JPS58160779A - Controller for absorption refrigerator - Google Patents

Controller for absorption refrigerator

Info

Publication number
JPS58160779A
JPS58160779A JP4390382A JP4390382A JPS58160779A JP S58160779 A JPS58160779 A JP S58160779A JP 4390382 A JP4390382 A JP 4390382A JP 4390382 A JP4390382 A JP 4390382A JP S58160779 A JPS58160779 A JP S58160779A
Authority
JP
Japan
Prior art keywords
solution
amount
regenerator
controls
margin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4390382A
Other languages
Japanese (ja)
Other versions
JPH0236868B2 (en
Inventor
吉田 幸家
春江 哲夫
良一 村田
藤原 敏勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4390382A priority Critical patent/JPH0236868B2/en
Publication of JPS58160779A publication Critical patent/JPS58160779A/en
Publication of JPH0236868B2 publication Critical patent/JPH0236868B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 ある。[Detailed description of the invention] be.

従来の吸収冷凍機制御装置の一例を第1図に基いて説明
する。なお第1図に示すものは二重効用吸収冷凍機で冷
媒に水,吸収剤(溶液)Vζリチウムブロマイド水溶液
を使用したものである。
An example of a conventional absorption refrigerator control device will be explained based on FIG. 1. The one shown in FIG. 1 is a double-effect absorption refrigerator using water as a refrigerant and an aqueous Vζ lithium bromide solution as an absorbent (solution).

図において,1は高圧再生器,2は低圧再生器,3は凝
縮器,4は蒸発器,5は吸収器,6は低温熱交換器,7
は高温熱交換器,8乃至13は溶液配管,14は再生器
ポンプ,15は吸収器ポンプ,16はエゼクター,17
乃至19は冷媒配管,20は冷媒ポンプ,21は加熱源
配管,22は冷却水配管,23は冷水配管,24は冷却
水ポンプであり,図示のように配管接続され,h正再生
器1で蒸発した冷媒は,低圧再生器2を経て凝縮器3に
入り,冷却水配管22内の水と熱交換して凝縮液化した
後,蒸発器4に入り冷水配管23内の水と熱交換して蒸
発しこの際に奪う熱によって冷水配管23内の水を冷却
する。
In the figure, 1 is a high-pressure regenerator, 2 is a low-pressure regenerator, 3 is a condenser, 4 is an evaporator, 5 is an absorber, 6 is a low-temperature heat exchanger, and 7 is a low-pressure regenerator.
is a high temperature heat exchanger, 8 to 13 are solution pipes, 14 is a regenerator pump, 15 is an absorber pump, 16 is an ejector, 17
19 to 19 are refrigerant pipes, 20 is a refrigerant pump, 21 is a heating source pipe, 22 is a cooling water pipe, 23 is a cold water pipe, and 24 is a cooling water pump, which are connected to each other as shown in the figure, and are connected to the h-positive regenerator 1. The evaporated refrigerant passes through the low-pressure regenerator 2, enters the condenser 3, exchanges heat with the water in the cooling water pipe 22, condenses and liquefies it, and then enters the evaporator 4, exchanging heat with the water in the chilled water pipe 23. The water in the cold water pipe 23 is cooled by the heat removed during evaporation.

( 一方,蒸発器4で蒸発した冷媒は,吸収器5で溶液によ
り吸収され,冷媒を吸収して濃度の薄くなった溶液はポ
ンプ14により低温熱交換器6.高温熱交換器7を経て
高圧再生器1に入り、ここで加熱源配管21を経て供給
される加熱源によって加熱され、冷媒を蒸発分離して中
濃度の溶液となり高温熱交換器7を経て低圧再生器2に
入り冷媒蒸気により加熱されてさらに冷媒を蒸発分離し
て濃度が高くなる。低圧再生器で高濃度となった溶液は
低温熱交換器6を経てエゼクタ−16で吸収器ポンプ1
5からの溶液と混合して吸収器5内に散布されるように
なっており、冷凍サイクルを行う。
(On the other hand, the refrigerant evaporated in the evaporator 4 is absorbed by the solution in the absorber 5, and the solution, which has absorbed the refrigerant and has become diluted in concentration, is sent to the pump 14 through the low-temperature heat exchanger 6 and the high-temperature heat exchanger 7. The refrigerant enters the regenerator 1, where it is heated by a heat source supplied through the heat source piping 21, and the refrigerant is evaporated and separated, becoming a medium-concentration solution. After being heated, the refrigerant is further evaporated and separated, increasing its concentration.The highly concentrated solution in the low-pressure regenerator passes through the low-temperature heat exchanger 6, and then is sent to the absorber pump 1 by the ejector 16.
It is mixed with the solution from 5 and sprayed into the absorber 5, and a refrigeration cycle is performed.

上記のような二重効用吸収冷凍機においては従来、冷水
出口温度検出器25で冷水出口温度を検出し、これと温
度設定器26に設定された冷水出口温度目標値とを比較
器27で比較し。
Conventionally, in the above-mentioned dual-effect absorption refrigerator, a chilled water outlet temperature detector 25 detects the chilled water outlet temperature, and a comparator 27 compares this with a chilled water outlet temperature target value set in a temperature setting device 26. death.

流量調節器28を介して流量調節弁29を制御して加熱
源の流量を調節すると共に高圧再生器1の溶液レベルを
液位検出器′30で検出し、これと液位設定器31に設
定された液位目標値として循環量調節弁34を制御して
溶液の循環量を制°御することにより負荷に対応した容
量制御を行なっている。
The flow rate adjustment valve 29 is controlled via the flow rate regulator 28 to adjust the flow rate of the heating source, and the solution level in the high-pressure regenerator 1 is detected by the liquid level detector '30 and set by the liquid level setting device 31. The circulation amount control valve 34 is controlled using the determined liquid level target value to control the circulation amount of the solution, thereby performing capacity control corresponding to the load.

しかし、上記した従来のフィードバック制御装置は、冷
水出口温度と高圧再生器の溶液レベルしか制御していな
いため、負荷(C対して例えば加熱源量が多すぎて冷凍
機能力が過大であると、溶液の濃度が高くなりすぎて吸
収剤が結晶析出し、ポンプを破損したり、配管かつ1つ
たりして運転不能におちいる恐れがあった。
However, the conventional feedback control device described above only controls the chilled water outlet temperature and the solution level of the high-pressure regenerator. There was a risk that the concentration of the solution would become too high and the absorbent would crystallize, damaging the pump or breaking the pipes, rendering it inoperable.

本発明は上記した点に鑑み提案されたものでその目的と
するところは、結晶析出を確実に防止して安定した運転
を行なわせることができる吸収冷凍機制御装置を提供す
ることにある。
The present invention has been proposed in view of the above-mentioned points, and an object thereof is to provide an absorption refrigerating machine control device that can reliably prevent crystal precipitation and perform stable operation.

本発明は冷水出口温度を検出して再生器への加熱源量を
制御する制御系と、再生器内溶液し6、オ検ヵ、□ヮt
71.□ゆへ。6液循環量を制御する制御系を設けると
共に溶液の結晶濃度余裕度を算出し、同余裕度が所定値
以下になったとき、これの関数として加熱源量もしくは
溶液循環量の少なくともいずれか一方の適正値を求めて
前記両制御系における加熱源量もしくは溶液循環量の少
なくともいずれか一方を制御気る制御系を設けたことを
特徴とするもので上記のように溶液の結晶濃度余裕度を
算出し。
The present invention includes a control system that detects the cold water outlet temperature and controls the amount of heat source to the regenerator, and a control system that controls the amount of heat source to the regenerator.
71. □Yuhe. 6. A control system is provided to control the liquid circulation amount, and the crystal concentration margin of the solution is calculated, and when the margin becomes less than a predetermined value, at least one of the heating source amount or the solution circulation amount is set as a function of this margin. The control system is characterized in that a control system is provided to control at least one of the heating source amount and the solution circulation amount in both of the control systems by determining an appropriate value for the crystal concentration margin of the solution as described above. Calculate.

これが所定値以下になったとき、結晶析出を起さないよ
うにこれの関数として加、熱源量もしくは溶液循環量の
適正値を求めて、加熱源量を減らすか、溶液循環量を増
すかのいずれか一方又は両方の制御を行なうことにより
結晶析出を防止することができる。従って負荷に対して
適確な容量制御ができると同時、結晶析出を確実に防止
し、しかも溶液濃度を高くして運転できるため、効率の
向上を計ることができる。
When this becomes less than a predetermined value, find an appropriate value for the amount of heat source or solution circulation as a function of this to prevent crystal precipitation, and decide whether to reduce the amount of heat source or increase the amount of solution circulation. Crystal precipitation can be prevented by controlling either or both. Therefore, it is possible to accurately control the capacity for the load, reliably prevent crystal precipitation, and operate with a high solution concentration, thereby improving efficiency.

以下2本発明を図示実施例に基いて説明する。The present invention will be explained below based on two illustrated embodiments.

第2図において、1乃至34は前記した第1図に示した
ものと同様のものを示し、同様の作用を行なうものであ
る。
In FIG. 2, numerals 1 to 34 are similar to those shown in FIG. 1, and perform the same functions.

本実施例においては、凝縮冷媒温度を検出する温度検出
器101.低圧再生器2の出口における濃溶液温度を検
出する温度検出器102.及び高温熱交換器乙の出口に
おける濃溶液温度を検出する温度検出器103と、これ
らの検出値から後述するようにして溶液の結晶濃度余裕
度を算出するマイクロコンピー−ター等の計算装置10
4を設けると共にこの計算装置104により算出された
濃度余裕度が所定値以)になったとき、予め設定された
関数から加熱源量及び溶液循環量の適正値を求める関数
発生器105及び106を設けその出力とコントローラ
28及び33からの出力とから比較器107及び108
を介して加熱源量調節弁29及び溶液循環量調節弁34
を制御するようにしている。
In this embodiment, a temperature detector 101. which detects the condensed refrigerant temperature is used. Temperature detector 102 for detecting the concentrated solution temperature at the outlet of the low pressure regenerator 2. and a temperature detector 103 that detects the temperature of the concentrated solution at the outlet of the high-temperature heat exchanger B, and a calculation device 10 such as a microcomputer that calculates the crystal concentration margin of the solution from these detected values as described later.
4, and when the concentration margin calculated by this calculation device 104 becomes a predetermined value or higher, function generators 105 and 106 are used to calculate appropriate values for the amount of heat source and the amount of solution circulation from a preset function. Comparators 107 and 108 are provided between the outputs thereof and the outputs from controllers 28 and 33.
via the heating source amount control valve 29 and the solution circulation amount control valve 34.
I'm trying to control it.

上記構成において、関数発生器105 Kは、濃度余裕
度が所定値以下に々つたとき加熱源量を緘らすよう々予
め定められた適正な関数が、また、関数発生器106に
は溶液循環量を増すような予め定められた適正な関数が
それぞれ設定されている。
In the above configuration, the function generator 105K has an appropriate function predetermined to reduce the amount of heat source when the concentration margin falls below a predetermined value, and the function generator 106 has a function that controls the solution circulation. A predetermined appropriate function that increases the amount is set respectively.

一方、溶液の結晶濃度余格度△Xは、第3図に示すリチ
ウムブロマイド溶液の濃度曲線から次のようにして算出
される◇ 溶液の濃度X、は、検出器101からの凝縮冷媒温度T
、と水の飽和特性とから計算した低圧再生器2内の圧力
P1と、検出器102からの低圧再生器出口溶液温度T
2とから溶液濃度曲線に従って計算することにより求め
られ、これと、溶液結晶特性における検出器103で検
出された低温熱交換器出口溶液温度T3での結晶析出濃
度x2との差(△X=X、−X2)から計算することが
できる。
On the other hand, the crystal concentration residual degree ΔX of the solution is calculated as follows from the concentration curve of the lithium bromide solution shown in FIG.
, the pressure inside the low-pressure regenerator 2 calculated from the saturation characteristics of water, and the low-pressure regenerator outlet solution temperature T from the detector 102.
The difference between this and the crystal precipitation concentration x2 at the low temperature heat exchanger outlet solution temperature T3 detected by the detector 103 in the solution crystal characteristics (△X=X , -X2).

ここで、濃度余裕度△XがΔXく、0となると結晶析出
を起[7てU、 tうので、これを防止するため、加熱
源量を減らしてやるか、溶液循環量を増やしてやるかの
いずれか一方、又は両方の操f1を行なえばよく、濃度
余裕度ΔXが、ある値以下になったとき、予め設定され
た関数に従って関数発生器105及び106から対応す
る出力が出さね、比較器107 、108及び調節片2
9,34を介して加熱源量が減少されると共に溶液循環
1が増加される。従って、結晶析出を確実に防1F【7
て、従来のものにおける欠点を解消すると吉ができる。
Here, if the concentration margin △X becomes △X and becomes 0, crystal precipitation will occur.To prevent this, either reduce the amount of heat source or increase the amount of solution circulation. It is sufficient to perform one or both of the operations f1, and when the concentration margin ΔX becomes less than a certain value, the function generators 105 and 106 will not output the corresponding output according to the preset function. Containers 107, 108 and adjustment piece 2
Via 9, 34, the amount of heat source is reduced and the solution circulation 1 is increased. Therefore, crystal precipitation can be reliably prevented.
It will be a good idea to solve the drawbacks of the conventional one.

なお、−に記実施例における温度検出器102に代えて
、低圧再生器内の圧力を検出する圧力検出器を設けても
よいことは上記の説明から明らかな通りである。
It is clear from the above description that a pressure detector for detecting the pressure inside the low-pressure regenerator may be provided in place of the temperature detector 102 in the embodiment described in -.

また1本発明は一重効用吸収冷凍機にも同様に適用でき
ることはいうまでもない。
Furthermore, it goes without saying that the present invention can be similarly applied to a single-effect absorption refrigerator.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のものを示す構成図、第2図は本発明の一
実施例を示す構成図、第3図はリチウムブロマイド溶液
の濃度曲線図である。 7:高圧再生器、2:低圧再生器、3:凝縮器。 4:蒸発器、5:吸収器、6:低温熱交換器。 7:高温熱交換器、8乃至13:溶液配管。 14:再生器ポンプ、15:吸収器ポンプ。 16:エゼクタ−,17乃至19:冷媒配管。 20:冷媒ポンプ、21:加熱源配管、22:冷却水配
管、23:冷水配管、24.冷却水ポンプ、25:冷水
出口温度検出器、26:温度設定器、27:比較器、2
8:コントローラ。 29:加熱源量調節弁、30:液位検出器。 31:液位設定器、32=比較器、33:コント[I−
ラ、34:溶液循環量調節弁、 101 。 102 、103 :温度検出器、 104 :計算装
置。
FIG. 1 is a block diagram showing a conventional one, FIG. 2 is a block diagram showing an embodiment of the present invention, and FIG. 3 is a concentration curve diagram of a lithium bromide solution. 7: High pressure regenerator, 2: Low pressure regenerator, 3: Condenser. 4: Evaporator, 5: Absorber, 6: Low temperature heat exchanger. 7: High temperature heat exchanger, 8 to 13: Solution piping. 14: Regenerator pump, 15: Absorber pump. 16: Ejector, 17 to 19: Refrigerant piping. 20: Refrigerant pump, 21: Heat source piping, 22: Cooling water piping, 23: Cold water piping, 24. Cooling water pump, 25: Cold water outlet temperature detector, 26: Temperature setting device, 27: Comparator, 2
8: Controller. 29: Heat source amount control valve, 30: Liquid level detector. 31: Liquid level setter, 32 = Comparator, 33: Control [I-
La, 34: Solution circulation amount control valve, 101. 102, 103: Temperature detector, 104: Calculation device.

Claims (1)

【特許請求の範囲】 冷水出口温度を検出して再生器への加熱源量を制御する
制御系と、再生器内溶液レベルを検出して吸収器から再
生器への溶液循環量を制御する制御系を設けると共に溶
液の結晶濃度余裕度を算出し同余裕度が所定値以下にな
ったときう これに関数として加熱源量もしくは溶液循環量の少なく
ともいずれか一方の適正値を求めて前記両制御系におけ
る加熱源量もしくは溶液循環量の少なくともいずれか一
方を制御する制御系を設けたことを特徴とする吸収冷凍
機制御装置。
[Claims] A control system that detects the cold water outlet temperature and controls the amount of heat source to the regenerator, and a control system that detects the solution level in the regenerator and controls the amount of solution circulated from the absorber to the regenerator. A system is provided and the crystal concentration margin of the solution is calculated, and when the margin becomes less than a predetermined value, an appropriate value of at least either the heating source amount or the solution circulation amount is determined as a function of this margin, and both of the above-mentioned controls are performed. An absorption chiller control device comprising a control system that controls at least one of the amount of heat source and the amount of solution circulated in the system.
JP4390382A 1982-03-19 1982-03-19 KYUSHUREITOKISEIGYOSOCHI Expired - Lifetime JPH0236868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4390382A JPH0236868B2 (en) 1982-03-19 1982-03-19 KYUSHUREITOKISEIGYOSOCHI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4390382A JPH0236868B2 (en) 1982-03-19 1982-03-19 KYUSHUREITOKISEIGYOSOCHI

Publications (2)

Publication Number Publication Date
JPS58160779A true JPS58160779A (en) 1983-09-24
JPH0236868B2 JPH0236868B2 (en) 1990-08-21

Family

ID=12676666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4390382A Expired - Lifetime JPH0236868B2 (en) 1982-03-19 1982-03-19 KYUSHUREITOKISEIGYOSOCHI

Country Status (1)

Country Link
JP (1) JPH0236868B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007183034A (en) * 2006-01-06 2007-07-19 Tokyo Gas Co Ltd Absorption water cooler-heater and its control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007183034A (en) * 2006-01-06 2007-07-19 Tokyo Gas Co Ltd Absorption water cooler-heater and its control method

Also Published As

Publication number Publication date
JPH0236868B2 (en) 1990-08-21

Similar Documents

Publication Publication Date Title
JPS58160779A (en) Controller for absorption refrigerator
JPS58160780A (en) Controller for absorption refrigerator
JPS58160783A (en) Controller for absorption refrigerator
JPS58160778A (en) Controller for absorption refrigerator
JPS58156166A (en) Controller for absorption refrigerator
JP3280169B2 (en) Double effect absorption refrigerator and chiller / heater
JPS58158467A (en) Controller for absorption refrigerator
JPS58158464A (en) Controller for absorption refrigerator
JPS58160782A (en) Controller for absorption refrigerator
JPS58160777A (en) Controller for absorption refrigerator
JPS58156167A (en) Controller for absorption refrigerator
JPS58158466A (en) Controller for absorption refrigerator
JP2785143B2 (en) Operating method of absorption refrigerator
JPH0275865A (en) Controlling method for absorption refrigerator
JP2654137B2 (en) Control method of absorption refrigerator
JP2744034B2 (en) Absorption refrigerator
JPS6117319Y2 (en)
JPS58158465A (en) Controller for absorption refrigerator
JPH04151468A (en) Adsorption type freezer corresponding to cryogenic cooling medium and its controlling
JPS58158463A (en) Controller for absorption refrigerator
JP2977999B2 (en) Absorption refrigerator
JPH0126458B2 (en)
JPS6128990Y2 (en)
JPS6132586B2 (en)
JPS63204080A (en) Absorption refrigerator