JPS58159366A - Current mirror circuit - Google Patents

Current mirror circuit

Info

Publication number
JPS58159366A
JPS58159366A JP57043149A JP4314982A JPS58159366A JP S58159366 A JPS58159366 A JP S58159366A JP 57043149 A JP57043149 A JP 57043149A JP 4314982 A JP4314982 A JP 4314982A JP S58159366 A JPS58159366 A JP S58159366A
Authority
JP
Japan
Prior art keywords
circuit
current mirror
resistor
island region
resistors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57043149A
Other languages
Japanese (ja)
Inventor
Katsumasa Kurata
倉田 勝正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57043149A priority Critical patent/JPS58159366A/en
Publication of JPS58159366A publication Critical patent/JPS58159366A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors
    • G05F3/265Current mirrors using bipolar transistors only

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Amplifiers (AREA)

Abstract

PURPOSE:To obtain excellent frequency characteristics by a method wherein the bias junction point for an island region wherein diffused resistors are formed is located at a place other than the circuit whereto the diffused resistors are directly connected. CONSTITUTION:PNP transistors Q5, Q6 constitute a differential amplifying circuit whereinto a current mirror circuit 5 is inserted as an active load to be routed to an output circuit via an emitter-follower circuit constituted of an NPN transistor Q4 and resistor R4. The bias junction point of an island region 4 is connected to a point A' that is the junction point for a resistor R5 and the anode of a diode D1. The diodes D1, D2 being located at a different place separated from a circuit whereto the resistors R1-R4 are directly connected, the original signal does not go through a parasitic capacity C'M generated by the island region 4, which reduces the mirror ball effect and ensures excellent frequency characteristics.

Description

【発明の詳細な説明】 本発明はカレントミラー回路、特に周[6%性の改善さ
れた、拡散抵抗を含みバイポーラ型へrhトランジスタ
からなるカレントミラー回路に関する0 半導体集積回路においては、回路の抵抗として拡散抵抗
を用いることが一般的である。この拡散抵抗は、例えは
P型シリコン基板にht11o&領域を設け、その中に
所定の形状のP重拡散領域を形成しく普通トランジスタ
のベース拡散と同時に行われる)取出し電極を設けるこ
とからできている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a current mirror circuit, and particularly to a current mirror circuit consisting of a bipolar rh transistor including a diffused resistor and having improved circuit resistance. Generally, a diffused resistor is used as a resistor. This diffused resistor is made by, for example, providing an ht11o region on a P-type silicon substrate, forming a P-heavy diffusion region of a predetermined shape in it, and providing an extraction electrode (which is usually done at the same time as transistor base diffusion). .

そしてこの場合重要な仁ととして、回路の動作中に抵抗
を流れる電流による電圧降下によシ、P重拡散領域とへ
型島領域とによシ形成されるPN接合が順バイアス状態
になるのを防ぐため、一般に拡散抵抗の最高電位点とh
型島領域の電位が等しくなるように接続されることがよ
く行われる。
An important point in this case is that the PN junction formed by the P-heavy diffusion region and the wedge-shaped island region becomes forward biased due to the voltage drop caused by the current flowing through the resistor during circuit operation. In order to prevent this, the highest potential point of the diffused resistor and h
Connections are often made so that the potentials of the mold island regions are equal.

このような拡散抵抗を含むカレントミラー回路において
は、高埼波になると、N型島領域とP型7リコン基板間
のPN接合によ多形成される接金谷倉が拡散抵抗に寄生
することになり周波数特性が悪くなるという問題がある
。例えに広帯域特性のきびしい演算増幅器などにおいて
、前記拡散抵抗を含むカレントミラー回路がアクティブ
負荷として使われ九場合十分な燭波数特性が得られない
場合がめる。
In a current mirror circuit including such a diffused resistor, when the wave becomes high, the contact valleys formed by the PN junction between the N-type island region and the P-type 7 silicon substrate become parasitic to the diffused resistor, and the frequency increases. There is a problem that the characteristics deteriorate. For example, when a current mirror circuit including the diffused resistor is used as an active load in an operational amplifier with severe broadband characteristics, it may not be possible to obtain sufficient wave number characteristics.

第1図はかかる従来例の演算増幅器の一部を示す(ロ)
略図である。)’N)’)?ンジスタQw 、Qaは差
動増幅回路′frIIl#成し、それぞれのベースは演
算増幅器の負極入力端子l、正極人力湖子2t−形成し
ている。そしてカレントミラー回路5がそのアクティブ
負荷として挿入され、NPN)ランジスタqと抵抗^に
よるエミッタホロワ回路によシ後段の出力回路へと専か
れている。カレントミラー回路5はN)’N)ランジス
タQt −Qt と抵抗島。
Figure 1 shows a part of such a conventional operational amplifier (b)
This is a schematic diagram. )'N)')? The resistors Qw and Qa form a differential amplifier circuit 'frIIl#, and their respective bases form the negative input terminal l and the positive input terminal 2t of an operational amplifier. A current mirror circuit 5 is inserted as an active load, and an emitter follower circuit consisting of an NPN transistor q and a resistor ^ is used exclusively for the output circuit at the subsequent stage. The current mirror circuit 5 consists of N)'N) transistor Qt -Qt and a resistive island.

R1による回路と、Q+ + Qtのベース駆動用のN
Pへトランジスタqと抵抗島tから構成されている。
A circuit with R1 and N for driving the base of Q+ + Qt.
It consists of a transistor q and a resistive island t.

ここで抵抗R1〜R4は同一島領域4に形成された拡散
抵抗からな9、特に高抵抗(例えtf50にΩ)を必要
とするR、 、 R4はピンチ抵抗f?llえばP型拡
散抵抗領域の一部分(その近傍のJlil+領域を含め
て)、にへ型拡散領域を設けP型拡散抵抗層を薄くした
もの、)を用いている。そしてこのピンチ抵抗用のN型
拡散領域とともにh型島領域4を、これら抵抗R8〜R
4の最高電位点であるA点、すなわち抵抗島と’J1.
Qtのベースならびに蟻のエミッタとの共通接続点に接
続されている。その結果、この回路では第1図に示すよ
うにA点と微細点間が寄生各音CMとして寄生すること
になる。
Here, the resistors R1 to R4 are diffused resistors formed in the same island region 4, and R, R4, which requires a particularly high resistance (for example, Ω for tf50), is a pinch resistor f? In other words, a part of the P-type diffused resistance region (including the Jlil+ region in the vicinity thereof) is used, in which a half-type diffused region is provided and the P-type diffused resistance layer is made thinner. Then, together with the N-type diffusion region for the pinch resistance, the h-type island region 4 is connected to the resistors R8 to R.
4 is the highest potential point, that is, the resistance island and 'J1.
It is connected to the base of Qt and the common connection point with the emitter of the ant. As a result, in this circuit, as shown in FIG. 1, parasitic sounds CM occur between the point A and the minute point.

ところでA点の電位は、抵抗島による電位降下分(例え
ば、抵抗島を2にΩ、電流をQ、1mAとして、0.2
V)とQlのベース・エンツタ間順電圧約0.7■の和
として約0.9■という低い値である。従って接合容蓄
は大となり大きな寄生容量CMが生じる0史にP型基板
として不純物濃度の高い埋込層−Fに抵抗島領域が形成
されることも多く、この場合にはより寄生容JICMが
大になる。
By the way, the potential at point A is equal to the potential drop caused by the resistor island (for example, assuming the resistor island is 2Ω, the current is Q, and 1mA, it is 0.2
This is a low value of about 0.9 sq. as the sum of the base-to-entrance forward voltage of about 0.7 sq. of V) and Ql. Therefore, the junction capacitance is large and a large parasitic capacitance CM occurs.As a P-type substrate, a resistive island region is often formed in the buried layer -F with a high impurity concentration, and in this case, the parasitic capacitance JICM is Become big.

このような、寄生容量CMが付加されたカレントミラー
回路を第1図に示すように、演算項@撥の入力段のアク
ティブ負荷として用いた場合には、ミラーボール付近に
おける位相遅れを助長し胸波数特性を悪化させるととも
に、演算増幅器を帰途回路として用い九場合自己発振を
起しやすくするなど回路の安定性が悪くなるという欠点
を有している。
As shown in Figure 1, when such a current mirror circuit to which a parasitic capacitance CM is added is used as an active load at the input stage of the operation term In addition to deteriorating the wave number characteristics, this method also has the drawback of deteriorating the stability of the circuit, such as making self-oscillation more likely to occur when an operational amplifier is used as a return circuit.

本発明の目的は、上述のかかる欠点が除去され、優れ九
周波数特性を有するところの、拡散抵抗を含むカレン)
1ラ一回路を提供することにある。
The object of the present invention is to eliminate the above-mentioned drawbacks and to provide a curved line containing diffused resistance that has excellent frequency characteristics.
The purpose is to provide one circuit.

本発明のカレントミラー回路は、拡散抵抗を含みNl’
N型バイデバイポーラトランジスタるカレントミラー回
路において、前記拡散抵抗の形成された島領域のバイア
ス接続点が前記カレン)<2−回路以外の点に設けられ
ていることからなっている。
The current mirror circuit of the present invention includes a diffused resistor and Nl'
In a current mirror circuit including an N-type by-device bipolar transistor, a bias connection point of the island region where the diffused resistor is formed is provided at a point other than the current (curren)<2- circuit.

以下本発明について図面を参照して絆細に説明する。The present invention will be described in detail below with reference to the drawings.

#!2図線本発明を適用した演算増幅器の一部を示す#
!lの実施例の回路図である。この実施例は上述の第1
図に示した従来例の回路に本発F!Aを適用した本ので
あって、島領域4のバイアス接続点を除いては従来例と
同じであシ参照記号も等しくしである。すなわちl’N
)’)ランジスタQs −Q・は差動増幅回路を構成し
、それぞれのベース祉演算増rf#A益の負極入力端子
l、正極入カー子2を形成し、エミッタは共通接続され
て定電流電源3により定taが供給されるようになって
いる。そしてカレントミラー回路5がそのアクティブ負
荷として挿入され、N)’Nトランジスタqと抵抗凡。
#! Figure 2 shows a part of an operational amplifier to which the present invention is applied.
! 1 is a circuit diagram of an embodiment of FIG. This embodiment is based on the first
The conventional circuit shown in the figure is based on the F! This is a book to which A is applied, and except for the bias connection point of the island region 4, it is the same as the conventional example, and the reference symbols are also the same. That is, l'N
)') The transistors Qs -Q constitute a differential amplifier circuit, and form a negative input terminal l and a positive input terminal 2 of each base circuit arithmetic operation increase rf#A gain, and their emitters are commonly connected to generate a constant current. A constant ta is supplied by the power supply 3. Then, a current mirror circuit 5 is inserted as its active load, and N)'N transistor q and a resistor q are inserted.

によるエミッタホロワ回路により彼段の出力回路へと導
かれている。(出力回路は図示していない)0カレント
ミラー(ロ)路5はN)’N)ランジスタQ、、Q雪と
抵抗R,、R,による回路と、Qt、Qtのベース駆動
用のN)’N)ランジスタもと抵抗島とから構成されて
いる。ここで抵抗kL1〜R4は同一島領域4に形成さ
れた拡散抵抗からなり、特に高抵抗のkLt 、 )t
a Fiピンチ抵抗からなっている。
It is guided to the output circuit of the next stage by an emitter follower circuit. (The output circuit is not shown) 0 current mirror (b) path 5 is N)'N) A circuit consisting of transistors Q, , Q and resistors R,, R, and N for driving the base of Qt and Qt. 'N) It consists of a transistor and a resistive island. Here, the resistors kL1 to R4 are made of diffused resistors formed in the same island region 4, and have particularly high resistance kLt, )t
a It consists of a Fi pinch resistor.

そしてVcc 端子から抵抗′I44を介してダイオー
ドハ、D、が直列に接続されて接地され、抵抗島とダイ
オードD1の7ノードの接続点であるに点に、島領域4
のバイアス接続点が接続されることでこの実施例の回路
はできている。
A diode H, D, is connected in series from the Vcc terminal through a resistor 'I44 and grounded, and an island region 4
The circuit of this embodiment is constructed by connecting the bias connection points of .

従って、この実施例の回路においては、島領域4による
寄生容量C′Mは、第2図に示すように島領域4のバイ
アス用として新たに挿入され九ダイオードD、 、 D
、の両端に付加されることになる。
Therefore, in the circuit of this embodiment, the parasitic capacitance C'M due to the island region 4 is replaced by nine diodes D, , D, which are newly inserted for biasing the island region 4, as shown in FIG.
, will be added to both ends of .

そしてこのターイオードDI、 D、は、抵抗R1〜に
4が直接接続されている回路とは、切離なされた全態別
の点に設けられているので、本来の信号がこの寄生容量
しMをとおることが無い。その結果この実施例の回路は
従来例よりもミラーボールの影響を小さくで書、優れた
周波数特性を有している。
Since the third diodes DI and D are installed at a completely different point from the circuit in which 4 is directly connected to the resistors R1 to R1, the original signal is affected by this parasitic capacitance. There is no passing through. As a result, the circuit of this embodiment has a smaller influence of mirror balls than the conventional circuit, and has excellent frequency characteristics.

第3図は本発明の第2の実施例を示す回路図である。こ
の実施例の回路は第2因に示し次第1の実施例の回路に
おいて、トランジスタQs 、 Q4の回路を省いて簡
単化されたものである。拡散抵抗はR,、)t、の2個
でその島領域4′・は、カレントミラー回路5′とは別
に設けられたダイオードl、/と抵抗りからなるバイア
スの回路OA″点に接続されている。すなわちこの場合
には第1の実施例の回路で必要としたバイアス用のダイ
オードD、 、 D、が、1個のダイオード居のみで十
分なバイアスが得られている。CM“は寄生容量で、優
れた周gLa%性を有することは第lの実施例と同様で
ある。
FIG. 3 is a circuit diagram showing a second embodiment of the present invention. The circuit of this embodiment is simplified by omitting the circuit of the transistors Qs and Q4 in the circuit of the first embodiment as shown in the second factor. There are two diffused resistors R, , )t, and their island regions 4' are connected to the OA'' point of a bias circuit consisting of diodes l, / and resistors provided separately from the current mirror circuit 5'. In other words, in this case, the bias diodes D, , D, which were required in the circuit of the first embodiment, can provide sufficient bias with only one diode. CM" is a parasitic It is the same as the first example in terms of capacity and excellent gLa% properties.

以上の説明においては、ミラーボールの発生な力段のア
クティブ負荷として用いられるカレントミラー回路を主
として取り上げてきたが、本発明の趣旨は何もこれらの
実施例に限定されるわけでは無い○又、拡散抵抗の形成
されている島領域のバイアス接続点を、それら拡散抵抗
が直接接続されている部分回路以外の点に接続されてお
れは良く、上述の実施例のように新たに設けても良いし
、あるいは問題となる部分回路以外の点で適切なバイア
ス電圧が与えられる点があれはそれでも良い。
In the above description, the current mirror circuit used as an active load of a power stage that generates a mirror ball has been mainly taken up, but the gist of the present invention is not limited to these embodiments. It is fine if the bias connection point of the island region where the diffused resistors are formed is connected to a point other than the partial circuit to which those diffused resistors are directly connected, or it may be newly provided as in the above embodiment. However, if an appropriate bias voltage can be applied to a point other than the problematic partial circuit, that is fine.

以上詳細に説明したとおり、本発明のカレントミラー回
路は、回路の周波数特性に影響を及ばず拡散抵抗の形成
された島領域のバイアス接続点を、それら拡散抵抗が直
接に接続され九回路以外の点に設けることにより、その
島領域によ多形成される寄生容量の影響を無くすること
ができるので、優れた周波数特性が得られるという効果
を有している。
As explained in detail above, the current mirror circuit of the present invention allows the bias connection point of the island region where the diffused resistors are formed to be connected to the bias connection point of the island region where the diffused resistors are directly connected without affecting the frequency characteristics of the circuit. By providing it at a point, it is possible to eliminate the influence of parasitic capacitance that is often formed in the island region, so it has the effect that excellent frequency characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の演算増幅器の一部を示す回路図、第2
図及び第3図はそれぞれ本発明を適用した演算増幅器の
一部を示す第1及び第2の実施例の回路図である。 1・・・・・・負極入力端子、2・・・・・・正極入力
端子、3・・・・・・定電流源、4.4′・・・・・・
高領域、5.5′・・団・カレントミラー回路%QI〜
Q4・・・・・小)”N)ランジスタ、Q、+ Qs 
・・・・・・l’N)’)ランジスタ、k、−H。 、馬・・・・・・抵抗、CM 、 CM’ 、 CM“
・・印・寄生容量、D。 、D、’、l)2  ・・・・・・ダイオード、Vcc
・・・・・・電源。 27
Figure 1 is a circuit diagram showing part of a conventional operational amplifier;
3 are circuit diagrams of first and second embodiments showing a part of an operational amplifier to which the present invention is applied, respectively. 1... Negative input terminal, 2... Positive input terminal, 3... Constant current source, 4.4'...
High region, 5.5'...group current mirror circuit%QI~
Q4...Small) "N) transistor, Q, + Qs
...l'N)') transistor, k, -H. , horse... resistance, CM, CM', CM"
...mark Parasitic capacitance, D. ,D,',l)2...Diode, Vcc
······power supply. 27

Claims (1)

【特許請求の範囲】[Claims] 拡散抵抗を含みバイポーラ![1)’Nトランジスタか
らなるカレントきラー回路において、前記拡散抵抗の形
成された島領域のバイアス嵌続点が前記カレントミラー
回路以外の点に設けられていることを特許とするカレン
トミラー回路。
Bipolar including diffusion resistance! [1] A current mirror circuit which is patented in that in a current filter circuit consisting of 'N transistors, a bias engagement point of the island region where the diffused resistor is formed is provided at a point other than the current mirror circuit.
JP57043149A 1982-03-18 1982-03-18 Current mirror circuit Pending JPS58159366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57043149A JPS58159366A (en) 1982-03-18 1982-03-18 Current mirror circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57043149A JPS58159366A (en) 1982-03-18 1982-03-18 Current mirror circuit

Publications (1)

Publication Number Publication Date
JPS58159366A true JPS58159366A (en) 1983-09-21

Family

ID=12655778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57043149A Pending JPS58159366A (en) 1982-03-18 1982-03-18 Current mirror circuit

Country Status (1)

Country Link
JP (1) JPS58159366A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61199653A (en) * 1985-03-01 1986-09-04 Toshiba Corp Amplifier
JPS6240813A (en) * 1985-08-12 1987-02-21 モトロ−ラ・インコ−ポレ−テツド Differential input attenuator circuit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5565453A (en) * 1978-11-10 1980-05-16 Nec Corp Semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5565453A (en) * 1978-11-10 1980-05-16 Nec Corp Semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61199653A (en) * 1985-03-01 1986-09-04 Toshiba Corp Amplifier
JPH0518464B2 (en) * 1985-03-01 1993-03-12 Tokyo Shibaura Electric Co
JPS6240813A (en) * 1985-08-12 1987-02-21 モトロ−ラ・インコ−ポレ−テツド Differential input attenuator circuit

Similar Documents

Publication Publication Date Title
US4059808A (en) Differential amplifier
JPS5838965B2 (en) Zoufuku Cairo
JPH05173658A (en) Temperature compensating device for reverse saturation current
KR0177928B1 (en) Wideband amplifier
US6483683B1 (en) Overvoltage protection
US4013973A (en) Amplifier arrangement
JPH0521344B2 (en)
JPS58159366A (en) Current mirror circuit
US3936731A (en) Amplifier with fast recovery after input signal overswing
US4017749A (en) Transistor circuit including source voltage ripple removal
US4994694A (en) Complementary composite PNP transistor
US6396319B2 (en) Semiconductor integrated circuit with quick charging/discharging circuit
US4179650A (en) Variable impedance circuits
JPS6221070Y2 (en)
JPS6252486B2 (en)
JPH07170134A (en) Amplifier circuit
JP3979763B2 (en) Differential amplifier circuit
JPS6259487B2 (en)
JP2901441B2 (en) Buffer amplifier
JPH079615B2 (en) Absolute voltage-current conversion circuit
JP2633831B2 (en) Bipolar semiconductor integrated circuit
JPH0646370B2 (en) Constant current circuit
JPS624884B2 (en)
JPS639410B2 (en)
JPH063868B2 (en) Differential type comparator circuit