible to measure the product temperature. On the other hand, in the present invention, it has been revealed that the temperature rise and fall are stable regardless of whether or not the magnetron is energized, and can be measured extremely accurately.

同様に、他の測定方法で得た品温測定結果を示すが、サ
ーモラベル及びグリシ/−グルコース溶液を使用する測
定方法が、ある一定温度にならなければ変色、褐変が生
じなく、かつ冷却時の温度一時間の関係がどのような状
態にあるか明らかでないのに対して、本発明の方法では
逐一正確に把握できることが明らかであることがわかる
Similarly, the results of product temperature measurement obtained using other measurement methods are shown, but the measurement method using thermolabel and glycy/glucose solution does not cause discoloration or browning unless the temperature reaches a certain level, and when cooled. Although it is not clear what the relationship between temperature and hour is, it is clear that the method of the present invention can accurately grasp each point.

本発明方法によって包装中心部の品温を測定したもの、
および他の方法により殺菌程度が等しい状態でマイクロ
波処理したときの殺菌状態と、出来上り品質の結果を第
2表に示す。
The product temperature at the center of the package was measured by the method of the present invention,
Table 2 shows the results of the sterilization state and finished quality when microwave treatment was performed with the same degree of sterilization using other methods.

この結果、本発明方法によって測温した包装食品は、良
好に殺菌処理がほどこされており、かつ余分の熱履を蒙
むっていないため品質も良好であることがわかるが、他
の方法では変敗が生じたり、加剰加熱の為、品質が低下
しており、本発明方法がマイクロ波加熱を主熱源とした
100℃以上の温度での包装食品の殺菌に極めて効果が
あることを示している。
As a result, it can be seen that the packaged food whose temperature was measured by the method of the present invention has been sterilized well and is of good quality because it does not have to be subjected to extra heating. This shows that the method of the present invention is extremely effective in sterilizing packaged foods at temperatures of 100°C or higher using microwave heating as the main heat source. .

第2表 −50 (e)37℃、2ケ月貯蔵 ω 変敗袋数 Cg)  試験袋数 実施例1゜ 合いびき肉200g、玉ねぎ50g、生パン粉20gを
よく混合して14朋厚みの生・・ンバーグを作り、フラ
イパンで両面がきつね色になるまで焼いた。このハンバ
ーグにクロストリデューム、スボロゲナスNCA−pA
−5679の耐熱性を有する芽胞を1037gとなるよ
う注射器にてノ・ンバーグ中心部に接種した。この接種
ノ・ンバーグを透明なレトルトパウチ(東洋製缶(株)
製、ポリエステル×ポリプロピレン、130 ×170
iym )に充填し、回分式の空気加圧式マイクロ波殺
菌装置(東洋製缶製、型式H40−C−40M/W)出
力800 W1周波数2450 MHz、蒸気−熱水併
用型)を使用し、空気加圧1.5klil/C1rL2
圧力下でマイクロ波加熱を行った。測温には、米国Lu
xtron社製測温器1000A型を使用した。センサ
一部のパウチへの装てんは第2図の方法に準じて行った
Table 2-50 (e) Storage at 37°C for 2 months ω Number of spoiled bags Cg) Number of test bags Example 1 200 g of minced meat, 50 g of onion, and 20 g of fresh bread crumbs were mixed well and made into a 14 mm thick raw... I made the noodles and fried them in a frying pan until both sides were golden brown. In this hamburger, Clostriduum, Sborogenus NCA-pA
-5679 heat-resistant spores were inoculated into the center of Nornburg using a syringe in an amount of 1037 g. This inoculation bag is packed in a transparent retort pouch (Toyo Seikan Co., Ltd.).
Made of polyester x polypropylene, 130 x 170
iym), and using a batch type air pressure microwave sterilizer (manufactured by Toyo Seikan, model H40-C-40M/W, output 800 W1 frequency 2450 MHz, combined steam-hot water type), Pressure: 1.5klil/C1rL2
Microwave heating was performed under pressure. For temperature measurement, U.S. Lu
A thermometer model 1000A manufactured by xtron was used. A part of the sensor was loaded into a pouch according to the method shown in FIG.

マイクロ波を5分間照射し、次いで冷媒中へ4゛分間浸
漬したところ、最高到達温度が125℃となる良好な温
度一時間曲線が得られた。この曲線をもとに積分値CF
)を算出したところF=3.2を得た。芽胞接種サンプ
ル20袋を50℃、2ケ月間恒温室に保持したが何れも
変敗しなかった。
When irradiated with microwaves for 5 minutes and then immersed in a refrigerant for 4 minutes, a good one-hour temperature curve with a maximum temperature of 125°C was obtained. Based on this curve, the integral value CF
) was calculated, and F=3.2 was obtained. Twenty bags of spore-inoculated samples were kept in a constant temperature room at 50°C for two months, but none of them deteriorated.

実施例2゜ ポテトダイス20%、ポテトマツンユ50%、タマネギ
10%、ニンジン12%、コーン8%の割合で混合、調
整したポテトサラダに10’個/’1となるよう、バチ
ルス・ズブチリスの芽胞(Fo−6,0)を添加した。
Example 2゜Bacillus subtilis spores (10'/'1) were added to a potato salad prepared by mixing 20% potato dice, 50% potato matsuyu, 10% onion, 12% carrot, and 8% corn. Fo-6,0) was added.

この芽胞接種サラダを透明な成型容器(東洋製缶(株)
製、商品名ラミコンカッフ、ホリプロピレン×エバール
×ポリフロピレン)に10OI宛を充填し、同じ構成の
蓋をヒートシールして密封した。測温には米国Luxt
ron 社製測温器1000A型を使用した。センサ一
部の容器への固定はテフロン製グランド・パツキンで固
定した。実施例1で使用したと同じ空気加圧式マイクロ
波加熱装置を使用し、2.5kg/crIl”圧力下で
5.5分間加熱し、次いで冷却水により5分間冷却した
。測温は最高到達温度126℃を頂点とした山型の正確
な温度一時間曲線が得られた。この温度一時間曲線から
積分値Fを計算したところF=6.1となった。
This spore-inoculated salad was poured into a transparent molded container (Toyo Seikan Co., Ltd.).
(manufactured by Lamicon Cuff, trade name: Holipropylene x EVAL x Polypropylene) was filled with 10 OI, and a lid having the same structure was heat-sealed to seal it. US Luxt for temperature measurement
A thermometer model 1000A manufactured by Ron was used. A part of the sensor was fixed to the container using Teflon gland packing. Using the same air pressurized microwave heating device as used in Example 1, heating was carried out for 5.5 minutes under a pressure of 2.5 kg/crIl, and then cooled for 5 minutes with cooling water.The temperature was measured based on the maximum temperature reached. An accurate mountain-shaped one-hour temperature curve with a peak of 126° C. was obtained. When the integral value F was calculated from this one-hour temperature curve, F=6.1.

マイクロ波加熱した試料17袋を37℃、2ケ月間恒温
室(こ保持したが倒れも変敗しなかった。
Seventeen bags of microwave-heated samples were kept at 37°C in a constant temperature room for two months, but they did not collapse or deteriorate.

実施例3゜ 市販の粉末スープ(味の素製コーンスープ)を所定量の
水で溶解したものにクロストリデューム、スボロゲナδ
の芽胞を10”/j!となるよう接種(Fo=2.8 
) したもの170gを内面にポリエチレンをラミネー
トした紙カップ(東缶興業製、商品名PCカップ〕Oこ
充填、同構成の蓋をヒートゾールした。
Example 3゜Clostridium and Sborogena δ were added to a commercially available powdered soup (corn soup made by Ajinomoto) dissolved in a predetermined amount of water.
Inoculate spores at 10”/j! (Fo=2.8
170 g of the sample was filled with a paper cup (manufactured by Tokan Kogyo, trade name: PC Cup) with polyethylene laminated on the inner surface, and a lid of the same structure was heat-soled.

測温方法は実施例2に準じて行った。前述した空気加圧
式マイクロ波加熱装置により、マイクロ波照射4分、次
いで一5℃の冷風によって10分間冷却した測定された
品温は極めて良好であり、この条件はF=2.9であっ
た。加熱殺菌塔包装食品25個を37℃で1.5ケ月貯
蔵したところいずれも変敗しなかった。
The temperature measurement method was performed according to Example 2. Using the air pressurized microwave heating device described above, the product was irradiated with microwaves for 4 minutes and then cooled with cold air at -5°C for 10 minutes.The measured product temperature was extremely good, and this condition was F = 2.9. . When 25 heat-sterilized packaged foods were stored at 37°C for 1.5 months, none of them deteriorated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は剛性容器への温度センサー取付状態を示す断面
図、 第2図は柔軟容器への温度センサー取付状態を示す断面
図、 □  第6図は熱電対を用いて検出される温度とマイク
ロ波照射時間との関係を示す線図である。 1.1aは容器、2はバッキング・グラウンド、3はブ
°ローブ、4は螢光体温度センサー、5はプローブホル
ダーを夫々示す。 特許出願人  岸 本   昭 手続補正書(方式) 昭和56年11月1(i日 特許庁長官  島 1)春 樹 殿 1、事件の表示 昭和56年特許願第96052号 2、発明の名称 密封包装体の殺菌方法 3、補正をする者 事件との関係 特許出願人 住所   神祭ハIIIL−1剛蒔市金沢区wP4wt
r4459番地の26名称   岸   本     
  昭4、 代  理  人  〒105 住所   東京都港区愛宕1丁目6番7号愛宕山弁護士
ビル5、補正命令の日付 昭和56年10月27日(発送日)
Figure 1 is a cross-sectional view showing how the temperature sensor is attached to a rigid container. Figure 2 is a cross-sectional view showing how the temperature sensor is attached to a flexible container. □ Figure 6 shows the temperature detected using a thermocouple and the micro FIG. 3 is a diagram showing the relationship with wave irradiation time. 1.1a is a container, 2 is a backing ground, 3 is a probe, 4 is a fluorescent temperature sensor, and 5 is a probe holder. Patent Applicant Kishimoto Showa Procedural Amendment (Method) November 1, 1981 (I, Director General of the Patent Office Shima 1) Haruki Tono 1, Indication of the Case 1982 Patent Application No. 96052 2, Name of the Invention Sealed Packaging Body sterilization method 3, relationship with the amended person case Patent applicant address Shinsai Ha III-1 Gomaki City Kanazawa-ku wP4wt
26 name of address r4459 Kishimoto
1962, Agent Address: 5 Atagoyama Lawyers Building, 1-6-7 Atago, Minato-ku, Tokyo Date of amendment: October 27, 1980 (shipment date)

Claims (1)

【特許請求の範囲】[Claims] (1)マイクロ波に対して透過性を有する容器内に被殺
菌物品を充填してなる密封包装体にマイクロ波を照射し
、マイクロ波照射下にある密封包装体の温度の時間的経
過を、螢光体温度セ/すを用いて、螢光体の螢光波長領
域での強度の温度依存性に基ずいて測定し、該螢光体セ
ンサーで測定される温度が100℃以上となり且つ式 式中、Tは螢光体センサーで測定される温度(’C)を
表わし、tはマイクロ波照射開始後の時間を表わし、Z
は微生物の温度依存性値である、 で表わされる積分値CF)が6.2以上となるに十分な
時間マイクロ波の照射を続けることを特徴とする密封包
装体の殺菌方法。 Q)密封体に取付けた螢光体温度センサーと紫外線光源
及び螢光検出機構とを夫々光ファイバーから成るプロー
ブで接続し、螢光体をプローブを介して紫外線で照射し
、発生する螢光の強度をプローブを介して螢光検出機構
で検出することにより、温度を測定する特許請求の範囲
第1項記載の方法。
(1) A sealed package consisting of an article to be sterilized is filled in a microwave-transparent container is irradiated with microwaves, and the temperature of the sealed package under microwave irradiation is measured over time. Using a phosphor temperature sensor, the temperature is measured based on the temperature dependence of the intensity in the fluorescence wavelength region of the phosphor, and the temperature measured by the phosphor sensor is 100°C or higher and the formula In the formula, T represents the temperature ('C) measured by the fluorescent sensor, t represents the time after the start of microwave irradiation, and Z
A method for sterilizing a sealed package, characterized in that irradiation with microwaves is continued for a sufficient period of time such that the integral value CF), which is a temperature-dependent value of microorganisms, becomes 6.2 or more. Q) Connect the phosphor temperature sensor attached to the sealed body to the ultraviolet light source and the fluorescence detection mechanism using probes made of optical fibers, and irradiate the phosphor with ultraviolet light through the probe to determine the intensity of the generated fluorescence. 2. The method according to claim 1, wherein the temperature is measured by detecting the temperature using a fluorescence detection mechanism via a probe.
JP9603281A 1981-06-23 1981-06-23 Method of sterilizing sealed package Granted JPS581627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9603281A JPS581627A (en) 1981-06-23 1981-06-23 Method of sterilizing sealed package

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9603281A JPS581627A (en) 1981-06-23 1981-06-23 Method of sterilizing sealed package

Publications (2)

Publication Number Publication Date
JPS581627A true JPS581627A (en) 1983-01-07
JPS6339225B2 JPS6339225B2 (en) 1988-08-04

Family

ID=14154078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9603281A Granted JPS581627A (en) 1981-06-23 1981-06-23 Method of sterilizing sealed package

Country Status (1)

Country Link
JP (1) JPS581627A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62186774A (en) * 1986-02-08 1987-08-15 Nichirei:Kk Thermal sterilization of food packed in sealed container and treating apparatus therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5136269B2 (en) * 2008-08-04 2013-02-06 東洋製罐株式会社 Temperature measuring method and temperature measuring jig for pouch-packed fluid food

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5262879A (en) * 1975-11-19 1977-05-24 Teijin Ltd Pipe for conveying synthetic polymer pellets
JPS5276446A (en) * 1975-12-22 1977-06-27 Kyowa Hakko Kogyo Kk Method of producing packed food
JPS53107381A (en) * 1977-03-01 1978-09-19 Hitachi Cable Ltd Measuring method of temperature or pressure
JPS53116882A (en) * 1977-03-23 1978-10-12 Toshiba Corp Optical temperature detector
JPS5455487A (en) * 1977-10-12 1979-05-02 Mitsubishi Electric Corp Optical thermometer
JPS5661625A (en) * 1979-10-10 1981-05-27 Asea Ab Temperature measuring apparatus using optical fiber

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5262879A (en) * 1975-11-19 1977-05-24 Teijin Ltd Pipe for conveying synthetic polymer pellets
JPS5276446A (en) * 1975-12-22 1977-06-27 Kyowa Hakko Kogyo Kk Method of producing packed food
JPS53107381A (en) * 1977-03-01 1978-09-19 Hitachi Cable Ltd Measuring method of temperature or pressure
JPS53116882A (en) * 1977-03-23 1978-10-12 Toshiba Corp Optical temperature detector
JPS5455487A (en) * 1977-10-12 1979-05-02 Mitsubishi Electric Corp Optical thermometer
JPS5661625A (en) * 1979-10-10 1981-05-27 Asea Ab Temperature measuring apparatus using optical fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62186774A (en) * 1986-02-08 1987-08-15 Nichirei:Kk Thermal sterilization of food packed in sealed container and treating apparatus therefor

Also Published As

Publication number Publication date
JPS6339225B2 (en) 1988-08-04

Similar Documents

Publication Publication Date Title
US3892058A (en) Process for the preparation of high-temperature short-time sterilized packaged articles
Fakhouri et al. Temperature uniformity of microwave heated foods as influenced by product type and composition
Tang et al. Microwave heating in food processing
MX2007015945A (en) Process for improving shelf life of refrigerated foods.
James et al. Minimal processing of ready meals
CH684985A5 (en) Method for preparing and preserving cooked dishes under vacuum with controlled temperatures and cooking and cooling times
JPS581627A (en) Method of sterilizing sealed package
GB2121752A (en) Packaged sterilised crustacea
WO2007054726A1 (en) Thermal stabilization of packaged foodstuffs
Rosnes et al. Minimal heat processing applied in fish processing
JPS62158677A (en) Microwave heated cooked food
Tang et al. Microwave and radio frequency in sterilization and pasteurization applications
JP2004290094A (en) Method and system for food sterilization
JPS5826949B2 (en) How to read the book
JPS5843773A (en) Sterilization by means of microwaves
JPS602155A (en) Cooking of food thermally sterilized in sealed container
RU2680585C1 (en) Conservation method for prepared products and / or semi-finished products in packaging from multilayered films with barrier layer with opportunity of further heating
JPS59154946A (en) Preparation of seasoned food
Potter et al. Heat preservation and processing
KR960009904A (en) Instant drinking samgyetang and its manufacturing method
Yun et al. Storage stability and shelf life characteristics of Korean savory sauce products
KR20170084671A (en) Manufacturing Method and System for Instant Cooking Foods and Ingredients
JP5054591B2 (en) Method for judging the safety of cooked foods stored at refrigerated temperatures
Zhang Gas barrier properties of polymer packaging: Influence on food shelf life following microwave-assisted thermal sterilization
Ng et al. Retort pouch seafood