JPS58161301A - Moisture sensitive element - Google Patents

Moisture sensitive element

Info

Publication number
JPS58161301A
JPS58161301A JP57042811A JP4281182A JPS58161301A JP S58161301 A JPS58161301 A JP S58161301A JP 57042811 A JP57042811 A JP 57042811A JP 4281182 A JP4281182 A JP 4281182A JP S58161301 A JPS58161301 A JP S58161301A
Authority
JP
Japan
Prior art keywords
oxide
lithium
glass
moisture
ion conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57042811A
Other languages
Japanese (ja)
Other versions
JPS6355766B2 (en
Inventor
光雄 原田
宇野 茂樹
英明 平木
松永 潔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP57042811A priority Critical patent/JPS58161301A/en
Publication of JPS58161301A publication Critical patent/JPS58161301A/en
Publication of JPS6355766B2 publication Critical patent/JPS6355766B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Non-Adjustable Resistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は、ヒステリシスが小さくしかも使い易い信頼
性の高い非加熱クリーニング型の電気抵抗式の金属酸化
物を用いた感湿素子に関するものでおる。
[Detailed description of the invention] [Technical field to which the invention pertains] This invention relates to a non-heat cleaning type electrical resistance type moisture sensitive element using a metal oxide, which has low hysteresis, is easy to use, and has high reliability. .

〔従来技術とその問題点〕[Prior art and its problems]

温度、湿度の計測・制御は空調機器、乾燥機。 Temperature and humidity are measured and controlled by air conditioning equipment and dryers.

生産プロセス、品質管理などにとって重要でしかも省エ
ネルギ効果に大いに寄与する。温度センサについては、
すでにサーシスタなどで代表されるように精度、信頼性
にすぐれしかも安価なものが市販、使用されている。一
方、湿度センサについては、まだ完全なものはなく、セ
ンサに要求される条件、すなわち、回路組込みの容易な
方式でしかもOCから100Cまでの温度で0チから1
00優の広範な相対湿度を測定できるもの、ヒステリシ
スが小さいもの、高信頼性を有する素子の開発が望まれ
ている。従来回路組込みの容易な従来方式には、電気抵
抗式があり、その感湿材料には金属酸化物、有機高分子
、塩化リチウムが用いられている。また、それらの材料
形態には薄膜、厚膜、多孔質焼結体があり1相対湿度の
変化に伴う抵抗値変化は、第一図に示すように前者の2
つでは、アル電すのような 密な絶縁基板、多孔質絶縁
基板(実開昭5l−71181)又は金属酸化物と半導
性ガラスとからなる基板(特開昭49−18386.特
開昭49−20685)の上に設けられた一対の電極で
検出される。
It is important for production processes, quality control, etc., and also greatly contributes to energy saving effects. Regarding the temperature sensor,
There are already products on the market and in use that have excellent accuracy, reliability, and are inexpensive, such as sursistors. On the other hand, there is no perfect humidity sensor yet, and the conditions required for the sensor are such that it can be easily integrated into a circuit, and at temperatures from OC to 100C, from 0 to 1.
It is desired to develop an element that can measure relative humidity over a wide range of 0.000, has small hysteresis, and has high reliability. A conventional method that can be easily incorporated into a conventional circuit is an electric resistance type, in which metal oxides, organic polymers, and lithium chloride are used as moisture-sensitive materials. In addition, these material forms include thin films, thick films, and porous sintered bodies, and the change in resistance value due to changes in relative humidity is as shown in Figure 1.
In this case, dense insulating substrates such as Aldens, porous insulating substrates (Japanese Patent Laid-Open No. 51-71181), or substrates made of metal oxides and semiconducting glass (Japanese Patent Laid-open No. 49-18386; 49-20685)).

一方多孔質焼結体では、この焼結体をはさんで一対の電
極が取りつけられる。
On the other hand, in the case of a porous sintered body, a pair of electrodes are attached across the sintered body.

高分子材料を用いたものは、耐熱性に問題があり、例え
ば80C以上で長期使用中に抵抗値が上昇し、劣化する
ため、その使用温度範囲が限定される。
Those using polymeric materials have a problem with heat resistance, for example, the resistance value increases and deteriorates during long-term use at temperatures above 80 C, so the temperature range in which they can be used is limited.

また塩化リチウム材料を用いたものでは、その精度は大
変優れているが、高湿下で長期間放置により塩化リチウ
ムが流出し特性の変化が生ずる。
Furthermore, products using lithium chloride materials have excellent accuracy, but if left in high humidity for a long period of time, lithium chloride will flow out and the characteristics will change.

金属酸化物材料を用いたものでは、耐熱性に優れている
が、高抵抗又は長期信頼性に欠ける等の欠点をもつ。さ
らに、これらの素子においては、湿度特性測定時のヒス
テリシスが大きく、これは精度の低下の原因となってい
た。
Those using metal oxide materials have excellent heat resistance, but have drawbacks such as high resistance and lack of long-term reliability. Furthermore, these elements have large hysteresis when measuring humidity characteristics, which causes a decrease in accuracy.

〔発明の目的〕[Purpose of the invention]

この発明は、上述した従来感湿素子の欠点を改良したも
のであり特にヒステリシスを低減させ、感湿素子の精度
を向上させしかも使いやすい低抵抗値で回路設計を容易
にする事ができる感湿素子を提供する事を目的とする。
This invention improves the above-mentioned drawbacks of the conventional humidity sensing element, and in particular reduces hysteresis, improves the accuracy of the humidity sensing element, and provides easy-to-use low resistance values that facilitate circuit design. The purpose is to provide devices.

〔発明の概要〕[Summary of the invention]

本発明は平板状感湿素体表面に一対の電極が設けられた
感湿素子において、前記感湿素体が多孔質金属酸化物焼
結体及びこの焼結体の結晶粒子表面に被嶺されたアルカ
リイオン導電性ガラスからなる感湿素子である。
The present invention provides a humidity sensing element in which a pair of electrodes are provided on the surface of a flat plate-like humidity sensing element, wherein the humidity sensing element is covered with a porous metal oxide sintered body and the surface of crystal grains of this sintered body. This is a moisture-sensitive element made of alkali ion conductive glass.

つまり本発明においては、高湿下でも安定なアルカリイ
オン導電性ガラスを用い通常のセラミック技術を用いて
高温溶融処理行うことによりこれを多孔質金属酸化物焼
結体に均一に分散させて、結晶粒子を被覆させるために
最適な感湿特性が得られるものである。この感湿素子の
特性は30%RJ(〜90饅冊の湿度領域で1MΩ以下
4にΩ以上と使いやすい抵抗値でしかも応答性も良く、
高湿下でも劣下はなく長期にわたって安定に動作し信頼
性の高いものである。
In other words, in the present invention, an alkali ion conductive glass that is stable even under high humidity is used, and is uniformly dispersed in a porous metal oxide sintered body by performing a high temperature melting process using ordinary ceramic technology. Optimum moisture sensitivity properties are obtained for coating the particles. The characteristics of this humidity sensing element are 30% RJ (up to 90% RJ), a resistance value of less than 1MΩ and 4 to more than Ω, which is easy to use, and has good responsiveness.
There is no deterioration even under high humidity, and it operates stably over a long period of time and is highly reliable.

なお本発明におけるアルカリイオン導電性ガラスとして
は、リチウムイオン導電性ガラス、ナトリウムイオン導
電性ガラス等を用いる事が可能であり、実用上はリチウ
ムイオン導電性ガラスとして、酸化リチウム−酸化ホウ
素−塩化リチウムガラス、酸化リチウム−塩化リチウム
−五酸化リンガラス、酸化リチウム−フッ化リチウム−
酸化ホウ素ガラス、酸化リチウム−酸化ゲルマニウム−
五酸化バナジウムガ2へおよび酸化リチウム−五酸化バ
ナジウムガラス、酸化リチウム−塩化リチウム−酸化ホ
ウ素−酸化アルミニウムガラス、ヨク化リチウムーリン
酸リンチウムガラス、臭化リチウム−リン酸リチウムガ
ラス、塩化リチウム−リン酸リチウムガラス、およびリ
ン酸リチウム−硫酸リチウムガラスの少なくとも1種を
、またナトリラムイオン導電性ガラスとして酸化ナトリ
ウム−酸化アルミニウムー五酸化リンガラスを用いる事
が好ましい。
In addition, as the alkali ion conductive glass in the present invention, lithium ion conductive glass, sodium ion conductive glass, etc. can be used.In practice, lithium ion conductive glass, lithium oxide-boron oxide-lithium chloride, etc. can be used. Glass, lithium oxide - lithium chloride - phosphorus pentoxide glass, lithium oxide - lithium fluoride -
Boron oxide glass, lithium oxide - germanium oxide -
Vanadium pentoxide glass 2 and lithium oxide - vanadium pentoxide glass, lithium oxide - lithium chloride - boron oxide - aluminum oxide glass, lithium iocide - lithium phosphate glass, lithium bromide - lithium phosphate glass, lithium chloride - phosphoric acid It is preferable to use at least one of lithium glass and lithium phosphate-lithium sulfate glass, and sodium oxide-aluminum oxide-phosphorus pentoxide glass as the sodium ion conductive glass.

さらに本発明における多孔質金属酸化物焼結体としては
、高融点金属酸化物で本発明で用いるアルカリイオン導
電性ガラスが前記金属酸化物の結晶粒子表面を被覆する
程度の低粘性になる程度の温度で焼成、加熱処理した場
合に前記金属酸化物からなる焼結体が多孔質となるもの
、特にその多孔質の気孔率が5〜40チとなる事が好ま
しい。
Furthermore, the porous metal oxide sintered body in the present invention is a high melting point metal oxide having a low viscosity such that the alkali ion conductive glass used in the present invention coats the crystal particle surface of the metal oxide. It is preferable that the sintered body made of the metal oxide becomes porous when fired and heat-treated at a high temperature, and particularly that the porosity of the sintered body is 5 to 40 cm.

まだ上記結晶粒径は1μm程度とする事が好ましい。Still, it is preferable that the crystal grain size is about 1 μm.

なお上記多孔質金属酸化物焼結体として具体的には酸化
アルミニウム、酸化マグネシウム、酸化ジルコニウム、
°酸化チタン、酸化クロム、酸化スズ、酸化マグネシウ
ム−酸化アルミニウムスピネル、酸化マグネシウム−酸
化クロムスピネル、酸化亜鉛−酸化クロムスピネル、酸
化亜鉛−酸化チタンスピネル、酸化亜鉛−酸化チタン−
酸化クロム系化合中を用いる事が好ましい。
In addition, specific examples of the porous metal oxide sintered body include aluminum oxide, magnesium oxide, zirconium oxide,
°Titanium oxide, chromium oxide, tin oxide, magnesium oxide-aluminum oxide spinel, magnesium oxide-chromium oxide spinel, zinc oxide-chromium oxide spinel, zinc oxide-titanium oxide spinel, zinc oxide-titanium oxide-
It is preferable to use a chromium oxide compound.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を具体的実施例により説明する。 The present invention will be explained below using specific examples.

(実施例1) 多孔質金属酸化物として酸化アルミニウム、イオン導電
性ガラスとしてL1□()−B、O,−L i CI系
ガラスからなる基板を用いた感湿素子を作製した。
(Example 1) A moisture-sensitive element was fabricated using a substrate made of aluminum oxide as a porous metal oxide and L1□()-B,O,-LiCI-based glass as an ion-conductive glass.

25mole %のLl、Oと58mo l e%のB
、0.と17mole%(DLiC6からなる配合組成
(D Li、0−B2O,LiCJ系リチウリチウムイ
オン導電性ガラスした。Lt2CO3゜l〜Ox、Li
(J試薬を上述の組成比になるように秤量し、混合した
後、白金ルツボに入れ電気炉を用いて5ooC,ao分
間溶融した。その後、鉄板上に流し出してガラス板とし
だ。ガラス板は粗粉砕後、アルミナボールミルで1昼夜
アセトン溶液を用いて湿式粉砕を行った。この時のガラ
スの平均粒径は2μmであった。こうして得られたリチ
ウムイオン導電性ガラス粉末を、5wt%の割合で酸化
アルミニウム粉末に加え、混合した。混合物に1wt%
のPYA溶液を加え金型プレスを用いて直径1α騙。
25 mole% Ll, O and 58 mole% B
,0. and 17 mole% (DLiC6 (D Li, 0-B2O, LiCJ-based lithium ion conductive glass. Lt2CO3゜l~Ox, Li
(After weighing and mixing the J reagent so that it has the above composition ratio, it was placed in a platinum crucible and melted for 500C, ao minutes using an electric furnace.Then, it was poured onto an iron plate to form a glass plate.Glass plate After coarse grinding, wet grinding was carried out in an alumina ball mill using an acetone solution for one day and night.The average particle size of the glass at this time was 2 μm.The lithium ion conductive glass powder thus obtained was It was added to the aluminum oxide powder at a ratio of 1 wt% to the mixture and mixed.
Add PYA solution and mold to a diameter of 1α using a mold press.

厚さ1mの円板を成型し、これらを第1表に示すような
各温度で焼成した。得られた焼成体の気孔率は水銀ポロ
シメータの測定によれば3〜38チであった。なお、4
3チの気孔率をもつもの(A−1)は強度が非常に弱く
体積法により、気孔率を算出した。このように気孔率が
40チ以上になると、その強度は非常に弱くなり、実用
的でない。
Discs with a thickness of 1 m were molded and fired at various temperatures as shown in Table 1. The porosity of the obtained fired body was 3 to 38 cm as measured by a mercury porosimeter. In addition, 4
The material with a porosity of 3 (A-1) had very weak strength, and its porosity was calculated by the volume method. When the porosity exceeds 40 inches, the strength becomes extremely weak and is not practical.

第1表 次にこれらの焼成体を0.251+IIIの厚さまで研
磨し、洗浄、乾燥後、これを基板として片面に第1図に
示すような一対のくし型状酸化ルテニウム電極を印刷、
焼付けた。ここで、気孔率が3チと、非常に小さいもの
(A−7)では、くシ型電極の一部に変形、断線がみら
れた。これは、電極材に接合材として含まれているガラ
スフリットと基板中のイオン導電性ガラスが一部反応し
電極部を砕壊したものと思われる。このように気孔率が
5−以下になると電極の正常な焼付けが困難となり実用
的でない。比較のため、イオン導電性ガラスを含まない
試料すなわち酸化アルミニウム粉末を1450Cで焼成
して得られた気孔率が21−の焼成体にくし型酸化ルテ
ニウム電極を焼付けた感湿素子(A−8)を試作した。
Table 1 Next, these fired bodies were polished to a thickness of 0.251+III, washed and dried, and then used as a substrate with a pair of comb-shaped ruthenium oxide electrodes as shown in Figure 1 printed on one side.
Burnt. Here, in the case (A-7) with a very small porosity of 3, deformation and disconnection were observed in a part of the comb-shaped electrode. This seems to be because the glass frit included as a bonding material in the electrode material partially reacted with the ion conductive glass in the substrate, causing the electrode part to shatter. If the porosity is less than 5, it will be difficult to bake the electrode properly, making it impractical. For comparison, a moisture-sensitive element (A-8) was prepared by baking a comb-shaped ruthenium oxide electrode on a sample with a porosity of 21- obtained by baking aluminum oxide powder at 1450C, which does not contain ion-conductive glass. We made a prototype.

又A−4の焼成体の両面に円板状の酸化ルテニウム電極
を焼付けたバルク型感湿素子(A−9)も試作した。
We also prototyped a bulk type moisture-sensitive element (A-9) in which disk-shaped ruthenium oxide electrodes were baked on both sides of the fired body of A-4.

これらの試料を恒温恒湿槽に入れ、感湿特性を測定した
。25′Cの温度のもとで、30%→50チ→70チ→
90q6と順次高温にして、次に90チ→70q6→5
0チ→30チと低湿へもどし、各湿度で素子の抵抗値を
測定した。イオン導電性ガラスを含まない多孔質酸化ア
ルミニウムだけからなる素子(A −s)では、30.
50.70%で20MΩ以上、90チで5.3MΩと非
常に高抵抗で、実用的でない。A−4,A−9の素子の
感湿特性を第2図に示す。イオン導電性ガラスの被覆は
素子抵抗を大幅に低下させることがわかる。ヒステリシ
スは50チ付近で最大でsb、A−4では3俤、A−9
では5チと、くし型電極を片面に取付けたものではヒス
テリシスが小さくなっている。第2表に、他の素子の3
0%、90q6での抵抗値、ヒステリシスを示す6゜ 第2表 これらの素子を40U 901RHの極限高湿下に3チ
月間放置した所、+8%aH以内の変動でおさまってい
た。この素子を次に通常の湿度ず囲気に放置すると1週
間後には特性は初期値にもどり、常温、常湿用として十
分実用に耐える。
These samples were placed in a constant temperature and humidity chamber, and their moisture sensitivity characteristics were measured. At a temperature of 25'C, 30% → 50 inches → 70 inches →
Increase the temperature to 90q6, then 90chi → 70q6 → 5
The humidity was returned to low from 0 to 30, and the resistance value of the element was measured at each humidity. In the element (A-s) consisting only of porous aluminum oxide without ion-conductive glass, 30.
50.70% has a resistance of 20MΩ or more, and 90chi has a resistance of 5.3MΩ, which is extremely high and is not practical. The moisture sensitivity characteristics of the devices A-4 and A-9 are shown in FIG. It can be seen that the ion-conductive glass coating significantly reduces the device resistance. The maximum hysteresis is sb around 50 inches, 3 in A-4, and 3 in A-9.
The hysteresis is smaller in the 5-chi type, which has a comb-shaped electrode attached to one side. Table 2 shows 3 of the other elements.
Table 2 shows the resistance value and hysteresis at 0% and 90q6.When these elements were left in an extremely high humidity environment of 40U 901RH for 3 months, the fluctuations were within +8%aH. When this element is then left in an environment without normal humidity, the characteristics return to their initial values after one week, and are sufficiently durable for practical use at room temperature and humidity.

(実施例2) he、o3粉末に1w4%のPVAを加え十分混合した
後、lto吋侃の圧力で直径15咽、厚さ1關の円板を
成盤し、その後1450Cで1時間の焼成を行った。
(Example 2) After adding 1w4% PVA to the he, o3 powder and mixing thoroughly, a disk with a diameter of 15 mm and a thickness of 1 mm was formed with a pressure of 1 to 3000 m, followed by firing at 1450 C for 1 hour. I did it.

得られた焼成体の気孔率は21チであった。この多孔質
焼成体の厚さを0.51g1lfiで研磨して得られた
基板の一面に実施例1と同様にくし型状酸化ルテニウム
電極を焼付けた。次に実施例1で試作したLIRO−B
、O,−LlQ系イオン導電性ガラス粉末にエチルセル
ロースとα−テレビノールのi合液t−バインダとして
加え、十分混練してペーストを作成した。このガラスペ
ーストを基板上の電極有効面積に印刷し、乾燥後、10
00Cで30分の加熱処理を行った。
The porosity of the obtained fired body was 21 inches. As in Example 1, a comb-shaped ruthenium oxide electrode was baked on one surface of the substrate obtained by polishing the porous fired body to a thickness of 0.51 g1lfi. Next, LIRO-B prototyped in Example 1
, O, -LlQ-based ion conductive glass powder was added as a t-binder of an i-mixture of ethyl cellulose and α-televinol, and thoroughly kneaded to prepare a paste. This glass paste was printed on the electrode effective area on the substrate, and after drying,
Heat treatment was performed at 00C for 30 minutes.

このようにして得られた感湿素子では、イオン導電性ガ
ラスは完全に溶融して、多孔質届、0.基板の気孔を通
って内部へ均一に分散し、届208粒子を被覆し1.!
種形状には何んら異常がなかった。
In the moisture-sensitive element thus obtained, the ion conductive glass is completely melted and has a porous structure of 0. 1. Distribute uniformly into the interior through the pores of the substrate and coat the delivered 208 particles. !
There was no abnormality in the shape of the seeds.

比較のために、市販 密なA#20.基板を用いて、同
様な方法で試作をした所、電極とイオン導電性ガラスが
反応して電極が一部破損して、使用不可能でめった。第
3図に感湿特性を示す。ヒステリシスは2チでめった。
For comparison, commercially available dense A#20. When we tried to make a prototype using a similar method using a substrate, the electrode and ion-conductive glass reacted, resulting in part of the electrode being damaged, making it unusable. Figure 3 shows the moisture sensitivity characteristics. Hysteresis was rare on 2nd hand.

(実施例3) 40mo 1 e%のZnOと50mole%のTie
、と10mole%のCr、0.粉末を混合、成形、1
aooCで焼成して気孔率が21チの多孔質焼成基板を
試作した。厚さ5Uに研磨した後、実施例2と同様に酸
化ルテニウム電極を焼付けた。第3表に示す組成のイオ
ン導電性ガラスを5oot:”〜1000r’の加熱に
より作成し、実施例2と同様に多孔質基板上に印刷し、
その後1000Cで加熱処理を行った。、こうして得ら
れた素子の30.904での抵抗値、ヒステリシスを第
4表にまとめに示す。B−11の試料にみられるよウニ
ナトリウムイオン導電性ガラスを用いた場合でも同様な
効果が得られた。
(Example 3) 40 mo 1 e% ZnO and 50 mole% Tie
, and 10 mole% Cr, 0. Mixing powder, molding, 1
A porous fired substrate with a porosity of 21 cm was produced by firing with aooC. After polishing to a thickness of 5U, a ruthenium oxide electrode was baked in the same manner as in Example 2. An ion conductive glass having the composition shown in Table 3 was prepared by heating at 5oot:'' to 1000r', and printed on a porous substrate in the same manner as in Example 2.
Thereafter, heat treatment was performed at 1000C. The resistance value and hysteresis at 30.904 of the thus obtained element are summarized in Table 4. A similar effect was obtained even when a uni-sodium ion conductive glass was used, as seen in sample B-11.

以千仔、U 第4表 実施例2.3では、多孔質金属酸化物基板として、)h
J3@OH、ZnO’rlo、  Cr20z系化合物
を用い九が、1200〜1600Cノ温度で焼成したM
@A、g、0. 。
Ichizai, U In Table 4 Example 2.3, as a porous metal oxide substrate, )h
M that was fired at a temperature of 1200 to 1600C using J3@OH, ZnO'rlo, and Cr20z-based compounds
@A, g, 0. .

Mli’0. Zr01 、 Cr2O,、8110!
 、 TiO2、Mpr204 、 ZnCr104 
Mli'0. Zr01, Cr2O,,8110!
, TiO2, Mpr204, ZnCr104
.

Z nT l@04多孔質基板を用い、実施例2,3と
同様な製法でヒステリシスが2〜3チの感湿素子が得ら
れた。感湿素子の長期信頼性を向上させるために、多孔
質焼成体の粒子をイオン導電性ガラスで完全に被覆する
必要がある。このために、ガラスを1000C以上の温
度で処理し、その粘性を十分に下げねばならない。一方
、多孔質基板は、この温度で5〜40チの気孔率をもち
、融溶ガラスを吸収できることが必要である。基板材料
としてこのような条件を満す高融点化合物でしかもその
粒子径が1μm程度の均一なものが望ましい。
A moisture sensitive element with a hysteresis of 2 to 3 inches was obtained using a Z nT l@04 porous substrate and the same manufacturing method as in Examples 2 and 3. In order to improve the long-term reliability of the moisture-sensitive element, it is necessary to completely coat the particles of the porous fired body with ion-conductive glass. For this purpose, the glass must be treated at a temperature of 1000C or higher to sufficiently reduce its viscosity. On the other hand, the porous substrate needs to have a porosity of 5 to 40 inches at this temperature and be able to absorb the molten glass. It is desirable that the substrate material be a high melting point compound that satisfies these conditions and has uniform particle diameters of about 1 μm.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に用いる感湿素子の上面図、第
2図および第3図は本発明に係る実施例の感湿素子で得
られる特性を示す曲線図。 1、・・・感湿素体、 2.3・・・電極、 4.5・・・リード。 代理人 弁理士 則 近・憲 佑 (ほか1名)第  
1  図 第  2  図 −
FIG. 1 is a top view of a moisture-sensitive element used in an example of the present invention, and FIGS. 2 and 3 are curve diagrams showing characteristics obtained with the humidity-sensitive element of an example of the present invention. 1. Moisture sensitive element body, 2.3... Electrode, 4.5... Lead. Agent Patent Attorney Kensuke Chika (and 1 other person) No.
1 Figure 2-

Claims (1)

【特許請求の範囲】 (1)平板状感湿素体表面に一対の電極が設けられた感
湿素子において、前記感湿素体が多孔質金属酸化物焼結
体およびこの焼結体の結晶粒子表面に被覆されたアルカ
リイオン導電性ガラスからなる事を特徴とする感湿素子
。 (2、特許請求の範囲第1項又は第2項において感湿素
体の気孔率が5〜40%である事を特徴とする感湿素子
、 (3)%許請求の範囲第1項、第2項又は第3項におい
て、アルカリイオン導電性ガラスとしてリチウムイオン
導電性ガラス、ナトリウムイオン導電性ガラスの少なく
とも1種を用いた事を特徴とする感湿素子。 (4)%許請求の範囲第4項においてリチウムイオン導
電性ガラスとして酸化リチウム−酸化ホウ素−塩化リチ
ウムガラス、酸化リチウム−塩化リチウム−五酸化リン
ガラス、酸化リチウム−フッ化リチウム−酸化ホウ素ガ
ラス、酸化リチウム−酸化ゲルマニウム−五酸化バナジ
ウムガラス、酸化リチウム−五酸化バナジウムガラス、
酸化リチウム−塩化リチウム−酸化ホウ素−酸化アルミ
ニウムガラス、ヨウ化リチウム−リン酸リチウムガラス
、臭化リチウム−リン酸リチウムガラス、塩化リチウム
ーリン酸リチウムガラス、およびリン酸リチウム−硫酸
リチウムガラスの少なくとも1種を、ナトリウムイオン
導電性ガラスとして酸化ナトリウム−酸化アルミニウム
ー五酸化リンガラスを用いた事を特徴とする感湿素子。 (5)特許請求の範囲第1項において、多孔質金属酸化
物焼結体として酸化アルミニウム、酸化マグネシウム、
酸化ジルコニウム、酸化チタン、酸化クロム、酸化スズ
、酸化マグネシウム−酸化アルミニウムスピネル、酸化
マグネシウム−酸化クロムスヒネル、酸化亜鉛−酸化ク
ロムスピネル。 酸化亜鉛−酸化チタンスピネル、亜化亜鉛−酸化チタン
−酸化クロム系化合物を用いた事を特徴とする感湿素子
[Scope of Claims] (1) A humidity sensing element in which a pair of electrodes is provided on the surface of a flat moisture sensing element, wherein the humidity sensing element is a porous metal oxide sintered body and crystals of this sintered body. A moisture sensing element characterized by comprising alkali ion conductive glass coated on the surface of particles. (2. A moisture-sensitive element according to claim 1 or 2, characterized in that the porosity of the moisture-sensitive element body is 5 to 40%; (3) % claim 1; The moisture sensing element according to claim 2 or 3, characterized in that at least one of lithium ion conductive glass and sodium ion conductive glass is used as the alkali ion conductive glass. In Section 4, the lithium ion conductive glasses include lithium oxide-boron oxide-lithium chloride glass, lithium oxide-lithium chloride-phosphorus pentoxide glass, lithium oxide-lithium fluoride-boron oxide glass, and lithium oxide-germanium oxide-vanadium pentoxide glass. Glass, lithium oxide-vanadium pentoxide glass,
At least one of lithium oxide-lithium chloride-boron oxide-aluminum oxide glass, lithium iodide-lithium phosphate glass, lithium bromide-lithium phosphate glass, lithium chloride-lithium phosphate glass, and lithium phosphate-lithium sulfate glass. , a moisture sensing element characterized in that sodium oxide-aluminum oxide-phosphorus pentoxide glass is used as the sodium ion conductive glass. (5) In claim 1, the porous metal oxide sintered body includes aluminum oxide, magnesium oxide,
Zirconium oxide, titanium oxide, chromium oxide, tin oxide, magnesium oxide-aluminum oxide spinel, magnesium oxide-chromium oxide spinel, zinc oxide-chromium oxide spinel. A moisture-sensitive element characterized by using a zinc oxide-titanium oxide spinel or a zinc suboxide-titanium oxide-chromium oxide based compound.
JP57042811A 1982-03-19 1982-03-19 Moisture sensitive element Granted JPS58161301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57042811A JPS58161301A (en) 1982-03-19 1982-03-19 Moisture sensitive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57042811A JPS58161301A (en) 1982-03-19 1982-03-19 Moisture sensitive element

Publications (2)

Publication Number Publication Date
JPS58161301A true JPS58161301A (en) 1983-09-24
JPS6355766B2 JPS6355766B2 (en) 1988-11-04

Family

ID=12646332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57042811A Granted JPS58161301A (en) 1982-03-19 1982-03-19 Moisture sensitive element

Country Status (1)

Country Link
JP (1) JPS58161301A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005017285A (en) * 2003-05-30 2005-01-20 Ngk Spark Plug Co Ltd Humidity sensor, and method of using humidity sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005017285A (en) * 2003-05-30 2005-01-20 Ngk Spark Plug Co Ltd Humidity sensor, and method of using humidity sensor

Also Published As

Publication number Publication date
JPS6355766B2 (en) 1988-11-04

Similar Documents

Publication Publication Date Title
JPS58161301A (en) Moisture sensitive element
JPS5947703A (en) Moisture sensitive element
EP0110387A2 (en) Humidity-sensitive element and process for producing the same
JPS61242927A (en) Production of moisture responsive sintered material of glass powder
JPS5837901A (en) Moisture sensitive element
JPS622681B2 (en)
JPS6390101A (en) Humidity sensor and manufacture of the same
JPS6351361B2 (en)
JPS6351362B2 (en)
JPS5945964A (en) Ceramic resistor material
JPS59231442A (en) Oxygen sensor and manufacture thereof
JPS59147402A (en) Moisture sensitive element and method of producing same
JPS6349882B2 (en)
KR920009164B1 (en) Making method for resistor materials
JPS5999702A (en) Moisture sensitive element
JPS6243521B2 (en)
JPS6313146B2 (en)
JPS6055962B2 (en) moisture sensing element
JPH0215601A (en) Moisture sensitive element material
JPS6255681B2 (en)
JPH0122964B2 (en)
JPS6318841B2 (en)
JPS6350841B2 (en)
JPS6030082B2 (en) Manufacturing method of moisture sensing element
JPS6161521B2 (en)