JPS58161489A - Optical exchange circuit network - Google Patents

Optical exchange circuit network

Info

Publication number
JPS58161489A
JPS58161489A JP57043142A JP4314282A JPS58161489A JP S58161489 A JPS58161489 A JP S58161489A JP 57043142 A JP57043142 A JP 57043142A JP 4314282 A JP4314282 A JP 4314282A JP S58161489 A JPS58161489 A JP S58161489A
Authority
JP
Japan
Prior art keywords
optical
wavelength
exchange
signals
executed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57043142A
Other languages
Japanese (ja)
Inventor
Takehiko Yamaguchi
武彦 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57043142A priority Critical patent/JPS58161489A/en
Publication of JPS58161489A publication Critical patent/JPS58161489A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Use Of Switch Circuits For Exchanges And Methods Of Control Of Multiplex Exchanges (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To attain the optical exchange among optical signals with wavelength split multiplexing, by collecting signals of the same wavelength lambdai only, providing an optical spatial switch circuit Si switching the signals only, and arranging the switch circuit on he same exchange stage of the optical exchange circuit network. CONSTITUTION:Optical input signals of n-wave on the same optical path are separated at an optical demultiplexer device D spatially, outputs of the same wavelength lambdai are collected and the spatial exchange is executed among the outputs only. That is, the optical spatial switch function S is realized. The signal is led to the optical spatial switch S at an optical wavelength converting switch function LAMBDA and the exchange among different wavelengths is executed. The output light is led to an optical wavelength converter CONVi and the wavelength conversion is executed. The said processing is executed in the said spatial switch function S of further one stage after that, and transmitted to an output optical path as the optical wavelength multiplex signal of n-wave at an optical multiplexer M.

Description

【発明の詳細な説明】 (1)発明の分野 本発明は光交換機に間し、特に光交換機の通話スイッチ
回路網の構成に間する。
DETAILED DESCRIPTION OF THE INVENTION (1) Field of the Invention The present invention relates to optical exchanges, and particularly to the construction of a call switch network of an optical exchange.

(2)発明の背景 光ファ身バーによる光伝送技術の発達はめざましい。又
一方では各種光機能素子あるいは光集積回路の開発実用
化研究も内外において精力的に進められている。その結
果、光信号を直接交換する光交換機の出現に対する期待
も高まりつつある。
(2) Background of the Invention The development of optical transmission technology using optical fiber bars is remarkable. On the other hand, research on the development and practical application of various optical functional devices and optical integrated circuits is being vigorously pursued both domestically and internationally. As a result, expectations are increasing for the emergence of optical switching equipment that directly exchanges optical signals.

光−ファイバーを使用した多重伝送方式としては多モー
ドあるいは単一モードの光を利用した時分割ディジタル
多重伝送方式の開発実用化が主流であるが、一方ではn
個の相異なる波長大1.・・・λHの光源の出力を光合
波器で多重化し、これを1本の光ファイバーで伝送した
後、光分波器によって多重分離する波長分割多重伝送方
式の開発実用化も進められている。特に後者の波長分割
多重伝送゛方式は画像信号などの非常に広い帯域を有す
る信号をlチャネル1波対応の形でアナログのまま直接
強度変調なとのアナログ変調を行うか、原信号を−Hデ
ィジタル符号化し、これにより光をディジタル変調した
後、波長分割多重伝送する方式などに特に適すると考え
られている。
The mainstream of multiplex transmission systems using optical fibers is the development and practical application of time-division digital multiplex transmission systems that use multimode or single mode light, but on the other hand, n
Different wavelengths 1. ...The development and practical use of a wavelength division multiplexing transmission system is underway in which the output of a λH light source is multiplexed using an optical multiplexer, transmitted through a single optical fiber, and then demultiplexed using an optical demultiplexer. In particular, the latter wavelength-division multiplexing transmission method uses a signal with a very wide band such as an image signal to be directly modulated by intensity modulation in a form that supports 1 channel and 1 wave, or to convert the original signal to -H It is thought that this method is particularly suitable for a method in which light is digitally encoded, digitally modulated, and then transmitted using wavelength division multiplexing.

従来、このような波長分割多重方式に間する内外の各種
検討は主に多重伝送を対象としたもので、これを交換と
関連づけた研究などは見当らず全くの未開拓分野である
Conventionally, various studies at home and abroad regarding such wavelength division multiplexing systems have mainly focused on multiplex transmission, and there has been no research relating this to switching, making this a completely unexplored field.

(31発明の目的 本発明の目的は上記のように波長分割多重された光信号
相互間の光交換回路網を提供することにある。
(31 Object of the Invention The object of the present invention is to provide an optical switching network between wavelength division multiplexed optical signals as described above.

(4)発明の要点 本発明の光交換回路網は、互いに異なるN種類の光波長
λ1.入2.・・・、入、を混在スイッチングする光交
換回路網において、同一波長λ’b(L=1〜N)の信
号のみを集め、これらのみをスイッチングする光空間ス
イッチ回1m5L(’t=1〜N)を各波長対応にN群
設け、これらを光交換回路網の同−交換段に配置したも
のである。
(4) Key Points of the Invention The optical switching network of the present invention has N types of mutually different optical wavelengths λ1. Enter 2. . N groups are provided for each wavelength, and these are placed in the same switching stage of the optical switching network.

(51発明の実施例 以下、本発明を実施例にもとづき説明する。(51 Examples of inventions Hereinafter, the present invention will be explained based on examples.

第1図は本発明の第1の実施例を示すブロック図である
。図中、■1〜IgpOt〜OKはおのおのn波(λL
p入1p・・・入、)の光波長多重入力光ファイバーお
よび出力光フイイバーである。各光波長多重入力光ファ
イバー上のn波の光信号は各々光分波器りにてされlフ
ァイバー(l光路)1光信号の形で合計量nケの空間的
に分離された光信号として光空間スイッチSに導かれ、
ここで光路の空間的な乗り換え(交換)を行う。光空間
スイッチSからの合計量nケの光信号出力は再び各群n
ヶの光信号からなるm群の光信号群に区分けされる。こ
こで同一群のnヶの光信号は合計nヶの光波長変換器C
ON V ’L (L = 1〜N)に導かれる。光波
長変換器CON V Lは後述のように任意の光波長信
号を入力として受けると、これを波長入iの特定波長の
光信号に変換するものである。その結果、同一群のnヶ
の光信号はλ1・・・λへの相異る波長の光信号に変換
され、光合波器Mにてn波の光波長多重信号として出力
光ファイバーに送出される。
FIG. 1 is a block diagram showing a first embodiment of the present invention. In the figure, ■1~IgpOt~OK represents each n wave (λL
They are optical wavelength multiplexing input optical fibers and output optical fibers with p inputs, 1p...inputs, etc. The n-wave optical signals on each wavelength-multiplexed input optical fiber are each passed through an optical demultiplexer and are converted into a total of n spatially separated optical signals in the form of 1 fiber (1 optical path) 1 optical signal. Guided by space switch S,
Here, spatial switching (exchange) of optical paths is performed. The total amount of n optical signal outputs from the optical space switch S is again divided into each group n.
The signal is divided into m groups of optical signals each consisting of m optical signals. Here, n optical signals in the same group are transmitted through a total of n optical wavelength converters C.
ON V'L (L = 1 to N). As described later, the optical wavelength converter CON V L receives an arbitrary optical wavelength signal as input and converts it into an optical signal of a specific wavelength of wavelength i. As a result, the n optical signals of the same group are converted into optical signals of different wavelengths to λ1...λ, and are sent to the output optical fiber as an optical wavelength multiplexed signal of n waves by the optical multiplexer M. .

ここに、光分波器、光合波器等々の実現法は光技術関係
業者には衆知の技術でプリズム、回折格子、干渉フィル
タ等々で実現できる。一方、光空間スイッチについても
機械的な動作で光伝送路の切替を行う方式、 LLNb
03などの材料による方向性光結合器を光IC技術によ
り配列し、スイッチ・マトリックスを構成する方法など
が知られている。光波長変換器については、現状技術か
らみると、一番その実現が難かしい部分である。現状で
最も簡単な方法としては第2図(a)に示すように任意
波長光を受光する受光器PDで一旦電気信号に変換後、
これで再び特定波長の発光素子LDを駆動すればよい。
Here, optical demultiplexers, optical multiplexers, etc. can be implemented using techniques such as prisms, diffraction gratings, interference filters, etc., which are well known to those in the optical technology field. On the other hand, LLNb is a method for switching optical transmission paths using mechanical operation for optical space switches.
A method is known in which a switch matrix is constructed by arranging directional optical couplers made of materials such as 03 using optical IC technology. Optical wavelength converters are the most difficult part to realize based on current technology. The simplest method at present is as shown in Fig. 2(a), which uses a photoreceiver PD that receives light of any wavelength to convert it into an electrical signal, and then
Now, it is sufficient to drive the light emitting element LD of the specific wavelength again.

本方法は一部電気信号が介在するが光IC技術でPDお
よびLD部を同−IC内に形成してしまえば外見的には
光−光の直接変換素子としてみえ現状では最も実現しや
すい。
This method involves some electrical signals, but if the PD and LD parts are formed in the same IC using optical IC technology, it will look like a direct light-to-light conversion element and is currently the easiest to implement.

第2図(b)は現在研究が進められつつある方法で電気
信号を介在せず光波長を直接変換する方法である。具体
的には非線形光学結晶NOCに光入力信号λtと制御光
人力入Cを同時に加えるられる。
FIG. 2(b) shows a method that is currently being researched to directly convert optical wavelengths without intervening electrical signals. Specifically, the optical input signal λt and the control light human input C are simultaneously applied to the nonlinear optical crystal NOC.

第3図は本発明の第2の実施例を示すブロック図である
。さきの第1図に示した第1の実施例では全ての光信号
を空間的に分離し、光空間スイッチにより交換する方法
で、光空間スイッチのサイズが大きくなる欠点がある。
FIG. 3 is a block diagram showing a second embodiment of the invention. In the first embodiment shown in FIG. 1, all optical signals are spatially separated and exchanged using an optical space switch, which has the disadvantage that the size of the optical space switch becomes large.

しかるに、光交換の目的、すなわち任意の光入力を交換
することは、同一ファイバー(同一光路)上で波長多重
されたn液入1〜入、相互の波長的入れ換え(光波長変
換スイッチ機能)と、かつ異ファイバー(異光路)相互
間の空間的入れ換え(光空間スイッチ機能)とに分解で
きる。これは丁度時分割交換回路網がタイムスロット変
換スイッチ機能二時間スイッチ機能と異ハイウェイ相互
間の空間スイッチ機能とに分解され、これらを組合せる
ことにより各種時分割回路網を形成できることに対比し
て考えると容易に理解できる。
However, the purpose of optical exchange, that is, exchanging arbitrary optical inputs, is to exchange wavelength-multiplexed n-liquids 1 to 1 on the same fiber (same optical path) and to mutually exchange wavelengths (optical wavelength conversion switch function). , and spatial switching between different fibers (different optical paths) (optical space switch function). This is in contrast to the fact that a time division switching network is divided into a time slot conversion switch function, a two-time switch function, and a space switch function between different highways, and by combining these, various time division networks can be formed. It's easy to understand if you think about it.

第3図に示した例では同一ファイバー(光m>からのn
波の光入力信号煮さきと同様光分波器りて、1ケの空間
的に分離された信号に分離され、n×nの容量をもつ光
空間スイッチ4に導かれ異波長相互間の交換が行われる
。光空間スイッチΔのnケの出力光はさきの第2図で説
明したと同様の光波長変換器CON V L (L ”
 1〜N)に導かれる。その結果、同一ファイバー(光
路)で到来したn波の光信号相互間での入れ替え(交換
)がまず行われる。
In the example shown in Figure 3, n
The optical input signal of the wave is separated into one spatially separated signal by an optical demultiplexer, and is guided to an optical space switch 4 with a capacity of n×n to exchange signals of different wavelengths. will be held. The n output lights of the optical space switch Δ are connected to an optical wavelength converter CON V L (L ”
1 to N). As a result, the n-wave optical signals arriving through the same fiber (optical path) are first interchanged (exchanged).

即ち上述の光波長変換スイッチ機能へ(ラムダ)の実現
である。
That is, the above-mentioned optical wavelength conversion switch function (lambda) is realized.

次に人力光ファイバー(光U>相互間の入れ替えは各人
力光ファイバー(光路)対応の上述の光波長変換スイッ
チ部Aから、互いに等しい波長入りの光信号出力を集め
、これら相互間のみでの空間的交換を行う光空間スイッ
チStを各波長(入1・・・λ1)対応にn群設けるこ
とによって行われる。
Next, for the switching between human-powered optical fibers (light U>mutual), the optical signal outputs containing the same wavelength are collected from the above-mentioned optical wavelength conversion switch section A corresponding to each human-powered optical fiber (light path), and the spatial This is done by providing n groups of optical space switches St for switching, corresponding to each wavelength (input 1...λ1).

即ち、先に述べた光空間スイッチ機能$の実現である。In other words, the above-mentioned optical space switch function $ is realized.

光空間スイッチ部$からの光信号出力は各群nヶの相異
る波長の光信号となるよう合計量群の光信号群に区分け
される。即ち個々の光空間スイッチSしからのおのおの
nヶの波長λtの光信号出力はそれぞれ相異る両群に分
配され、その結果JIIケの各群はそれぞれ波長λl、
λ2.・・・入−のn波の空間的に分離された光信号と
なる。これを光合波器Mでn波の光波長多重信号として
出力光ファイバー(光路)に送出される。その結果、本
実施例によれば第1の実施例に較べ、より小形の光空間
スイッチをリンク接続することにより総交換点数のより
少ない光交換回路網が実現できる。
The optical signal output from the optical space switch unit $ is divided into optical signal groups of total quantity groups so that each group has n optical signals of different wavelengths. That is, the optical signal outputs of n wavelengths λt from each optical space switch S are distributed to two different groups, and as a result, each of the JII groups has wavelengths λl, λt, respectively.
λ2. . . . becomes a spatially separated optical signal of n incoming waves. This signal is sent to an output optical fiber (optical path) by an optical multiplexer M as an optical wavelength multiplexed signal of n waves. As a result, according to this embodiment, compared to the first embodiment, an optical switching network with a smaller total number of switching points can be realized by linking smaller optical space switches.

第4図は本発明の第3の実施例である。さきの第2の実
施例ではある人・出ファイバー(光路)の、かつある波
長の光信号相互を接続する径路は−・義的に唯一・つじ
か存在せず、この径路上で、かつA部と3部の間の光リ
ンクが他の通話で使用されていれば、接続できない。こ
の欠点を除去するには第4図の如く、さきの第2の実施
例(第3図)の光交換回路網構成において3部と光合波
器Mとを切開き、この間にもう1段A段を介挿すればよ
い。その結果、ある人・出力ファイバ(光n)のかつあ
る波長相互を接続する径路はn[lJIに増加し、接続
の自由度は大幅に向上し、いわゆる内部閉塞率のよい小
なる光交換回路網が得られる。
FIG. 4 shows a third embodiment of the invention. In the second embodiment mentioned above, there is literally only one path that connects optical signals of a certain wavelength in a certain output fiber (optical path), and on this path, and If the optical link between Part 3 and Part 3 is being used for another call, the connection will not be possible. In order to eliminate this drawback, as shown in FIG. 4, in the optical switching network configuration of the second embodiment (FIG. 3), the third section and the optical multiplexer M are cut out, and in the meantime, one stage A is added. Just insert a step. As a result, the number of paths connecting a certain wavelength of a certain output fiber (light n) increases to n[lJI, and the degree of freedom in connection is greatly improved, resulting in a so-called small optical switching circuit with a good internal blockage rate. You will get a net.

第2.第3の実施例はさきに説明した基本交換機能へと
$との鞘合せでみると、それぞれA部形、八−3−へ形
の光交換回路網構成と表現できる。これから容易に推論
できることは基本交換機能へ、Sをいろいろ絹合せるこ
とにより各種形式の光交換回路網が出来ることである。
Second. The third embodiment can be expressed as an A-shaped optical switching network configuration and an 8-3-shaped optical switching network configuration, respectively, when viewed in terms of the basic switching function described above and $. What can be easily inferred from this is that various types of optical switching circuit networks can be created by combining S in various ways to the basic switching function.

即ち例えばE−A−$形、$−$−A−$−1形、A−
$−5−A形・・・・・・等々である。第5図の第4の
実施例はこれ等の中の5−A−$形の光交換回路網を示
す。
That is, for example, E-A-$ type, $-$-A-$-1 type, A-
$-5-A type...etc. The fourth embodiment of FIG. 5 shows a 5-A-$ type optical switching network among these.

(6)発明の効果 本発明は以上説明したように光波長変換器C0NVと光
空間スイッチSとを単純に組合せることにより、あるい
は上述の光波長変換スイッチ機能Aと光空間スイッチ機
能$を組織的に組合せることにより波長分割多重された
光信号相互間の光交換回路網を実現できる効果がある。
(6) Effects of the Invention As explained above, the present invention can be achieved by simply combining the optical wavelength converter C0NV and the optical space switch S, or by organizing the above-mentioned optical wavelength conversion switch function A and optical space switch function $. By combining the two wavelength division multiplexed optical signals, it is possible to realize an optical switching network between wavelength division multiplexed optical signals.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の光交換回路網の第1の実施例を示すブ
ロック図、第2図(a)、(b)は第1の実施例におけ
る光波長変換器の一例を示す図、第3図から第5図はそ
れぞれ本発明の光交換回路網の第2〜第4の実施例を示
すブロック図である。 ■1〜l邑:光波長多重入力光ファイバー0+〜0邑:
光波長多重出力光ファイバーD:光分波器 S、λ:光空間スイッチ C0NV :光波長変換器 へ二光波長変換スイッチ機能 S:光空間スイッチ機能
FIG. 1 is a block diagram showing a first embodiment of an optical switching network according to the present invention, FIGS. 2(a) and 2(b) are diagrams showing an example of an optical wavelength converter in the first embodiment, and FIG. 3 to 5 are block diagrams showing second to fourth embodiments of the optical switching network of the present invention, respectively. ■1~l: Optical wavelength multiplexed input optical fiber 0+~0:
Optical wavelength multiplex output optical fiber D: Optical demultiplexer S, λ: Optical space switch C0NV: To optical wavelength converter Dual optical wavelength conversion switch function S: Optical space switch function

Claims (1)

【特許請求の範囲】[Claims] 互いに異なるN種類の光波長λ1.入t、・・・入−を
混在スイッチングする光交換回路網において、同一波長
λL (L=1〜N)の信号のみを集め、これらのみを
スイッチングする光空間スイッチ回路St(’t=1〜
N)が各波長対応にN群設けられ、かつ光交換回路網の
同−交換段に配置された交換段を少なくとも1つ有する
光交換回路網。
N types of mutually different optical wavelengths λ1. In an optical switching circuit network that performs mixed switching of inputs t, . . .
N) is provided in N groups corresponding to each wavelength, and has at least one switching stage arranged in the same switching stage of the optical switching network.
JP57043142A 1982-03-18 1982-03-18 Optical exchange circuit network Pending JPS58161489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57043142A JPS58161489A (en) 1982-03-18 1982-03-18 Optical exchange circuit network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57043142A JPS58161489A (en) 1982-03-18 1982-03-18 Optical exchange circuit network

Publications (1)

Publication Number Publication Date
JPS58161489A true JPS58161489A (en) 1983-09-26

Family

ID=12655580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57043142A Pending JPS58161489A (en) 1982-03-18 1982-03-18 Optical exchange circuit network

Country Status (1)

Country Link
JP (1) JPS58161489A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6330092A (en) * 1986-07-23 1988-02-08 Fujitsu Ltd Wavelength split type optical exchange channel
US5274487A (en) * 1989-12-29 1993-12-28 Fujitsu Limited Photonic switching system
JPH0713018U (en) * 1985-06-24 1995-03-03 エイ・ティ・アンド・ティ・コーポレーション Optical stirrer
US7127170B2 (en) 1990-11-30 2006-10-24 Hitachi, Ltd. Optical frequency division multiplexing network

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5516584A (en) * 1978-07-22 1980-02-05 Nippon Telegr & Teleph Corp <Ntt> Wavelength-division photo switching system
JPS5520044A (en) * 1978-07-29 1980-02-13 Nippon Telegr & Teleph Corp <Ntt> Wavelength divided light repeating exchange system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5516584A (en) * 1978-07-22 1980-02-05 Nippon Telegr & Teleph Corp <Ntt> Wavelength-division photo switching system
JPS5520044A (en) * 1978-07-29 1980-02-13 Nippon Telegr & Teleph Corp <Ntt> Wavelength divided light repeating exchange system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0713018U (en) * 1985-06-24 1995-03-03 エイ・ティ・アンド・ティ・コーポレーション Optical stirrer
JPS6330092A (en) * 1986-07-23 1988-02-08 Fujitsu Ltd Wavelength split type optical exchange channel
US5274487A (en) * 1989-12-29 1993-12-28 Fujitsu Limited Photonic switching system
US7127170B2 (en) 1990-11-30 2006-10-24 Hitachi, Ltd. Optical frequency division multiplexing network

Similar Documents

Publication Publication Date Title
US5712932A (en) Dynamically reconfigurable WDM optical communication systems with optical routing systems
JP3117018B2 (en) Network equipment
KR100825747B1 (en) Optical transmission node for mesh-type wdm optical network
US20030206743A1 (en) Cross connecting device and optical communication system
JP3863134B2 (en) Optical line distribution system
EP1434374B1 (en) Optical add-drop multiplexer for optical metropolitan networks
JPS58161489A (en) Optical exchange circuit network
JPS58161488A (en) Optical exchange circuit network
JP3668016B2 (en) Optical cross-connect device
JP2002315027A (en) Wavelength-group wavelength converter, and wavelength-group exchange using the same
JPS58161487A (en) Optical exchange circuit network
JP5622197B2 (en) Hierarchical optical path cross-connect equipment for optical path networks
JPH09326780A (en) Wavelength multiplex communication system and its method
JP3703018B2 (en) Star optical network
JPS6196893A (en) Compound type light exchange device
JPS58161486A (en) Optical exchange circuit network
JP3614320B2 (en) Wavelength multiple polymerization demultiplexing transmission system and wavelength division multiplexing transmission apparatus
JP2740334B2 (en) Wavelength conversion switch configuration method
JP2000206362A (en) OPTICAL ADM(Add/Drop Multiplexing) NODE DEVICE
JP3567117B2 (en) Optical network system
JP2004320527A (en) Optical wavelength division multiplexing network apparatus
JPH01187537A (en) Wavelength changing switch
JPH02223937A (en) Optical cross-connecting device
JP2003338790A (en) Optical switch
JPH0946364A (en) Network and device and method for connecting network