JPS58159656A - Rotary electric machine with radition heat shield for superconductive rotor - Google Patents

Rotary electric machine with radition heat shield for superconductive rotor

Info

Publication number
JPS58159656A
JPS58159656A JP58032696A JP3269683A JPS58159656A JP S58159656 A JPS58159656 A JP S58159656A JP 58032696 A JP58032696 A JP 58032696A JP 3269683 A JP3269683 A JP 3269683A JP S58159656 A JPS58159656 A JP S58159656A
Authority
JP
Japan
Prior art keywords
grooves
circumferential
inner tube
tube
electric machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58032696A
Other languages
Japanese (ja)
Inventor
ジヨ−ジ・ドツジ・フ−パ−
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CBS Corp
Original Assignee
Westinghouse Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Westinghouse Electric Corp filed Critical Westinghouse Electric Corp
Publication of JPS58159656A publication Critical patent/JPS58159656A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K55/00Dynamo-electric machines having windings operating at cryogenic temperatures
    • H02K55/02Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type
    • H02K55/04Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type with rotating field windings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Superconductive Dynamoelectric Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、回転電機に関し、さらに詳細にはたとえば超
電導発電機のロータの放射熱遮へい体に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a rotating electric machine, and more particularly to a radiant heat shield for a rotor of a superconducting generator, for example.

超電導発電機は、典型的には、超電導の界磁巻線とその
巻線を支持する構造より成る過冷ロータを有する。ロー
タは、その内部に保持されるヘリウムのような冷媒によ
り、極低温に退治される。発電機の通常動作時、ロータ
内の液体ヘリウムは、相対的にゆるやかであるかしかし
連続的な沸騰プロセスにより、気体あるいはガスに変換
される。
A superconducting generator typically has a supercooled rotor consisting of a superconducting field winding and a structure that supports the winding. The rotor is brought to extremely low temperatures by a coolant, such as helium, held within it. During normal operation of the generator, liquid helium within the rotor is converted to a gas, or gas, by a relatively slow but continuous boiling process.

放射熱遮へい体の機能は、典型的には、室温1こあ“る
ロータの周囲環境からロータへ放射される熱流を阻止し
て、その放射熱がロータ内の極低温領域を温めるのを防
止する。放射熱遮へい体は、典型的には、超電導ロータ
コイルの半径方向で外側に配置した管状あるいは円筒状
の構造より成る。この管状構造体はその内部に複数の冷
却剤通路を有し、また、そわと併せて冷媒を放射熱遮へ
い体内部に半径方向に送り、さらにその冷媒を遮へい体
の軸方向に流し、そこからもうひとつの半径方向通路を
介して超電導ロータの内側H5分の方に排出させる手段
を有する。
The function of the radiant heat shield is to block the flow of heat radiated to the rotor from the rotor's surrounding environment, which is typically room temperature, and prevent that radiant heat from warming cryogenic regions within the rotor. The radiant heat shield typically consists of a tubular or cylindrical structure disposed radially outwardly of the superconducting rotor coil, the tubular structure having a plurality of coolant passages therein; In addition, the coolant is sent in the radial direction inside the radiant heat shield along with the stiffness, and the coolant is further flowed in the axial direction of the shield, and from there, it flows through another radial passage toward the inside H5 of the superconducting rotor. It has a means for discharging it.

放射熱遮へい体の一例については、米国特許第4.25
0,418弓明細書に記載かある。
For an example of a radiant heat shield, see U.S. Pat.
0,418 It is stated in the bow specification.

本発明の目的は、信頼度が置くかつ経済的な方法で製造
できるように設計した超電導ロータのための牧射熱遮へ
い体を提供することにある。
It is an object of the present invention to provide a radiation heat shield for a superconducting rotor designed to be manufactured in a reliable and economical manner.

典型的な超電導発電機では、放射熱遮へい体の・1法は
、長さか130インチ、直径か60インチを越えること
かある。また、放射熱遮へい体はその円筒状壁内に設け
た複数の冷却剤通路により冷却せねはならないため、上
述の設計基準はその遮へい体を2つの穀構造で構成する
ことを必要とする。この場合、2つの同軸関係に配置し
た穀を結合して、効果的に封止した冷却剤通路網を形成
し、その放射熱遮へい体にひずみがか\らす、その構造
の一体性を弱めないようにする必要がある。
In a typical superconducting generator, the radiant heat shield can be over 130 inches long and 60 inches in diameter. Additionally, because the radiant heat shield must not be cooled by multiple coolant passages within its cylindrical wall, the above design criteria require that the shield be constructed of a two-piece construction. In this case, the two coaxially arranged grains are joined together to form an effectively sealed coolant passage network, straining the radiant heat shield and weakening its structural integrity. It is necessary to make sure that there is no such thing.

本発明の一実施例によれは、回転電機は超電導ロータの
ための放射熱遮へい体を有し、hiJ記遮へい体は内側
及び外側管を有し、前記内側及び外側管の一方はその円
筒状表面に複数の軸方向に延びる溝を有し、前記一方の
管はその円筒状表面ににいて第1及び第2の周方向に延
ひる溝を有し、前記第1の周溝は前記複数の軸溝の各々
の一方の軸方向端部と連通し、前記第2の周溝は前記複
数の軸溝の各々の他方の軸方向端部と連通し、前記内1
則管は各々の周溝と交叉する少なくともひとつの半径方
向に延びる穴を有してその対応する周溝と前記内側管の
内側表面とを連通させ、前記外側管は前記内側管のまわ
りにおいて同軸同心関係で配置゛し、前記内側及び外側
管はそれらの隣接する円筒状表面に沿って互いに爆発溶
接されていることを特徴とする。
According to an embodiment of the present invention, a rotating electric machine has a radiant heat shield for a superconducting rotor, the shield has an inner and an outer tube, and one of the inner and outer tubes has a cylindrical shape. a plurality of axially extending grooves on a surface thereof, the one tube having first and second circumferentially extending grooves on its cylindrical surface, the first circumferential groove having a plurality of circumferential grooves; The second peripheral groove communicates with the other axial end of each of the plurality of axial grooves, and the second circumferential groove communicates with the other axial end of each of the plurality of axial grooves.
The regular tube has at least one radially extending hole intersecting each circumferential groove to communicate the corresponding circumferential groove with the inner surface of the inner tube, and the outer tube is coaxial about the inner tube. Disposed in concentric relation, the inner and outer tubes are blast welded together along their adjacent cylindrical surfaces.

好ましくは、本発明の一実施例による放射熱遮へい体は
、同軸同心関係に配置した内側及び外側円筒状管より成
る。内側管はその円筒状外側表面に形成した2つの周溝
を有する。これら2つの周溝は、互いに所定の軸方向距
離を保つようにその内側管に形成する。その内側管の円
筒状外側表面に、複数の軸方向に延びる溝を形成し、軸
溝の各々が上述の2つの周溝と交叉してそむらを連通さ
せる。各周溝には、そnと交叉してその周溝と内側管の
内側部分を連通させる少なくともひとつの半径方向に延
びる穴を設ける。外側管を内側管の半径方向外側に配設
して、その内側管に冶金結合し、一体的な放射熱遮へい
体構造を形成する。外側管は、前述の溝の各々の半径方
向外側部分を密閉して、密閉した冷却剤通路網を形成し
、この通路網は前述の周溝の一方と交叉する半径方向穴
と他方の周溝と交叉する半径方向穴の間に連通関係を樹
立する。
Preferably, a radiant heat shield according to one embodiment of the invention comprises inner and outer cylindrical tubes arranged in coaxial concentric relationship. The inner tube has two circumferential grooves formed in its cylindrical outer surface. These two circumferential grooves are formed in the inner tube so as to maintain a predetermined axial distance from each other. A plurality of axially extending grooves are formed on the cylindrical outer surface of the inner tube, and each of the axial grooves intersects with the two circumferential grooves described above to communicate the grooves. Each circumferential groove is provided with at least one radially extending hole that intersects the circumferential groove and communicates the circumferential groove with the inner portion of the inner tube. An outer tube is disposed radially outwardly of and metallurgically bonded to the inner tube to form an integral radiant heat shield structure. The outer tube seals the radially outer portion of each of the aforementioned grooves to form a closed coolant passageway network, the passageway network comprising a radial hole intersecting one of the aforementioned circumferential grooves and a radial hole intersecting one of the aforementioned circumferential grooves and the other circumferential groove. Establish a communication relationship between radial holes that intersect with.

本発明の実施例によりば、好ましくは、内側及び外側管
・は爆発溶接により結合する。爆発溶暗作業時外側管が
内側管の溝内に落ち込むのを防止するため、爆発溶接前
に合溝に除去す1能な物質を充填して、爆発溶接時外側
管を局部的に支持する。内側及び外側管の相対的な厚さ
により、この物質の使用は必萼条件ではない。しかしな
から、上述の溝の領域で落ちこみか生じないようにする
ため、本発明実施例の放射熱遮へい体は、溝内に充填し
爆発溶接の完T後除去できる固体を使用する。この物質
は、低融点金属あるいはイオウのような溶融できるもの
、若しくはポリスチレンのような燃焼できるものであっ
てよい。爆発溶接ののち冷却通路から融出可能な低融点
合金(セロトルCerrotru )を用いて実験を行
なった。また炭素鋼の挿入物を用いて、冷却剤通路の領
域の局部的支持手段を形成し、爆発溶接のあとで酸を用
いて腐蝕し除去した。
According to an embodiment of the invention, the inner and outer tubes are preferably joined by explosion welding. In order to prevent the outer tube from falling into the groove of the inner tube during explosive welding, the groove is filled with a substance capable of being removed before explosive welding to locally support the outer tube during explosive welding. Due to the relative thickness of the inner and outer tubes, the use of this material is not a requirement for the calyx. However, in order to avoid sagging in the area of the grooves mentioned above, the radiant heat shield of the embodiment of the present invention uses a solid material that can be filled into the grooves and removed after the explosive welding is completed. This material may be a low melting point metal or something that can be melted, such as sulfur, or something that can be combustible, such as polystyrene. Experiments were conducted using a low melting point alloy (Cerrotru) that could be melted from the cooling passage after explosive welding. Carbon steel inserts were also used to form local support means in the area of the coolant passages, which were etched away using acid after explosive welding.

もちろんこの酸により腐蝕除去する方法は、放射熱遮へ
い体を構成する管がインコネル706あるいはインコネ
ル718のような材料で作らfまた酸に強いものである
ときに限り実際的であることがわかる。上述の如く、局
所的な支持を提供してのち、溶融”J能、あるいは腐蝕
可能、若しくは燃焼可能な物質を上述の半径方向穴を介
して取り除いた。
Of course, this method of acid removal proves to be practical only when the tubes forming the radiant heat shield are made of a material such as Inconel 706 or Inconel 718 and are acid resistant. After providing localized support as described above, the meltable or corrosive or combustible material was removed through the radial holes described above.

本発明の実施例による放射燃遮へい体は、内側及び外側
管の隣接表面の間において良好な接触を有するためそわ
らの間の熱伝導度が極めてよく、隣接する軸溝間あるい
は冷却剤通路網と一般的に真空であるその周囲環境との
間相互間における冷却剤の漏えいを阻止できる。
The radiant combustion shield according to the embodiment of the present invention has good contact between the adjacent surfaces of the inner and outer tubes, so that the thermal conductivity between the straws is very good, and between the adjacent shaft grooves or the coolant passage network. Leakage of coolant to and from its surrounding environment, which is generally a vacuum, can be prevented.

組立前に、内側及び外側管は、最初は寸法を大きめに作
り、爆発溶接後機械ガロエして規定の寸法通りにする。
Prior to assembly, the inner and outer tubes are initially oversized and then explode welded and machined to the specified dimensions.

また、爆発溶接終了後半径方向穴を再び機械加工して、
その冶金結合時に生したかもしわない小さいひずみを矯
正する。
In addition, after the explosion welding is completed, the radial hole is machined again.
Correct any small distortions that may have occurred during the metallurgical bonding.

以下、添付図面を参照して、本発明の実施例につき詳細
に説明する。
Embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

本発明は、超電導ロータに関し、さらに詳細にはその放
射熱遮へい体の製造に関する。
The present invention relates to superconducting rotors, and more particularly to the manufacture of radiant heat shields thereof.

第1図は、放射熱遮へい体を示す。接遇へい体は、同軸
同心関係に配設した内側管10及び外側管12より成る
。内側管10は、その外側円筒表面に形成した第1及び
第2の周溝14 、16を有する。複数の軸溝18は、
これらの周溝と交叉して、それらの間に連通関係を樹立
する。周溝14は、それと交叉する半径方向穴2oを有
し、その穴2゜はその周溝と内側管10の内側部分を連
通させる。
FIG. 1 shows a radiant heat shield. The reception shield is comprised of an inner tube 10 and an outer tube 12 arranged in coaxial concentric relationship. The inner tube 10 has first and second circumferential grooves 14, 16 formed in its outer cylindrical surface. The plurality of shaft grooves 18 are
It crosses these circumferential grooves and establishes a communication relationship between them. The circumferential groove 14 has a radial hole 2o intersecting it, which hole 2° communicates the circumferential groove with the inner part of the inner tube 10.

第2の周溝16は、それと交叉する半径方向穴22を有
し、その穴22はその周溝と内側管1oの内側を連通さ
せる。第1及び第2の周溝14及び16と複数の軸溝1
8、ならびに半径方向穴2o及び22全体で、半径方向
穴2oの近傍の内側管1oの内側部分と半径方向穴22
の近傍の内側管1oの内側部分との間を連通させる。内
側及び外側管1o及び12は、超電導状態で用いるに充
分な降伏強さ’) 有するスーパーアロイのような高力
材料で作る。
The second circumferential groove 16 has a radial hole 22 intersecting it, which hole 22 communicates the circumferential groove with the inside of the inner tube 1o. First and second circumferential grooves 14 and 16 and a plurality of shaft grooves 1
8, and throughout the radial holes 2o and 22, the inner part of the inner tube 1o in the vicinity of the radial hole 2o and the radial hole 22
and the inner portion of the inner tube 1o in the vicinity of the inner tube 1o. The inner and outer tubes 1o and 12 are made of high strength materials such as superalloys with sufficient yield strength for use in superconducting conditions.

これらの材料には、インコネル706及びインコネル7
18(商標)かあるが、これに限定されるものではない
。使用する材料は、130.(100p8iと等しいか
、あるいはそゎよりも大きい降伏強さを有し、かつは\
゛411)Kの極低温でその高1.M強度を保持できる
必要かある。
These materials include Inconel 706 and Inconel 7
18 (trademark), but is not limited to this. The materials used are 130. (has a yield strength equal to or greater than 100p8i, and \
At the extremely low temperature of ゛411)K, its high temperature is 1. It is necessary to be able to maintain M strength.

外側管12は内側管10に爆発溶接して、周溝14及び
16ならひに軸溝18を半径方向外側にgu’で封1ト
する。この構成により半径方向穴20の近傍の内側管1
0の内側に配置した構成要素と半径方向穴22の近傍の
内側管10に設けた他の構成要素の間で液体あるいは気
体の冷媒を保持する冷媒通路網が形成される。
The outer tube 12 is explosively welded to the inner tube 10 to seal the circumferential grooves 14 and 16 and the axial groove 18 radially outwardly with gu'. This configuration allows the inner tube 1 in the vicinity of the radial hole 20 to
A refrigerant channel network is formed between the components located inside the radial hole 22 and other components provided in the inner tube 10 in the vicinity of the radial bore 22, which retains a liquid or gaseous refrigerant.

外側管12を内側管10へ爆発溶接する前(こ、周溝1
4及び16、ならびに軸溝181こ成る物質を充填して
、外側管12が内側管10の外側表面番こ形成した溝内
に局部的に落ちこむのを防止する。もちろん、この物質
は爆発溶接終了後除去できるものである必要かある。本
発明の実施例による放射熱遮へい体は、低融点金属ある
いはイオウのような溶融可能な物質、もしくはポリスチ
レンのような燃焼可能な物質のいずれかを用し)る。
Before explosive welding the outer tube 12 to the inner tube 10 (this, the circumferential groove 1
4 and 16, and the axial groove 181 are filled with material to prevent the outer tube 12 from sinking locally into the groove formed on the outer surface of the inner tube 10. Of course, this substance must be able to be removed after explosive welding is completed. Radiant heat shields according to embodiments of the invention employ either low melting point metals or meltable materials such as sulfur, or combustible materials such as polystyrene.

低融点の合金としてはセロトル(Cerrotru )
力(適当であることか判明している。また炭素鋼を実験
的に用いてこの局部的な支持を提供させ、その複酸によ
り腐蝕除去した。酸による腐蝕除去の方法は、内側管1
0及び外側管12かインコネル706アルいはインコネ
ル718のような酸(こ強い材料で作られているときに
限り有効である。
Cerrotru is an alloy with a low melting point.
Carbon steel was also used experimentally to provide this localized support and the acid corrosion was removed.
0 and the outer tube 12 is only effective if it is made of a tough material such as Inconel 706 aluminum or Inconel 718.

これらの除去可能な物質、あるいは他の適当な物質によ
り、爆発溶接時、内側v10の円筒状外側表面に形成し
た溝の領域で外側管12か周円3的に支持される。これ
らの物質は、爆発溶接終r後半径方向穴20あるいは2
2ヲ介して除去する。
These removable materials, or other suitable materials, support the outer tube 12 circumferentially in the region of the groove formed in the cylindrical outer surface of the inner surface v10 during explosive welding. These materials are added to the radial holes 20 or 2 after the explosive welding is completed.
Remove via 2.

内側管10を外側管12に爆発溶接すると、周溝14及
び16と遮へい体の周囲環境との間の軸方向て周溝より
外側の領域ろD及び62に2いて、信頼度の高い封止が
得られ、かつまた隣接する軸溝18の間の領域40にε
いても信頼度の高い封止か得られる。
Explosive welding of the inner tube 10 to the outer tube 12 creates a reliable seal in the axially outer regions of the grooves D and 62 between the circumferential grooves 14 and 16 and the surrounding environment of the shield. is obtained, and also ε in the region 40 between adjacent shaft grooves 18
Highly reliable sealing can be achieved even when

第2図は、内側管10及び外側管12を示す第1図の横
断面図である。また軸溝18と周溝14の間の相対的な
半径方向位置をも示す。半径方向穴20は、周溝14と
交叉してその周溝と内側管10の内側部分を連通させる
ものとして示されている。
FIG. 2 is a cross-sectional view of FIG. 1 showing inner tube 10 and outer tube 12. FIG. The relative radial position between the shaft groove 18 and the circumferential groove 14 is also shown. The radial bore 20 is shown intersecting the circumferential groove 14 and communicating the circumferential groove with the inner portion of the inner tube 10 .

第2図は、第1図と関連させてみると、冷却剤が半径方
向穴22を介して半径方向で外側に流れ、周溝14内を
内側管の円周方向に流n、内側管10及び外側管12の
間を溝18に沿って軸方向に流れ、周溝16内を円周方
向に流れ、さむに半径方向穴22を介して半径方向内側
に流れ、これにより冷却剤か放射熱遮へい体を通過して
その温度を減少させる通路網を形成する様子を示してい
る。
FIG. 2 shows, in conjunction with FIG. and the outer tube 12 along the groove 18, circumferentially in the circumferential groove 16, and radially inwardly through the radial holes 22 so that the coolant or radiant heat It shows the formation of a network of channels passing through the shield and reducing its temperature.

再び第1図を参照して、内側管10及び外側管12の境
界領域には、それらの軸方向端部50の所に3いて密封
溶接を行ない冷却剤通路網と典型的な真空であるその放
射熱遮へい体周囲の環境の間で液体封止かさらに完全に
行なわれるようにすることかできる。しかしながら、内
側管10及び外側管12を爆発溶接すると、周溝と放射
熱遮へい体周囲の環境との間の一領域30及び62にお
いて充分な液体封止が得られ、したがって上述した密封
溶接は一般的には必要でないことがわかる。
Referring again to FIG. 1, the interface area of the inner tube 10 and the outer tube 12 includes a hermetic weld at their axial ends 3 and a coolant passage network and a typical vacuum. A more complete liquid seal can be created between the radiant heat shield and the surrounding environment. However, explosion welding of the inner tube 10 and outer tube 12 provides a sufficient liquid seal in the area 30 and 62 between the circumferential groove and the surrounding environment of the radiant heat shield, so that the hermetic weld described above is generally Turns out it's not necessary.

本発明は、機械的強度大でかつ冷却剤通路網を形成する
、超電導ロータの放射熱遮へい体を提供することがわか
る。
It can be seen that the present invention provides a radiant heat shield for a superconducting rotor that has high mechanical strength and forms a coolant passage network.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は放射熱遮へい体の一部断面図、第2図は第1図
に示した放射熱遮へい体の横断面図である。 10・・・内側管、12・・・外側管、14・・・第1
の周溝、16・・・第2の周溝、18・・・軸溝、20
及び22・・・半径方向穴。
FIG. 1 is a partial sectional view of the radiant heat shield, and FIG. 2 is a cross sectional view of the radiant heat shield shown in FIG. 10...Inner tube, 12...Outer tube, 14...First
circumferential groove, 16... second circumferential groove, 18... shaft groove, 20
and 22... radial hole.

Claims (1)

【特許請求の範囲】 1、 超電導ロータのための放射熱遮へい体を有する回
転電機において、前記遮へい体は内側及び外側管を有し
、前記内側及び外側管の一方はその円筒状表面に複数の
軸方向に延ひる溝を有し、前記一方の管はその円筒状表
面において第1及び第2の周方向に延びる溝を有し、前
記第1の周溝は前記複数の軸溝の各々の一方の軸方向端
部と連通し、前記第2の周溝は前記複数の軸溝の各々の
他方の軸方向端部と連通し、前記内側管は各々の周溝と
交叉する少なくともひとつの半径方間に、延ひる穴を有
してその対応する周溝吉前記内側管の内側表面とを連通
させ、前記外側管は前記内側管のまわりに8いて同軸同
心関係で配置し、前記内側及び外側管はそれらの隣接す
や円筒状表面に沿って互いに爆発溶接されていることを
特徴とする回転電機。 2、 前記複数の軸溝及び前記第1及O−第2の周溝は
、前記内側管の円筒状外側表面に形成することを特徴と
する前記第1項記載の回転電機。 3、 前記複数の軸溝及び前記第1及び第2の周溝は、
前記外側管の円筒状内側表面lこ形成することを特徴上
する前記第1項記載の回転電機。 4、 前記外側管と内側管を爆発溶接する前に、前記溝
に除去可能な物質を充填することを特徴とするmJ記第
1,2あるいは6項記載の回転′電機。 5、 前記除去可能な物資は、前記半径方向穴の所定の
ひとつを介して除去されることを特徴とする前記第4項
記載の回転電機。 6、 前記除去可能な物質は、低融点合鴨、ポリスチレ
ン、イオウ、あるいは酸により腐蝕nJ 能な物質のひ
とつであることを特徴とする前記第4あるいは5項記載
の回転電機。 乙 超電導ロータ用放射熱遮へい体を製造する方法にお
いて、第1の管状部材の円筒状外側表面に2つの周溝を
互いに所定の距離たけ離隔して形成し、前記第1の管状
部材の円筒状外側表面に各々か前記2つの周溝の各々と
交叉して前記2つの周溝を連通させる複数の軸溝を形成
し、前記第1の管状部材の壁を貫通して半径方向に延び
る2つの穴であってその一方は前記2つの周溝の所定の
ひとつとまた、前記他方の穴は前記2つの周溝の他方の
ものと交叉する2つの半径方向穴を形成し、前記第1の
管状部材のまわりにそれと同軸関係に第2の管状部材を
配設し、前記第1及び第2の管状部材を爆発溶接するこ
とより成る方法。 8、 前記した爆発溶接前に前記軸溝及び周溝を除去可
能な物質で充填し、前記爆発溶接の終了後前記除去I】
]能な物質を取り除くことを特徴とする前記第7項記載
の方法。 9、 前記除去用能な物質を前記2つの半径方向穴の所
定のひとつより取り除くことを特徴とする前記第8J4
A記載の方法。 10、  前記物質は、低融点、燃焼可能、酸により腐
蝕される、あるいはイオウか若しくはポリスチレンを含
む群のうちから選ばれることを特徴とする前記第7,8
もしくは9項記載の方法。
[Claims] 1. A rotating electric machine having a radiant heat shield for a superconducting rotor, wherein the shield has an inner and an outer tube, and one of the inner and outer tubes has a plurality of radiant heat shields on its cylindrical surface. an axially extending groove; the one tube has first and second circumferentially extending grooves on its cylindrical surface; the first circumferential groove is adjacent to each of the plurality of axial grooves; one axial end, the second circumferential groove communicates with the other axial end of each of the plurality of axial grooves, and the inner tube has at least one radius intersecting each circumferential groove. the inner tube has an elongated hole in its corresponding circumference and communicates with the inner surface of the inner tube, the outer tube being disposed in coaxial concentric relation around the inner tube; A rotating electric machine, characterized in that the outer tubes are explosively welded to each other along their adjacent or cylindrical surfaces. 2. The rotating electric machine according to item 1, wherein the plurality of shaft grooves and the first and O-second circumferential grooves are formed on the cylindrical outer surface of the inner tube. 3. The plurality of axial grooves and the first and second circumferential grooves are
2. The rotating electrical machine according to claim 1, wherein the outer tube has a cylindrical inner surface. 4. The rotating electric machine according to item 1, 2 or 6, characterized in that the groove is filled with a removable substance before the outer tube and the inner tube are explosively welded. 5. The rotating electric machine according to item 4, wherein the removable material is removed through a predetermined one of the radial holes. 6. The rotating electrical machine according to item 4 or 5, wherein the removable substance is one of low-melting-point polymer, polystyrene, sulfur, or a substance that can be corroded by an acid. B. In a method for manufacturing a radiant heat shield for a superconducting rotor, two circumferential grooves are formed on the cylindrical outer surface of the first tubular member at a predetermined distance from each other, and the cylindrical shape of the first tubular member is a plurality of axial grooves are formed on the outer surface, each intersecting with each of the two circumferential grooves to communicate the two circumferential grooves, and two axial grooves extending radially through the wall of the first tubular member; holes forming two radial holes, one of which intersects a given one of said two circumferential grooves and said other hole intersects with the other of said two circumferential grooves; A method comprising disposing a second tubular member about the member in coaxial relationship therewith and explosive welding the first and second tubular members. 8. Filling the shaft groove and circumferential groove with a removable substance before the explosion welding, and removing the material after the explosion welding is completed.
] The method according to item 7, characterized in that a substance capable of being removed is removed. 9. Said No. 8 J4, characterized in that said removable substance is removed from a predetermined one of said two radial holes.
Method described in A. 10. The substance is selected from the group consisting of low melting point, combustible, corrosive by acid, or containing sulfur or polystyrene.
Or the method described in Section 9.
JP58032696A 1982-03-03 1983-02-28 Rotary electric machine with radition heat shield for superconductive rotor Pending JPS58159656A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US35448782A 1982-03-03 1982-03-03
US354487 1982-03-03

Publications (1)

Publication Number Publication Date
JPS58159656A true JPS58159656A (en) 1983-09-22

Family

ID=23393551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58032696A Pending JPS58159656A (en) 1982-03-03 1983-02-28 Rotary electric machine with radition heat shield for superconductive rotor

Country Status (6)

Country Link
JP (1) JPS58159656A (en)
CA (1) CA1200829A (en)
DE (1) DE3306985A1 (en)
FR (1) FR2522897B1 (en)
GB (1) GB2119582B (en)
IT (1) IT1170114B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6953143B2 (en) * 2003-04-11 2005-10-11 Advanced Energy Industries, Inc. Explosion welded design for cooling components

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5342105B2 (en) * 1974-06-05 1978-11-09
JPS54149493A (en) * 1978-05-11 1979-11-22 Westinghouse Electric Corp Superconductive device
JPS558265A (en) * 1978-07-05 1980-01-21 Hitachi Ltd Method of manufacturing electromagnetic shield of superconductive rotor
JPS56150966A (en) * 1980-04-24 1981-11-21 Westinghouse Electric Corp Superconductive generator exhibiting thermal transient response

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4250418A (en) * 1978-05-11 1981-02-10 Electric Power Research Institute, Inc. Superconducting generator and method
JPS5592567A (en) * 1978-12-29 1980-07-14 Mitsubishi Electric Corp Rotor for super conductive generator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5342105B2 (en) * 1974-06-05 1978-11-09
JPS54149493A (en) * 1978-05-11 1979-11-22 Westinghouse Electric Corp Superconductive device
JPS558265A (en) * 1978-07-05 1980-01-21 Hitachi Ltd Method of manufacturing electromagnetic shield of superconductive rotor
JPS56150966A (en) * 1980-04-24 1981-11-21 Westinghouse Electric Corp Superconductive generator exhibiting thermal transient response

Also Published As

Publication number Publication date
FR2522897B1 (en) 1986-05-30
GB2119582B (en) 1986-05-21
IT8319845A0 (en) 1983-03-01
CA1200829A (en) 1986-02-18
IT1170114B (en) 1987-06-03
DE3306985A1 (en) 1983-09-08
FR2522897A1 (en) 1983-09-09
GB8305110D0 (en) 1983-03-30
GB2119582A (en) 1983-11-16

Similar Documents

Publication Publication Date Title
US10371204B2 (en) Bearing assemblies, apparatuses, and related methods of manufacture
US5000368A (en) Method for cladding the ends of a pre-clad tubular product in preparation for threading
US4383854A (en) Method of creating a controlled interior surface configuration of passages within a substrate
US3005105A (en) Shipping cask for radioactive materials
EP2758681B1 (en) Bearing assemblies, apparatuses, and related methods of manufacture
JPH0321802B2 (en)
US4943001A (en) Tube-type vessel having crevice-free joints and method for manufacturing the same
US11158432B1 (en) Heat pipe reactor core and heat exchangers formation and deployment
US4295255A (en) Expanded cooling jacket assembly
US4746054A (en) Method of joining concentric cylinders
US3601884A (en) Method of constructing parts suitable for high heat flux removal in arc heaters
US4872507A (en) Well bore apparatus arranged for operating in high-temperature wells as well as in low-temperature wells
US2849387A (en) Corrosion resistant jacketed metal body
JPS58159656A (en) Rotary electric machine with radition heat shield for superconductive rotor
JPS58163264A (en) Rotary electric machine with superconductive rotor
US4232796A (en) Thermal release plug for a fabricated pressure vessel
US4264801A (en) Method of welding tube to header of heat exchanger
US4685205A (en) Apparatus for forming an explosively expanded tube-tube sheet joint including a barrier tube
US4646044A (en) Bobbinless solenoid coil
US2391747A (en) Penstock and method of fabricating penstocks
JPS61137692A (en) Production of radiation shield in rotor of superconduction rotary electric machine
JPH0739912B2 (en) Heat pipe manufacturing method
CA1320821C (en) Method and apparatus for explosively welding a sleeve into a heat exchanger tube
SU959961A1 (en) Non-detachable tube-to-vessel connection
JPS5926840B2 (en) Insulated piping structure