JPS5815934A - Preparation of methacrolein - Google Patents

Preparation of methacrolein

Info

Publication number
JPS5815934A
JPS5815934A JP56113588A JP11358881A JPS5815934A JP S5815934 A JPS5815934 A JP S5815934A JP 56113588 A JP56113588 A JP 56113588A JP 11358881 A JP11358881 A JP 11358881A JP S5815934 A JPS5815934 A JP S5815934A
Authority
JP
Japan
Prior art keywords
temperature
catalyst
raw material
oxygen
mixed gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56113588A
Other languages
Japanese (ja)
Inventor
Akira Iio
飯尾 章
Katsumi Ito
克美 伊藤
Masatoshi Arakawa
荒川 昌敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Nippon Synthetic Chemical Industry Co Ltd
Original Assignee
Nippon Synthetic Chemical Industry Co Ltd
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Synthetic Chemical Industry Co Ltd, Japan Synthetic Rubber Co Ltd filed Critical Nippon Synthetic Chemical Industry Co Ltd
Priority to JP56113588A priority Critical patent/JPS5815934A/en
Publication of JPS5815934A publication Critical patent/JPS5815934A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain methacrolein, etc. in high yield with suppressed maximal temperature of catalytic bed in catalytically oxidizing isobutene, etc. with oxygen in a fixed bed multi-tubular reactor, by preheating a raw material mixed gas to be fed to the catalytic bed at a higher temperature than that on the refrigerant side, and feeding the raw material mixed gas to the catalytic bed. CONSTITUTION:Isobutene or tert-butanol or both are catalytically reacted with oxygen or a gas containing the oxygen in the presence of a catalyst, e.g. containing Mo, Bi and Fe, in a fixed bed multi-tubular reactor to prepare methacrolein and/or methacrylic acid. In the process, the temperature of the raw material mixed gas containing the isobutene and/or tert-butanol and oxygen (gas containing the oxygen) to be introduced into the catalytic bed is 5-100 deg.C, preferably 15-45 deg.C, higher than the temperature (250-500 deg.C) on the refrigerant side. The performance of the catalyst can be fully obtained at the inlet of the catalytic bed. The maximal temperature of the catalytic bed is reduced, and the catalytic life is prolonged by the prevention of the reduction in the catalytic activity due to the thermal deterioration.

Description

【発明の詳細な説明】 本発明はインブチ/および/またはt−ブタノールC以
下イノブテン等と略称□する)を酸素または酸素を含む
ガス(以下酸素と略称する)と反応させてメタクロレイ
ンおよび/またはメタクリル酸(以下メタクロレイン等
と略称する)を製造する方法に関する。さらに詳しくは
固定床多管式反応器を用いてインブテン等を酸素で接触
酸化するにあたり、触媒床に供給する原料混合ガスを冷
媒側温度より高い温度に予熱して供給することにより、
触媒床の最高温度を抑え、収率よ〈メタクロレイン等を
製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention produces methacrolein and/or The present invention relates to a method for producing methacrylic acid (hereinafter abbreviated as methacrolein etc.). More specifically, when catalytically oxidizing imbutene etc. with oxygen using a fixed bed multi-tubular reactor, the raw material mixed gas supplied to the catalyst bed is preheated to a temperature higher than the refrigerant side temperature and then supplied.
This invention relates to a method for producing methacrolein, etc., by suppressing the maximum temperature of the catalyst bed and increasing the yield.

イノブテン、等を原料に固定床接触酸化反応にヨリメタ
クロレイン等を製造する方法はすでによく知られており
、そのための優れた触媒も多数提案されている。例えば
特開昭50−4010、同50−130709−同5l
−70709(以上Mo −B 1−Fe系)、同55
−1255−127328(アルカ1j金属系)が挙げ
られる。イソブチン等からメタクロレイン等を生−成す
る反応は発熱反応であり、上記の改良された触媒を用い
ても副反応として一酸化炭素、二酸化炭素等の生成があ
る程度起こるため−インブテン等の酸化工程全体とし、
では非常に大きな発熱を伴うことになり、この反応熱を
効果的に除去しないと触媒床の温度が過度に上昇してり
、まい、このことによってさらに−酸化炭素、二酸化炭
素等の副生成物が増大し、メタクロレイン等目的生成物
の収率の低下を齋らすのみならず、熱による触媒の劣化
を早めるため、充分な触媒寿命を維持できなくなる等の
問題がある。
The method of producing yorimethacrolein and the like through a fixed bed catalytic oxidation reaction using a raw material such as inobutene is already well known, and many excellent catalysts for this purpose have also been proposed. For example, JP-A-50-4010, JP-A-50-130709-JP-A-5L
-70709 (more than Mo -B 1-Fe system), same 55
-1255-127328 (alka 1j metal type). The reaction to produce methacrolein etc. from isobutene etc. is an exothermic reaction, and even if the above-mentioned improved catalyst is used, carbon monoxide, carbon dioxide etc. will be produced to some extent as side reactions. as a whole;
However, if this heat of reaction is not effectively removed, the temperature of the catalyst bed will rise excessively, and this will further increase the production of by-products such as carbon oxides and carbon dioxide. Not only does this increase the yield of target products such as methacrolein, but it also accelerates the deterioration of the catalyst due to heat, causing problems such as the inability to maintain a sufficient catalyst life.

従って上記反応の様な大きな発熱を伴なう炭化水素の接
触酸化反応は通常は多管式熱交換器型反応器を用いて管
内に触媒を充てんし、反応管の外側には触媒床より低い
温度の冷媒体を流すことにより酸化反応で発生した反応
熱を効果的に除去し、触媒床の温度が過度に上昇し、な
いようにすることが広く行なわれている。しかし冷媒体
の温度の冷却は触媒床温度を低下させて反応率を下げて
しまい経済的に好ましくなく、したがって冷媒体温度を
制御して適度に反応熱を除去する必要がある。しかしな
がら多管式熱交換器型反応器で接触酸化反応を効率良く
行なうには単に冷媒体の温度を制御するだけでは不十分
で、触媒床に導入される原料混合ガスの温度を制御する
事も必要である。すなわちイソブチン等を酸化してメタ
クロレイン等を製造するには上記提案の如く触媒として
Mo−Hl−Fe系等を用いるが、いずれの触媒も25
0℃以上、多くは300℃以上でその性能を発揮するた
め。
Therefore, in the catalytic oxidation reaction of hydrocarbons, which generates a large amount of heat, such as the reaction described above, a shell-and-tube heat exchanger type reactor is usually used, the tubes are filled with a catalyst, and the outside of the reaction tube is placed at a lower level than the catalyst bed. It is widely practiced to effectively remove the reaction heat generated in the oxidation reaction by flowing a cooling medium at a high temperature to prevent the temperature of the catalyst bed from rising excessively. However, cooling the coolant temperature lowers the catalyst bed temperature and lowers the reaction rate, which is economically undesirable. Therefore, it is necessary to control the coolant temperature to appropriately remove the reaction heat. However, in order to carry out the catalytic oxidation reaction efficiently in a multi-tubular heat exchanger type reactor, it is not enough to simply control the temperature of the cooling medium; it is also necessary to control the temperature of the raw material mixture gas introduced into the catalyst bed. is necessary. That is, to produce methacrolein etc. by oxidizing isobutyne etc., a Mo-Hl-Fe system etc. is used as a catalyst as proposed above, but any catalyst has a
This is because they exhibit their performance at temperatures above 0°C, often above 300°C.

(最高温度は触媒の種類によって異なる。)従来は反応
管の触媒床の上に反応に不活性な粒体からなる予熱層を
設けておき、この予熱層の長さを変えることに原料混合
ガスを適当な温度(最高は冷媒体温度)まで予熱して触
媒床に供給していた。しかし2本発明者らの検討によれ
ば、この予熱方法を用いてイノブテン等の酸化反応を行
なうと冷媒体温度を制御しても触媒床の最高温度は触媒
性能が最高に発揮される温度から大きくかけ離れた高温
になって反応成績が触媒量の少ない実験室スケールのデ
ータより著るしく低下するのみならず、その触媒寿命も
実験室スケールのデータよ)著るしく短かくなってしま
う事が明らかになった。
(The maximum temperature varies depending on the type of catalyst.) Conventionally, a preheating layer made of particles inert to the reaction is provided on the catalyst bed of the reaction tube, and the length of this preheating layer can be changed to was preheated to an appropriate temperature (the maximum temperature is the coolant temperature) and then supplied to the catalyst bed. However, according to the studies conducted by the inventors of the present invention, when the oxidation reaction of inbutene, etc. is carried out using this preheating method, the maximum temperature of the catalyst bed will be lower than the temperature at which the catalyst performance is maximized even if the coolant temperature is controlled. Not only will the reaction result be significantly lower than the laboratory-scale data with a small amount of catalyst, but the life of the catalyst will also be significantly shortened (as compared to the laboratory-scale data) due to the extremely high temperature. It was revealed.

本発明者らは、これらの欠点の改良に鋭意努めた結果、
意外にも原料混合ガスの予熱を従来の方法に変えて、別
途に設置した熱交換器等で行ない、多管式熱交換器型反
応器の冷媒側温度より5〜100℃高い温度に予熱【て
触媒床に供給すれば触媒床の温度分布を大幅に改良でき
As a result of our earnest efforts to improve these drawbacks, the present inventors found that
Surprisingly, the raw material mixed gas was preheated to a temperature 5 to 100°C higher than the temperature on the refrigerant side of the multi-tubular heat exchanger type reactor by changing the conventional method to preheating the raw material mixture using a separately installed heat exchanger, etc. If the temperature distribution of the catalyst bed is supplied to the catalyst bed, the temperature distribution of the catalyst bed can be greatly improved.

触媒床の最高温度を抑え、反応成績も大幅に改良できる
ことを見出し0、本発明を完成した。すなわち本発明は
多管式熱交換器型反応器を用い、イソブチン等を触媒の
存在下、酸素により酸化し、てメタクロレイン等を製造
するにあり、触媒床に導入する原料混合ガスの温度を冷
媒側温度より5〜100℃高くし、て供給するメタクロ
レイン等の製造方法である。
They discovered that the maximum temperature of the catalyst bed could be suppressed and the reaction results could be significantly improved, and the present invention was completed. That is, the present invention uses a multitubular heat exchanger type reactor to oxidize isobutyne etc. with oxygen in the presence of a catalyst to produce methacrolein etc., and the temperature of the raw material mixed gas introduced into the catalyst bed is controlled. This is a method for producing methacrolein, etc., which is supplied at a temperature 5 to 100°C higher than the refrigerant side.

本発明において使用される触媒は特に制限はないが、上
記提案に示されたようなMo −B i −pe系、M
o−B1−Fe −Co−8b系やM o −P−7n
、カリ金属系が好ましく用いられる。
The catalyst used in the present invention is not particularly limited, but includes Mo-B i -pe system as shown in the above proposal, M
o-B1-Fe-Co-8b system and Mo-P-7n
, potassium metal type are preferably used.

反応に使用されるイソブチン、t−ブタノールは特に高
純度の物である必要はなく、一般の工業的に入手し得る
ものでよく、また反応に悪影響を及ぼさないもの1例え
ばイノブテンではブタン類、ブテン類が含まれていても
よく、を−ブタノールでは水が多量に含まれていても差
し支えない。触媒床に供給される原料混合ガスはインブ
テン等および酸素のほかに希釈ガスが含まれていてもよ
く、希釈ガスとして窒素、二、酸化炭素、水等が好まし
く用いられる。
The isobutyne and t-butanol used in the reaction do not need to be of particularly high purity, and may be those that are commercially available. In the case of butanol, there is no problem even if it contains a large amount of water. The raw material mixed gas supplied to the catalyst bed may contain a diluent gas in addition to inbutene and the like and oxygen, and nitrogen, dicarbonate, carbon oxide, water, etc. are preferably used as the diluent gas.

冷媒側温度は用いられる触媒、空間速度、原料混合ガス
組成、反応圧力等により変化するが、通常250〜50
0℃が用し・られる。本発明において触媒床に供給する
原料混合ガスは冷媒側温度より5〜100℃、好ましく
は10〜60℃、より好まり、 <は15〜45℃高い
温度に予熱する。原料混合ガスの温度を冷媒側温度より
100℃を超えて高く予熱して触媒床に供給すると、触
媒床上部で急激な反応が起り反応の制御ができなくなり
、また反応成績も低下するので好ましくない。また原料
混合ガスの温度を冷媒側温1度より低くするか−高くて
も冷媒温度程度では触媒床人口付近では触媒活性が充分
に現われる温度より低いため、触媒床の最高温度は触媒
性能が最高に発揮される温度より大きくかげ離れた高温
となり、メタクロレイン等目的生成物の収率の低下をも
たらすので好ましくない。
The temperature on the refrigerant side varies depending on the catalyst used, space velocity, raw material mixed gas composition, reaction pressure, etc., but is usually 250 to 50.
0℃ is used. In the present invention, the raw material mixed gas supplied to the catalyst bed is preheated to a temperature 5 to 100°C, preferably 10 to 60°C, more preferably 15 to 45°C higher than the refrigerant side temperature. If the temperature of the raw material mixed gas is preheated to a temperature higher than the refrigerant side temperature by more than 100°C and then supplied to the catalyst bed, a rapid reaction will occur above the catalyst bed, making it impossible to control the reaction, and the reaction performance will also deteriorate, which is undesirable. . Also, the temperature of the raw material mixed gas should be lower than the refrigerant side temperature by 1 degree Celsius, or even higher than the refrigerant temperature, which is lower than the temperature at which sufficient catalytic activity appears near the catalyst bed population. This is not preferable because the temperature is much higher than that exhibited by the reaction, resulting in a decrease in the yield of the desired product such as methacrolein.

これに対し本発明により、原料混合ガスを冷媒体温度よ
り5〜100℃、好ましくは10〜60℃、より好まり
、 < &’r、 i 5〜45℃高い温度で供給すれ
ば、触媒床人口付近でも触媒の活性が充分に現われ、充
分な反応成績が得られるため触媒床最高温度が低下する
と考えられる。又触媒床温度分布も本発明とそれ以外で
は大きく異なり1本発明では最高温度が低く押えられ。
On the other hand, according to the present invention, if the raw material mixed gas is supplied at a temperature higher than the refrigerant temperature by 5 to 100°C, preferably 10 to 60°C, more preferably 5 to 45°C, the catalyst bed It is thought that the maximum temperature of the catalyst bed decreases because the catalyst becomes sufficiently active even near the population, and sufficient reaction results are obtained. Further, the temperature distribution of the catalyst bed is also significantly different between the present invention and other catalysts, with the maximum temperature being kept low in the present invention.

これが反応成績の良好なこと、触媒寿命が長くなる原因
として考えられる。
This is considered to be the reason for the good reaction results and long catalyst life.

本発明方法によれば次の効果を得ることができる。According to the method of the present invention, the following effects can be obtained.

(1)原料混合ガスを冷媒側温度より5〜100℃高い
温度で触媒床へ供給することにより、特に触媒床入口部
で触媒の性能を充分引出すことが可能となり一従来の冷
媒側温1度と同温度以下で原料混合ガスを触媒床に供給
する場合と比較して高い活性、選択性を得ることができ
る。
(1) By supplying the raw material mixed gas to the catalyst bed at a temperature 5 to 100 degrees Celsius higher than the temperature on the refrigerant side, it is possible to bring out the full performance of the catalyst, especially at the inlet of the catalyst bed, compared to the conventional refrigerant side temperature of 1 degree Celsius. Higher activity and selectivity can be obtained compared to the case where the raw material mixed gas is supplied to the catalyst bed at the same temperature or lower.

(2)原料混合ガスを冷媒側温度より5〜100℃高い
温度で触媒床へ供給することにより、触媒床の最高温度
を引き下げ、゛熱劣化による触媒活性の低下を防ぎ、触
媒寿命をのばすことができる。
(2) By supplying the raw material mixed gas to the catalyst bed at a temperature 5 to 100 degrees Celsius higher than the temperature on the refrigerant side, the maximum temperature of the catalyst bed can be lowered, ``preventing a decrease in catalyst activity due to thermal deterioration, and extending the life of the catalyst.'' I can do it.

次に実施例により本発明をさらに具体的に説明する。な
お空間速度、イソブチン転化率、選択率を以下のように
定義する。
Next, the present invention will be explained in more detail with reference to Examples. Note that the space velocity, isobutyne conversion rate, and selectivity are defined as follows.

実施例1−比較例1 矛1図に示しまた工程によって運転した。内径21 m
m 、長さ1.5mのステンレス製反応器に、特開昭5
1−70709に従い調製した触媒(組成−Mo、2B
 11Fe8Co、 Sb 、、 8b o、 Ox、
5.5mmφのAt203に担持)を4’85mt (
充てん長さ1.2m)充てんし、反応管に外接し、た溶
融塩浴はさらに外側を電熱ヒーターで加熱し、溶融塩浴
の下部より窒素ガスを吹き込んで攪拌して浴の温度が均
一になるようにし、全体を牙1表に示した温度に保った
。一方イツブテンl、 73 mol/Hr、空気20
.78 mol/)lr、水12.13 mol/I(
rを気化器に供給して水を気化、混合せしめた後予熱器
に供給し、そこで原料混合ガスを矛1表に示した温度に
予熱し、反応器に供給した。なお、反応器内の圧力は反
応器上部において0.8 kf/iGであった。反応開
始後矛1表に示した時間を経過し、た時の各生成物およ
び未反応イソブチンの分析を行ない、インブチ/の転化
率、メタクロレイン、−酸化炭素、二酸化炭素の選択率
および触媒床の最高温度を求めた。結果は第1表に示し
、た。
Example 1 - Comparative Example 1 The system was operated according to the process shown in Figure 1. Inner diameter 21 m
m, in a stainless steel reactor with a length of 1.5 m,
Catalyst prepared according to No. 1-70709 (composition-Mo, 2B
11Fe8Co, Sb,, 8bo, Ox,
5.5mmφ At203) is 4'85mt (
The outside of the molten salt bath was further heated with an electric heater, and nitrogen gas was blown into the bottom of the molten salt bath and stirred to keep the temperature of the bath uniform. The whole was kept at the temperature shown in Table 1. On the other hand, Itsubuten l, 73 mol/Hr, air 20
.. 78 mol/Ir, water 12.13 mol/I(
After supplying water to a vaporizer to vaporize and mix water, it was supplied to a preheater, where the raw material mixed gas was preheated to the temperature shown in Table 1, and then supplied to the reactor. Note that the pressure inside the reactor was 0.8 kf/iG at the top of the reactor. After the time period shown in Table 1 had elapsed after the start of the reaction, each product and unreacted isobutyne were analyzed to determine the conversion rate of inbutylene, methacrolein, carbon oxide, carbon dioxide selectivity, and catalyst bed. The maximum temperature was determined. The results are shown in Table 1.

また反応開始後30時間経過した時の触媒床の温度分布
図を矛2図および牙3図に示し、た。
In addition, the temperature distribution diagrams of the catalyst bed 30 hours after the start of the reaction are shown in Figure 2 and Figure 3.

(実験番号1および1) 牙1表より本発明によるメタクロレインおよび/または
メタクリル酸の製造方法は、効果があることがわかる。
(Experiment No. 1 and 1) From Table 1, it can be seen that the method for producing methacrolein and/or methacrylic acid according to the present invention is effective.

実施例2、比較例2 実施例1と同様の装置を用い、特開昭50−13070
9に従い調整した触媒(組成Mo、2Bi。
Example 2, Comparative Example 2 Using the same apparatus as in Example 1, JP-A-50-13070
9 (composition Mo, 2Bi.

Fe8Co78b、、2Cs、20x 、6.5 mm
φのA t、 03に担持)を反応器に485mt(充
てん長さ12m)充てんし、浴温を350℃とし、牙2
表に示した条件で、実施例1と同様に反応を行なった。
Fe8Co78b, 2Cs, 20x, 6.5 mm
A reactor was filled with 485 mt (filling length 12 m) of A t, 03 of φ, the bath temperature was set to 350 °C,
The reaction was carried out in the same manner as in Example 1 under the conditions shown in the table.

その結果を第2表に示した。The results are shown in Table 2.

【図面の簡単な説明】[Brief explanation of the drawing]

f1図は、本発明の工程図、矛2図および矛3図はそれ
ぞれ実験番号1,1′の触媒床における温度分布図であ
る。 1・・・・・・・・・気化器  2・・・・・・・・原
料混合ガス予熱器3・・・・・・・・・反応器   4
・・・・・・・・・メタクロレイン回収装置5・・・・
・・・・・溶融塩浴 6・・・・・・・・・電熱ヒータ
ーT1  ・・・・・・・浴温    T2・・・・・
・・原料混合ガス供給温度T3・・・・・触媒床最高温
度 特許出願人   日本合成ゴム株式会社代理人 弁理士
伊東 彰 第1図 水 71ソソIV歌 第2図 300    350    400 触碩床温度(0c)
Figure f1 is a process diagram of the present invention, Figures 2 and 3 are temperature distribution diagrams in the catalyst bed of experiment numbers 1 and 1', respectively. 1...... Vaporizer 2... Raw material mixed gas preheater 3... Reactor 4
......Methacrolein recovery device 5...
...Molten salt bath 6...Electric heater T1 ...Bath temperature T2...
... Raw material mixed gas supply temperature T3 ... Catalyst bed maximum temperature Patent applicant: Japan Synthetic Rubber Co., Ltd. Agent Patent attorney Akira Ito Figure 1 Water 71 Soso IV Song Figure 2 300 350 400 Touch bed temperature ( 0c)

Claims (7)

【特許請求の範囲】[Claims] (1)固定床多管式反応器を用い、イソブチンおよび/
またはt−ブタノールを触媒の存在下、酸素または酸素
を含むガスと接触反応させてメタクロレインおよび/ま
たはメタクリル酸を製造するにあたり、触媒床に導入す
る上記イソブチ/および/またはt−ブタノールと酸素
または酸素を含むガスとの原料混合ガスの温度を冷媒側
温度より5〜100℃高(L、て供給することを特徴と
するメタクロレインおよび/またはメタクリル酸の製造
方法
(1) Using a fixed bed multitubular reactor, isobutine and/or
Alternatively, when producing methacrolein and/or methacrylic acid by catalytically reacting t-butanol with oxygen or an oxygen-containing gas in the presence of a catalyst, the isobutyl/and/or t-butanol introduced into the catalyst bed and oxygen or A method for producing methacrolein and/or methacrylic acid, characterized in that the temperature of a raw material mixed gas with a gas containing oxygen is supplied at a temperature 5 to 100°C higher (L) than the temperature on the refrigerant side.
(2)触媒が少なくともMOlBi−およびFeを含有
するものである特許請求の範囲子(1)項記載の製造方
(2) The manufacturing method according to claim (1), wherein the catalyst contains at least MOlBi- and Fe.
(3)触媒が少なくともMo−Bi、 Fe、 Coお
よusbを含有するものである特許請求の範囲M・<1
)項記載の製造方法
(3) Claim M<1 in which the catalyst contains at least Mo-Bi, Fe, Co and USB
Manufacturing method described in )
(4)触媒が少なくともMo、、P−アルカリ金属を含
有するものである特許請求の範囲オ・(1)項記載の製
造方法
(4) The manufacturing method according to claim E.(1), wherein the catalyst contains at least Mo, P-alkali metal.
(5)冷媒側温度が250〜500℃である特許請求の
範囲+ <1)項記載の製造方法
(5) The manufacturing method according to claim +<1), wherein the temperature on the refrigerant side is 250 to 500°C
(6)触媒床に導入する原料混合ガスの温度を冷媒側温
度より10〜60℃高くする特許請求の範囲子(1)項
記載の製造方法
(6) The manufacturing method according to claim (1), in which the temperature of the raw material mixed gas introduced into the catalyst bed is 10 to 60°C higher than the temperature on the refrigerant side.
(7)触媒床に導入する原料混合ガスの温度を冷媒側温
度より15〜45℃高くする特許請求の範囲オ(1)項
記載の製造方法
(7) The manufacturing method according to claim E (1), in which the temperature of the raw material mixed gas introduced into the catalyst bed is 15 to 45 degrees Celsius higher than the temperature on the refrigerant side.
JP56113588A 1981-07-22 1981-07-22 Preparation of methacrolein Pending JPS5815934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56113588A JPS5815934A (en) 1981-07-22 1981-07-22 Preparation of methacrolein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56113588A JPS5815934A (en) 1981-07-22 1981-07-22 Preparation of methacrolein

Publications (1)

Publication Number Publication Date
JPS5815934A true JPS5815934A (en) 1983-01-29

Family

ID=14616016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56113588A Pending JPS5815934A (en) 1981-07-22 1981-07-22 Preparation of methacrolein

Country Status (1)

Country Link
JP (1) JPS5815934A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6133135A (en) * 1984-07-24 1986-02-17 Mitsubishi Rayon Co Ltd Preparation of methacrolein and methacrylic acid
WO2003076380A1 (en) * 2002-03-11 2003-09-18 Mitsubishi Chemical Corporation Process for producing (meth)acrylic acid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6133135A (en) * 1984-07-24 1986-02-17 Mitsubishi Rayon Co Ltd Preparation of methacrolein and methacrylic acid
WO2003076380A1 (en) * 2002-03-11 2003-09-18 Mitsubishi Chemical Corporation Process for producing (meth)acrylic acid
US6998505B2 (en) 2002-03-11 2006-02-14 Mitsubishi Chemical Corporation Process for producing (meth)acrylic acid compound

Similar Documents

Publication Publication Date Title
JP3537253B2 (en) Method for producing acrylic acid
US5929275A (en) Catalyst and process for producing unsaturated aldehyde and unsaturated acid
JP2702864B2 (en) Catalyst regeneration method
EP1055662B1 (en) A process for producing acrylic acid
JP4596377B2 (en) Catalyst for oxidation of ethane to acetic acid, method of formation and use thereof
US20070021631A1 (en) Gas-phase catalytic oxidation process and process for producing (meth) acrolein or (meth) acrylic acid
JP2002539103A (en) Method for catalytic gas phase oxidation of acrolein to acrylic acid
JP2001048817A (en) Method for producing acrolein and acrylic acid
EP1063222A1 (en) Process for producing phthalic anhydride
JP2001354612A (en) Method for producing acrylic acid
EP0010902B1 (en) Process for the production of (meth)acrylic acid by the catalytic vapour phase oxidation of isobutane or propane
KR100539573B1 (en) Two stage process for the production of unsaturated carboxylic acids by oxidation of lower unsaturated hydrocarbons
JPH11503410A (en) Oxychlorination of ethylene in a two-stage fixed bed reactor
TWI281418B (en) Method for reactivating catalyst for production of methacrylic acid
JP4824867B2 (en) Method for producing methacrolein and methacrylic acid
JP2002193871A (en) Method for producing methacrylic acid
JPH0699336B2 (en) Method for producing methacrolein and / or methacrylic acid
JP2003171340A (en) Method for producing acrylic acid
JPS5815934A (en) Preparation of methacrolein
JPH0639470B2 (en) Method for producing maleic anhydride
JP4557378B2 (en) Method for producing phthalic anhydride
JP2003146920A (en) Method for producing acrolein and acrylic acid
JPH1135519A (en) Production of acrylic acid
US4950769A (en) Process for the manufacture of maleic anhydride utilizing peroxides to improve catalytic activity
JP3804875B2 (en) Method for producing methacrolein