JPS5816163B2 - Manufacturing method of plastic optical fiber - Google Patents

Manufacturing method of plastic optical fiber

Info

Publication number
JPS5816163B2
JPS5816163B2 JP54009717A JP971779A JPS5816163B2 JP S5816163 B2 JPS5816163 B2 JP S5816163B2 JP 54009717 A JP54009717 A JP 54009717A JP 971779 A JP971779 A JP 971779A JP S5816163 B2 JPS5816163 B2 JP S5816163B2
Authority
JP
Japan
Prior art keywords
optical fiber
core
plastic optical
polymer
cladding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54009717A
Other languages
Japanese (ja)
Other versions
JPS55103504A (en
Inventor
茂 及川
道也 藤木
祐三 片山
潤一 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP54009717A priority Critical patent/JPS5816163B2/en
Publication of JPS55103504A publication Critical patent/JPS55103504A/en
Publication of JPS5816163B2 publication Critical patent/JPS5816163B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00663Production of light guides

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】 本発明はプラスチック光ファイバの製造方法に関する。[Detailed description of the invention] The present invention relates to a method of manufacturing a plastic optical fiber.

プラスチック光ファイバはコア部としての重合体及びク
ラッド部としてのこれより屈折率の低い重合体により構
成される。
A plastic optical fiber is composed of a polymer as a core portion and a polymer with a lower refractive index as a cladding portion.

そして従来プラスチック光ファイバの製造に当り、コア
材とじてポリスチレン(以下PSと略記する)又はポリ
メチルメタクリレート(以下PMMAと略記する)′等
の透明な重合体が使用され、又クラツド材としてこれよ
り屈折率の低い重合体、例えばコア材がPSである場合
にはPMMA等、コア材がPMMAである場合には含弗
素重合体が使用される。
Conventionally, in the production of plastic optical fibers, transparent polymers such as polystyrene (hereinafter abbreviated as PS) or polymethyl methacrylate (hereinafter abbreviated as PMMA) have been used as the core material, and transparent polymers such as polystyrene (hereinafter abbreviated as PMMA) have been used as the cladding material. A polymer with a low refractive index, for example, PMMA or the like is used when the core material is PS, and a fluorine-containing polymer is used when the core material is PMMA.

そしてファイバ化はクラツド材をコア材のコアファイバ
の形成と同時にコアファイバの被覆層を形成するように
二重押し出し成形(以下二重押し出し法という)するこ
とにより又は予め形成されたコアファイバ刈こコーティ
ング法により被覆することにより行なわれる。
Fiberization is achieved by double extrusion molding (hereinafter referred to as double extrusion method) of the clad material so as to form a core fiber coating layer at the same time as the formation of the core fiber of the core material, or by cutting the preformed core fiber. This is done by coating using a coating method.

ところで、現在入手できるプラスチック光ファイバの伝
送損失は最も優れた波長帯を選んでも約1dB/mすな
わち10771で1桁強度が低下する程度の特性であり
、特にファイバ化工程に注意して製造されたものでも0
.5dB/m程度である。
By the way, the transmission loss of currently available plastic optical fibers is about 1 dB/m, or 10771, even if the best wavelength band is selected, and the strength is reduced by one order of magnitude. Even things are 0
.. It is about 5 dB/m.

そこで本発明者等はその原因を知るために従来法につき
コア材及びクラツド材の製造からファイバ化に至る一連
の工程について多角的に検討したところ次の結果を知得
した。
In order to find out the cause of this, the present inventors conducted a multifaceted study on the series of steps from the production of the core material and cladding material to the production of fibers using the conventional method, and found the following results.

すなわち、従来のプラスチック光ファイバの製造におい
ては、一般にコア材及びクラツド材は懸濁重合法で合成
され、これをファイバ製造装置に供給していた。
That is, in the production of conventional plastic optical fibers, the core material and cladding material were generally synthesized by a suspension polymerization method, and then supplied to a fiber manufacturing apparatus.

懸濁重合法は工業的な高分子合成法としては純度の高い
重合体が得られる方法として一般に認識されているが、
多量の水を使用するため、この中に含まれる異物が重合
体中に混入し易く、又その脱水工程においても異物が混
入する可能性がある。
Suspension polymerization is generally recognized as an industrial polymer synthesis method that yields highly pure polymers.
Since a large amount of water is used, foreign substances contained therein are likely to be mixed into the polymer, and there is also a possibility that foreign substances may be mixed in during the dehydration process.

更に懸濁重合により得られた重合体はこれをコア材とし
てファイバ化するすなわち溶融防糸するためにペレット
化する工程を要し、しかも装置的にも重合体製造装置と
ファイバ製造装置とは分離されて位置するため、ペレッ
ト化工程及びファイバ製造装置への供給過程に異物が混
入したり、又空気により酸化される環境におかれる。
Furthermore, the polymer obtained by suspension polymerization requires a step of turning it into a fiber as a core material, that is, pelletizing it for melt-proofing, and in terms of equipment, the polymer manufacturing equipment and the fiber manufacturing equipment are separate. Because of this, the fibers are placed in an environment where foreign matter may be mixed in during the pelletizing process and the process of supplying the fibers to the fiber manufacturing equipment, and where they may be oxidized by air.

そしてこのような障害を除去すれば前記の原因の一部は
少なくとも解決されると考えられる。
It is thought that if such obstacles are removed, at least part of the above causes will be resolved.

本発明は前記の知得に基いてなされたものであり、その
目的は伝送損失の改善されたプラスチック光ファイバの
製造方法を提供することである。
The present invention has been made based on the above knowledge, and its purpose is to provide a method for manufacturing a plastic optical fiber with improved transmission loss.

本発明について概説すると、本発明のプラスチック光フ
ァイバの製造方法は少なくともコア形成用単量体を熱的
塊状重合に付し、続いて得られた重合体からのコアファ
イバの形成及びクラッド形成を連続して酸素の不在下で
行なうことを特徴とし、熱的塊状重合とは本明細書では
重合開始剤及び分子量調節剤等を使用することなく熱の
みで塊状重合を調節する重合方法をいう。
To summarize the present invention, the method for producing a plastic optical fiber of the present invention involves subjecting at least a core-forming monomer to thermal bulk polymerization, and then continuously forming a core fiber and a cladding from the obtained polymer. In this specification, thermal bulk polymerization refers to a polymerization method in which bulk polymerization is controlled only by heat without using a polymerization initiator, a molecular weight regulator, etc.

塊状重合法は単量体の蒸留、重合及び未反応単量体等の
低分子の除去を連続して密閉下、場合により窒素気流中
で行なう方法であり、したがって水及び酸素の不在下で
行なわれるので懸濁重合に伴う前記の異物の混入及び重
合体の酸化による障害は解決される。
The bulk polymerization method is a method in which distillation of monomers, polymerization, and removal of low molecules such as unreacted monomers are continuously carried out under closed conditions, sometimes in a nitrogen stream, and therefore, it is carried out in the absence of water and oxygen. Therefore, the problems caused by the contamination of foreign substances and the oxidation of the polymer caused by suspension polymerization can be solved.

そして伝送損失はコア部の重合体に主として基因するの
でコア形成用単量体の重合に塊状重合を適用すれば足り
、クラッド形成用単量体の重合に塊状重合を適用するこ
とは必ずしも必要でないことが認められた。
Since the transmission loss is mainly caused by the polymer in the core part, it is sufficient to apply bulk polymerization to the polymerization of the monomer for forming the core, and it is not necessarily necessary to apply bulk polymerization to the polymerization of the monomer for forming the cladding. This was recognized.

又PSをコア材として使用する場合、PSの連続塊状重
合は既に工業的に実施されている技術から明らかなよう
に、単量体スチレンは重合開始剤及び分子量調節剤等を
要することなく重合温度を調節するだけで任意の分子量
の重合体を生成することができるあて、極めて純重合体
が得られる。
Furthermore, when PS is used as a core material, continuous bulk polymerization of PS can be carried out at a high polymerization temperature without the need for a polymerization initiator or molecular weight regulator, as is clear from the technology that has already been implemented industrially. It is possible to produce a polymer of any molecular weight by simply adjusting the amount, and an extremely pure polymer can be obtained.

この場合重合系への酸素の混入を極力防止するために、
重合系装置全体を窒素雰囲気下におくことが望ましい。
In this case, in order to prevent oxygen from entering the polymerization system as much as possible,
It is desirable to place the entire polymerization system under a nitrogen atmosphere.

塊状重合によるコア材重合体は次に光ファイバのコア部
形成のために溶融紡糸されるが、本発明によればこの手
段も酸素不在下で行なわれる。
The bulk-polymerized core material polymer is then melt-spun to form the core of the optical fiber, and according to the invention, this procedure is also carried out in the absence of oxygen.

一般に重合体、その中でも特にPSは加熱により着色さ
れ易いとされているが、本発明者の実験によれば、かな
りの高温例えば250℃で1週間以上量しても着色は認
められなかった。
It is generally believed that polymers, especially PS, are easily colored by heating, but according to experiments conducted by the present inventors, no coloring was observed even when the polymer was kept at a considerably high temperature, for example, 250° C., for more than one week.

したがって酸素の不在下に溶融紡糸及びプラスチック光
ファイバに十分な強度を与えるために分子鎖をファイバ
の軸方向に配列させる延伸を行なえばコア部重合体の劣
化が避けられることは明らかである。
Therefore, it is clear that deterioration of the core polymer can be avoided by melt spinning in the absence of oxygen and by stretching the plastic optical fiber so that the molecular chains are aligned in the axial direction of the fiber in order to provide sufficient strength.

このために本発明においては塊状重合に引続いて酸素の
不在下にコアファイバの形成及びクラッド形成が行なわ
れる。
For this purpose, in the present invention, the bulk polymerization is followed by the formation of the core fiber and the formation of the cladding in the absence of oxygen.

クラツド材はコア材より屈折率が低い重合体であること
を要するが、極端に汚れていない限り、光ファイバの特
性に影響を与えないので通常のペレット又は粉末として
使用されてもよい。
The cladding material is required to be a polymer with a lower refractive index than the core material, but as long as it is not extremely contaminated it may be used in the form of ordinary pellets or powder as it does not affect the properties of the optical fiber.

そしてクラツド材の二重押し出し法又はコーティングに
よるクラッド形成をコアファイバの形成と同時に行ない
、これによりコアファイバの形成は延伸工程を含めてフ
ァイバ化操作において大気に触れることなく行なわれ、
異物の混入及び酸化が抑制されることなく行なわれ、異
物の混入及び酸化が抑制される。
The cladding is formed by double extrusion or coating of the cladding material at the same time as the core fiber is formed, so that the core fiber is formed without being exposed to the atmosphere during the fiberizing operation including the drawing process.
The contamination and oxidation of foreign matter are carried out without being suppressed, and the contamination and oxidation of foreign matter are suppressed.

二重押し出し法においてはコア材及びクラツド材の押出
成形機への供給速度と巻き取り速度の比を適当に選ぶこ
とにより適当な延伸比を与えることができる。
In the double extrusion method, an appropriate drawing ratio can be obtained by appropriately selecting the ratio between the feeding speed of the core material and the cladding material to the extruder and the winding speed.

次に本発明を実施例について更に詳細に説明するが、本
発明はこれによりなんら 定されるものではない。
Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited thereto in any way.

実施例 第1図は本実施例において使用した装置のブロック図で
あり、図中1は単量体だめ、2は蒸留器、3は単量体供
給速度調節弁、4は蒸留残査排出弁、5は冷却器、6は
冷却水入口、7は冷却水出口、8は真空ポンプ、9は精
製単量体だめ、10は重合器、11はスクリューコンベ
ア、12はモータ、13は重合体貯蔵タンク、14は多
数の細孔を有する紡糸孔、15は真空ポンプ、16はコ
ア材押し出し用スクリュ、17はモータ、18はクラッ
ド材押し出し用スクリュ、19はモータ、20はクラツ
ド材供給ホッパ、21は二重押し出しノズル、22は光
ファイバ、23は巻き取りロールである。
Example Figure 1 is a block diagram of the apparatus used in this example, in which 1 is a monomer reservoir, 2 is a distiller, 3 is a monomer supply rate control valve, and 4 is a distillation residue discharge valve. , 5 is a cooler, 6 is a cooling water inlet, 7 is a cooling water outlet, 8 is a vacuum pump, 9 is a purified monomer reservoir, 10 is a polymerization vessel, 11 is a screw conveyor, 12 is a motor, 13 is a polymer storage Tank, 14 is a spinning hole having a large number of pores, 15 is a vacuum pump, 16 is a core material extrusion screw, 17 is a motor, 18 is a cladding material extrusion screw, 19 is a motor, 20 is a cladding material supply hopper, 21 2 is a double extrusion nozzle, 22 is an optical fiber, and 23 is a winding roll.

この装置を使用してコア材としてPS、クラツド材とし
てPMMAより成るプラスチック光ファイバを製造した
Using this apparatus, a plastic optical fiber consisting of PS as the core material and PMMA as the cladding material was manufactured.

装置は最初窒素雰囲気下に維持され、スチレンを単量体
だめ1に貯え、単量体供給速度調節弁3により一定速度
で蒸留器2に供給し、常法により減圧蒸留して冷却器5
により凝縮して精製単量体だめ9に送った。
The apparatus is initially maintained under a nitrogen atmosphere, and styrene is stored in a monomer reservoir 1, supplied to a distiller 2 at a constant rate by a monomer supply rate control valve 3, and distilled under reduced pressure in a conventional manner to a cooler 5.
It was condensed and sent to purified monomer reservoir 9.

次に精製スチレンを温度110℃に維持された重合器1
0に送り、滞留時間8時間で予備重合し、更に170℃
に維持されたスクリューコンベア11中に送り滞留時間
3時間で重合を完了し分子量約180,000 (G、
P、C法による)のPSとし、紡糸孔14を通し、かつ
真空ポンプ15により排気されている重合体貯蔵タンク
13に送り未重合スチレン及び低分子量物を除去した。
Next, purified styrene was heated in a polymerization vessel 1 maintained at a temperature of 110°C.
0°C, prepolymerized with a residence time of 8 hours, and further heated to 170°C.
The polymerization was completed within 3 hours of feeding and residence time in the screw conveyor 11 maintained at
P, C method)) was passed through a spinning hole 14 and sent to a polymer storage tank 13 evacuated by a vacuum pump 15 to remove unpolymerized styrene and low molecular weight substances.

重合体貯蔵タンク13のPSを押し出し用スクリュ16
により押し出すと同時にクラツド材であるPMMAのペ
レットをホッパ20よりクラッド材押し出し用スクリュ
18に供給し、220℃に維持された二重押し出しノズ
ル21によりコアファイバをクラッドが被覆する状態で
コア材及びクラツド材を押し出して光ファイバ22を形
成すると共に引張り速度毎分5mの延伸を行なって巻き
取りロール23に巻き取った。
Screw 16 for pushing out PS of polymer storage tank 13
At the same time, PMMA pellets, which are the cladding material, are supplied from the hopper 20 to the cladding material extrusion screw 18, and the core material and cladding are extruded by the double extrusion nozzle 21 maintained at 220°C, with the core fiber covered with the cladding. The material was extruded to form an optical fiber 22, and at the same time, it was stretched at a pulling speed of 5 m/min and wound onto a winding roll 23.

得られた光ファイバはコア部属径1m、クラッド部の膜
厚200μmであった。
The obtained optical fiber had a core diameter of 1 m and a cladding thickness of 200 μm.

この光ファイバの伝送損失特性を第2図に示す。The transmission loss characteristics of this optical fiber are shown in FIG.

第2図から670nmに14 QdB/IaILの低損
失の窓があるコとが判る。
It can be seen from FIG. 2 that there is a low loss window of 14 QdB/IaIL at 670 nm.

以上の説明から明らかなように本発明によれば従来のプ
ラスチック光ファイバに比べて数分の1の低損失の光フ
ァイバを製造することができ、特に140dB/Iar
Lの損失の得られた6 70 nmの谷は、安価な赤色
LED(発光ダイオードによる)を光源として得られる
ので、経済性の優れた短距離光伝送システムを構成する
ことができる。
As is clear from the above description, according to the present invention, it is possible to manufacture an optical fiber with a loss that is several times lower than that of conventional plastic optical fibers, and in particular, it is possible to manufacture optical fibers with a loss of a fraction of that of conventional plastic optical fibers.
Since the 6 70 nm valley where the loss of L is obtained can be obtained using an inexpensive red LED (based on a light emitting diode) as a light source, an economical short-distance optical transmission system can be constructed.

更にプラスチック光ファイバは無機系光ファイバに比較
して大口径とすることができ光源との組合せ及び、ファ
イバ間の接続が容易になるという利点がある。
Furthermore, plastic optical fibers have the advantage that they can be made larger in diameter than inorganic optical fibers, making it easier to combine them with light sources and to connect fibers together.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施するに当り使用した製造装置のブ
ロック図、第2図は本発明の実施例により得られたプラ
スチック光ファイバの損失の沖淀結果を示すグラフであ
る。 1・・・・・・単量体だめ、2・・・・・・蒸留器、3
・・・・・・単量体供給速度調節弁、4・・・・・・蒸
留残有排出弁、50.。 ・・・冷却器、6・・・・・・冷却水入口、7・・・・
・・冷却水出口、8・・・・・・真空ポンプ、9・・・
・・・精製単量体だめ、10・・・・・・重合器、11
・・・・・・スクリューコンベア、12・・・・・・モ
ータ、13・・・・・・重合体貯蔵タンク、14・・・
・・・紡糸孔、15・・・・・・真空ポンプ、16・・
・・・・押し出し用スクリュ、17・・・・・・モータ
、18・・・・・・クラッド材押し出し用スクリュ、1
9・・・・・・モータ、20・・・・・・ホッパ、21
・・・・・・二重押し出しノズル、22・・・・・・光
ファイバ、23・・・・・・巻き取りロール。
FIG. 1 is a block diagram of a manufacturing apparatus used in carrying out the present invention, and FIG. 2 is a graph showing the loss results of a plastic optical fiber obtained in an embodiment of the present invention. 1... Monomer reservoir, 2... Distiller, 3
. . . Monomer supply rate control valve, 4 . . . Distillation residual discharge valve, 50. . ...Cooler, 6...Cooling water inlet, 7...
...Cooling water outlet, 8...Vacuum pump, 9...
... Purification monomer reservoir, 10 ... Polymerization vessel, 11
... Screw conveyor, 12 ... Motor, 13 ... Polymer storage tank, 14 ...
...Spinning hole, 15...Vacuum pump, 16...
... Screw for extrusion, 17 ... Motor, 18 ... Screw for extrusion of cladding material, 1
9...Motor, 20...Hopper, 21
...Double extrusion nozzle, 22 ... Optical fiber, 23 ... Winding roll.

Claims (1)

【特許請求の範囲】 1 少なくともコア形成用単量体を熱的塊状重合に付し
、続いて得られた重合体からのコアファイバの形成及び
クラッド形成を連続して酸素の不在下で行なうことを特
徴とするプラスチック光ファイバの製造方法。 2 クラッド形成をコアファイバの形成と共に二重押し
出し法により行なう特許請求の範囲第1項記載のプラス
チック光ファイバの製造方法。
[Claims] 1. Subjecting at least a core-forming monomer to thermal bulk polymerization, and then forming a core fiber from the obtained polymer and forming a cladding continuously in the absence of oxygen. A method for manufacturing a plastic optical fiber characterized by: 2. The method for manufacturing a plastic optical fiber according to claim 1, wherein the cladding is formed by a double extrusion method together with the formation of the core fiber.
JP54009717A 1979-02-01 1979-02-01 Manufacturing method of plastic optical fiber Expired JPS5816163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54009717A JPS5816163B2 (en) 1979-02-01 1979-02-01 Manufacturing method of plastic optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54009717A JPS5816163B2 (en) 1979-02-01 1979-02-01 Manufacturing method of plastic optical fiber

Publications (2)

Publication Number Publication Date
JPS55103504A JPS55103504A (en) 1980-08-07
JPS5816163B2 true JPS5816163B2 (en) 1983-03-30

Family

ID=11728020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54009717A Expired JPS5816163B2 (en) 1979-02-01 1979-02-01 Manufacturing method of plastic optical fiber

Country Status (1)

Country Link
JP (1) JPS5816163B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5784403A (en) * 1980-11-14 1982-05-26 Nippon Telegr & Teleph Corp <Ntt> Method and device for production of low loss plastic optical fiber
JPS5781205A (en) * 1980-11-11 1982-05-21 Nippon Telegr & Teleph Corp <Ntt> Low-loss plastic optical fiber and its production
JPS57168047U (en) * 1981-04-18 1982-10-22
JPS5831306A (en) * 1981-08-20 1983-02-24 Mitsubishi Rayon Co Ltd Production for plastic optical fiber
JPS58149003A (en) * 1982-03-01 1983-09-05 Nippon Telegr & Teleph Corp <Ntt> Production of low loss optical fiber of plastic
JPS59176704A (en) * 1983-03-25 1984-10-06 Sumitomo Electric Ind Ltd Method and device for manufacturing plastic optical fiber
JPS6145201A (en) * 1984-08-09 1986-03-05 Sumitomo Electric Ind Ltd Manufacture of plastic optical fiber
FR2796085B1 (en) * 1999-07-09 2001-10-05 Optectron Ind PROCESS AND INSTALLATION FOR THE MANUFACTURE OF AN OPTICAL FIBER

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5465555A (en) * 1977-10-14 1979-05-26 Du Pont Lowwdamping optical fibers entirely made of plastic

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5465555A (en) * 1977-10-14 1979-05-26 Du Pont Lowwdamping optical fibers entirely made of plastic

Also Published As

Publication number Publication date
JPS55103504A (en) 1980-08-07

Similar Documents

Publication Publication Date Title
US5891570A (en) Plastic optical fiber preform having a jacket layer
US5614253A (en) Plastic optical fiber preform, and process and apparatus for producing the same
JPS5816163B2 (en) Manufacturing method of plastic optical fiber
JPS62172307A (en) Optically transmittable plastic fiber
JPH0324641B2 (en)
JPS60147703A (en) Plastic optical fiber
JP2000053712A (en) Production of methyl methacrylate polymer and production of plastic optical fiber
CN1486835A (en) Continuous reaction and coextrusion process of preparing stepped plastic fiber
JPH0727928A (en) Production of plastic optical transmission body
US6787602B2 (en) Method and installation for making an optical fiber
KR100989295B1 (en) Plastic optical product, plastic optical fiber, apparatus for manufacturing plastic optical part, and method for manufacturing plastic optical part and plastic optical product
JPH10133036A (en) Multistep index type plastic optical fiber and its production
JP3269566B2 (en) Method for producing thermosetting polymer continuum
JPH0675125B2 (en) Manufacturing method for plastic optical fiber
EP0662620A1 (en) Production method and apparatus for plastic optical fiber base material
JPH0225481B2 (en)
JPH0225483B2 (en)
JPS6134503A (en) Plastic optical transmission body
JPH11153717A (en) Production of graded index optical fiber
JPS62144107A (en) Production of low-loss plastic optical fiber
JPS62147404A (en) Plastic optical fiber and its production
JPH06186441A (en) Production of distributed refractive index plastic light transmission body
JP2001064306A (en) Polymer and polymer mixture, and optical waveguide using them, optical fiber, optical fiber cable, plug- provided optical fiber cable, and lens using the same
JPH04124603A (en) Manufacture of low-loss plastic optical fiber
JPS6120907A (en) Production of optical fiber