JPS58150838A - Measuring apparatus for optical constant of lens - Google Patents

Measuring apparatus for optical constant of lens

Info

Publication number
JPS58150838A
JPS58150838A JP3369482A JP3369482A JPS58150838A JP S58150838 A JPS58150838 A JP S58150838A JP 3369482 A JP3369482 A JP 3369482A JP 3369482 A JP3369482 A JP 3369482A JP S58150838 A JPS58150838 A JP S58150838A
Authority
JP
Japan
Prior art keywords
lens
light
aperture
distance
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3369482A
Other languages
Japanese (ja)
Inventor
Hisami Nishi
壽巳 西
Minoru Toyama
遠山 実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP3369482A priority Critical patent/JPS58150838A/en
Publication of JPS58150838A publication Critical patent/JPS58150838A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0228Testing optical properties by measuring refractive power

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To make it possible to measure an optical constant of a lens simply and precisely in a short time, by detecting by an image sensor a distance between optical beams whose aperture is much enlarged through the lens. CONSTITUTION:A light source device 8, having a laser oscillator 9 and a slit mask 10, projects a pair of parallel optical beams 3 and 4 to a lens 1. The mask 10, which is prepared by applying non-transparent coating on the surface of a transparent base plate, has a pair of parallel slits 11A and 11B at a prescribed aperture 2a between them. The arrangement length of each photoelectric transfer element 13 and a distance l are selected so that an aperture 2b between beams 6 and 7 projected from the lens 1 is within the effective detection width of a light-receiving detector 12, and output signals from the detector 12 are supplied to a beam aperture measuring device 14. On the occasion, the detecting surface of the detector 12 receives lights each having an intensity distribution wherein two peaks appear corresponding to the images of the slits 11A and 11B. Then a clock pulse between corresponding sampling pulses is counted, and a refractive index distribution constant is calculated.

Description

【発明の詳細な説明】 本発明はレンズの光学窓′#測定装置に関し、特に屈折
率分布型レンズの屈折率分布定数を簡便に測定するのに
好適な光学定数測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical window measuring device for a lens, and more particularly to an optical constant measuring device suitable for easily measuring the refractive index distribution constant of a gradient index lens.

屈折率分布型レンズは、中心軸上の屈折率noを最大と
して中心軸から半径方向Krの距離での屈折率n(r)
が、 n2(r) −n2o (/ −(gr)” )  −
−−−−−・・(1)の式で表わされる屈折率分布をも
っている両端面が平行平面の円柱状のレンズである。
A gradient index lens has a refractive index n(r) at a distance Kr in the radial direction from the central axis, with the maximum refractive index no on the central axis.
But, n2(r) −n2o (/ −(gr)” ) −
-------It is a cylindrical lens with a refractive index distribution expressed by the formula (1), and both end faces are parallel planes.

このような屈折率分布型レンズでは屈折率分布定数gに
よってレンズの諸光学特性が定まり、またこの分布定数
gと他の種々の光学特性値との相関関係が詳細に理論解
析されているので分布定数gを個々のレンズついて求め
ておけば、屈折率分布型レンズを用いて光学系を組む場
合に非常に有用である。
In such a refractive index distribution type lens, various optical properties of the lens are determined by the refractive index distribution constant g, and the correlation between this distribution constant g and various other optical characteristic values has been theoretically analyzed in detail. Determining the constant g for each lens is extremely useful when constructing an optical system using gradient index lenses.

従来においては、上記の分布定数gを求める場合顕微鏡
で画像を観察しながらレンズの焦点位置を求め、これを
もとに上記分布定数gを算出するという方法によってい
たため測定に非常に手間がかかり、また屈折率分布型レ
ンズは一般に直径がコ+amφ 以下といった微小なも
のであるため作業に熟練を要するとともにあまり高精廖
な測定が行なえないという問題があった。
Conventionally, when determining the above distribution constant g, the method was to find the focal position of the lens while observing the image with a microscope, and then calculate the above distribution constant g based on this, which was very time-consuming. In addition, since the gradient index lens is generally very small with a diameter of less than 0.0 mm, there is a problem in that it requires skill to operate and it is not possible to perform highly precise measurements.

本発明は上述の従来の問題点を解決し、屈折率分布定数
等のレンズ光学定数を極めて短時間で簡便にしかも高精
度に測定することのできるレンズの光学定数測定装置を
提供することを目的としている。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned conventional problems and to provide a lens optical constant measurement device that can measure lens optical constants such as refractive index distribution constants easily and with high precision in an extremely short time. It is said that

本発明の装置は、レンズの片面側の光軸を挾む対称位置
に互いにほぼ平行な一対の光ビームを投射する光源ハレ
ンズ他面から出た後、拡散するこれら光ビームを横切っ
て配列された多数の微小な光電変換受光素子群と、ピー
ク光量を示す前記受光素子間の距離を求める信号処理回
路で構成されるO 以下本発明を図面に示した実施例について説明する。
The device of the present invention has a light source that projects a pair of light beams substantially parallel to each other at symmetrical positions sandwiching the optical axis on one side of the lens, and a light source that is arranged across these light beams to diffuse after exiting from the other side of the lens. It is composed of a large number of small photoelectric conversion light-receiving element groups and a signal processing circuit for determining the distance between the light-receiving elements indicating the peak light intensity.Embodiments of the present invention shown in the drawings will be described below.

第7図は本発明装置の測定原理を示す模式図であり、l
は前述(1)式゛で表わされる屈折率分布をもつ透明の
ガラスあるいは合成樹脂からなる屈折率分布型レンズで
その長さzOをダ分の1周期長(ピッチ)よりも若干短
かくしである。いまこのレンズlの片端面/Aの光軸2
から等間隔aだけ離れた対称位置に互いに平行な光線J
、lIを入射させるとこれらの光線はレンズl内をサイ
ンカーブを描いて進行し、レンズ/の他端面/Bからt
anθ−no・g−a−8in(gZo)の傾きをもっ
て出射されレンズ面からkだけ離れた位置ムに集束した
後、拡散する。
FIG. 7 is a schematic diagram showing the measurement principle of the device of the present invention.
is a refractive index distribution type lens made of transparent glass or synthetic resin with a refractive index distribution expressed by the above-mentioned formula (1), and its length zO is a comb slightly shorter than one period length (pitch). . Now, one end surface of this lens l/optical axis 2 of A
Rays J parallel to each other at symmetrical positions spaced apart by an equal distance a from
, lI, these rays travel inside the lens l drawing a sine curve, and from the other end surface /B of the lens / t
The light is emitted with an inclination of an θ-no·ga-8 in (gZo), is focused at a position k away from the lens surface, and then diffuses.

そこで焦点Aからlたけ離れた地点に仮想スクリーンj
をレンズ光軸−に垂直に置き、このスクリーンj上に投
影された両出射ビーム6.7間の距離を−すとすると距
離lがkK比して充分大であるとき次の関係式が成立す
る。
Therefore, a virtual screen j is placed at a point l away from the focal point A.
is placed perpendicular to the lens optical axis -, and if the distance between both output beams 6.7 projected onto this screen j is -, then the following relational expression holds when the distance l is sufficiently large compared to kK. do.

b/l−no−g−asin(gZo) +−+・+−
*+(J)したがって、レンズ中心の屈折率noをアツ
ベ屈折計、浸液法等周知の屈折率測定方法で測定し、第
1図中のa、lおよびzOを予め一定値に設定か しておけば、あとは仮想スクリーン上瓢での両ビーム間
距離2bを実測するだけで上記(コ)式から屈折率分布
定数gを求めることができる。
b/l-no-g-asin (gZo) +-+・+-
*+(J) Therefore, measure the refractive index no at the center of the lens using a well-known refractive index measurement method such as an Atsube refractometer or immersion method, and set a, l, and zO in Figure 1 to constant values in advance. Once this is done, the refractive index distribution constant g can be obtained from the above equation (c) simply by actually measuring the distance 2b between the two beams on the virtual screen.

このようにして1つの製造ロフト内の代表的なレンズ試
料について測定された分布定数gは、その製造ロフト内
のすべての製品レンズについてレンズ長によらず適用す
ることができる。
The distribution constant g thus measured for a representative lens sample within one manufacturing loft can be applied to all product lenses within that manufacturing loft, regardless of lens length.

上記の測定原理に基づく本発明装置の一例を第一図に示
す。
An example of the apparatus of the present invention based on the above measurement principle is shown in FIG.

第一図においてlはレンズlに一対の平行な光ビーム3
.りを投射するための光源装置であり、レーザー発振器
9および、この発振器9とレンズlとの間に置いたスリ
ットマスクIOで構成される。
In Figure 1, l is a pair of parallel light beams 3 to lens l.
.. This is a light source device for projecting light, and is composed of a laser oscillator 9 and a slit mask IO placed between the oscillator 9 and a lens l.

スリットマスクIOは透明基板面に金属薄膜等の不透光
被覆を施すとともに前述した所定間隔2aをおいて一対
の平行な透光スリン) //A、//Bを設けたもので
ある。
The slit mask IO has a transparent substrate surface coated with a non-light-transmitting coating such as a thin metal film, and a pair of parallel light-transmitting slits (//A, //B) are provided at a predetermined interval 2a as described above.

透光スリン) //A−//Bは例えば幅を70μmと
し、間隔−aはレンズ周辺部の収差による悪影響を避け
るためレンズ径が/〜、2 III/Illφの場合に
100μ痰前後にとるのがよい。
For example, the width of //A-//B is set to 70 μm, and the interval -a is set to around 100 μm when the lens diameter is /~, 2III/Illφ to avoid adverse effects due to aberrations at the lens periphery. It is better.

そしてレンズ/の焦点から適宜距離l隔てた地点に受光
検出器/2を配置する。
Then, the light receiving detector /2 is arranged at a point separated by an appropriate distance l from the focal point of the lens /.

受光検出器/コは第3図に示すように微小な光電変換素
子/3を一次元的に多数配列して構成されているもので
あり、素子/3の配列方向をレンズ/からの両出射ビー
ム6.7を結ぶ線と一致させ且つレンズ光軸−に直交さ
せて受光検出器/Jを配置する。
As shown in Fig. 3, the light receiving detector is constructed by arranging a large number of minute photoelectric conversion elements in one dimension, and the arrangement direction of the elements is aligned with both outputs from the lens. The light receiving detector /J is arranged to coincide with the line connecting the beams 6 and 7 and to be perpendicular to the lens optical axis.

このとき両出射ビーム乙、7間の間隔コbが検出器l−
の有効検出幅内に入るように光電変換素子13の配列長
さおよび距離lを選定する。
At this time, the distance b between both output beams B and 7 is the detector l-
The array length and distance l of the photoelectric conversion elements 13 are selected so as to fall within the effective detection width of .

具体的数値例で示すならばkをjOOμ簡、lをi s
 o */m程度とし、△S−約コlμlの間隔でよl
−個の10μm前後の大きさの7オトセンサー/Jを並
べた受光検出器lコを使用する。
To give a concrete numerical example, k is jOOμ, l is i s
o */m, and spaced at intervals of △S - about 1 μl.
- A photodetector consisting of 7 sensors/J each with a size of around 10 μm is used.

受光検出器lコから出力される電気信号はビーム間隔測
定器llIに入る。
The electrical signal output from the photodetector I enters the beam distance measuring device III.

このビーム間隔測定器lダは第3図にブロック図で示す
ような回路構成となっている。
This beam distance measuring device LD has a circuit configuration as shown in a block diagram in FIG.

すなわち充分に短かい一定時間間隔△tのクロックパル
スを発生するクロックパルス発生回路1j170ツ7 この各P〒iパルス毎に次々と各素子13の発生電力を
出力する切換回路(図外)、この発生電圧を定電11/
7から発生する基準電圧vthと比較するコンパレータ
#、、クロック周期△tよゝり長い時定数T (T>△
t)をもつ単安定マルチバイブレータ/I、これに続く
トリガ7リツプ70ツブ回路lり、このフリップフロッ
プ回路19からの信号およびクロックパルス発生回路/
jからの信号の論理積をとるAND回路回路コバ1バル
ス力ウンタコ/よびカウントしたパルス数を表示する表
示器−2を備えている。
That is, a clock pulse generation circuit 1j170 which generates clock pulses with a sufficiently short constant time interval Δt, a switching circuit (not shown) which outputs the generated power of each element 13 one after another for each P〒i pulse, and this Constant voltage 11/
Comparator #, which is compared with the reference voltage vth generated from 7, has a time constant T longer than the clock period △t (T>△
A monostable multivibrator /I with t), followed by a trigger 7-lip 70-tube circuit, a signal from this flip-flop circuit 19 and a clock pulse generation circuit /I.
The circuit is provided with an AND circuit for calculating the AND of the signals from j, and a display 2 for displaying the number of pulses counted.

上記測定装置の作用について説明すると、マスクIOの
透光スリブ) //A、//Bから出た一対の平行なレ
ーザビーム3.ダは一方の端面がらレンズ/に入射し、
レンズ/の他端面からビーム6゜7として出射した後、
受光検出器/コに入光する。
To explain the operation of the above measurement device, a pair of parallel laser beams 3. Da enters the lens/ from one end face,
After exiting as a beam 6°7 from the other end surface of the lens,
Light enters the light receiving detector.

すなわち受光検出器/コの検出面では透光スリブ)//
A、//Hの像に対応して第1図(A)に示すように−
すの間隔をおいて2つのピークの表われる強度分布をも
った光が受光される。
In other words, the detection surface of the light-receiving detector is a transparent sleeve) //
As shown in FIG. 1 (A), corresponding to the images of A and //H, -
Light is received with an intensity distribution in which two peaks appear at an interval of 1.

するとクロックパルス発生回路15からのクロックパル
スに乗って△tの時間間隔で第q図(B) K示すよう
に各光電変換素子/3から受光量に比例した電気信号が
次々とパルス出力される。
Then, on the clock pulse from the clock pulse generation circuit 15, electric signals proportional to the amount of light received are outputted as pulses one after another from each photoelectric conversion element/3 at time intervals of △t, as shown in Fig. q (B) K. .

この信号と閾値vthとがコンパレータl≦で比較され
、このvth を越えた信号のみがコンパレータl乙か
ら出力する(第ダ図C)。
This signal and a threshold value vth are compared by a comparator l≦, and only the signal exceeding this vth is output from the comparator lB (FIG. 1C).

次に△tより長い遅延を単安定マルチバイブレータ/l
でかけると第4図(D)で示されるパルスが得られる。
Next, set the delay longer than △t to monostable multivibrator/l
When the pulse is applied, the pulse shown in FIG. 4(D) is obtained.

このパルスの立ち上がりでトリガフリップフロップlり
をトリガすると前述した両ビーム4.7による光強度ピ
ークの間隔−すに対応するtbのパルス幅をもつサンプ
リングパルスが得られる(第参図E)。
When the trigger flip-flop is triggered at the rising edge of this pulse, a sampling pulse having a pulse width of tb corresponding to the interval between the light intensity peaks of the two beams 4.7 described above is obtained (see Figure E).

このサンプリングパルスの間にクロックパルスコ3の発
生数mをカウンターlで計数してディジタル表示器コ2
に表示させる。
During this sampling pulse, the number m of clock pulses 3 generated is counted by a counter 1 and displayed on a digital display 2.
to be displayed.

そしてΔ5Xnt−Jbの関係及び前述の(コ)式から
、 ΔS−m−コ1−no aa*g @ sin (g 
zO) ”・(J)と表わすことができ、上記のように
してパルス数mを電気的にカウントすることにより(3
)式から計測について説明したが、本発明の装置は一般
のレンズの焦点距離測定に使用することもできる。
Then, from the relationship of Δ5Xnt-Jb and the above equation (c), ΔS-m-ko1-no aa*g @ sin (g
zO) ”・(J), and by electrically counting the number of pulses m as described above, it can be expressed as (3
Although the measurement has been explained using the equation ), the device of the present invention can also be used to measure the focal length of a general lens.

この場合、焦点距離fは f−コa−l/△5−11 −・−−−−−(ll)か
ら求めることができる。
In this case, the focal length f can be determined from f-coal/Δ5-11 -.----(ll).

本発明によれば機械的な微動調整が不要でありレンズを
通して間隔が大きく拡大された光ビーム間の距離をイメ
ージセンサ−で電気的に検出するため、従来の光学像観
察による方法に比べて測定時間が著しく短縮されるとと
もに、簡便かつ安価な装置で収差の影響を受けずに高精
度で屈折率分布定数等のレンズの光学定数を測定するこ
とができる。
According to the present invention, there is no need for mechanical fine adjustment and the distance between the light beams, whose spacing has been greatly expanded through a lens, is electrically detected using an image sensor. In addition to significantly shortening the time, it is possible to measure optical constants of lenses such as refractive index distribution constants with high precision without being affected by aberrations using a simple and inexpensive device.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の実施例を示し、第1図は本発明の測定原理
を示す模式図、第2図は本発明装置の一例を示す斜視図
、第3図は第一図の装置における信号処理系を示すブロ
ック図、第4図(A)〜(G)は第3図の信号処理系に
おける信号処理の方法を段階的に示す図である。
The figures show an embodiment of the present invention, Fig. 1 is a schematic diagram showing the measurement principle of the invention, Fig. 2 is a perspective view showing an example of the apparatus of the invention, and Fig. 3 is signal processing in the apparatus of Fig. 1. Block diagrams showing the system, FIGS. 4(A) to 4(G) are diagrams showing step-by-step the signal processing method in the signal processing system of FIG. 3.

Claims (1)

【特許請求の範囲】[Claims] レンズの片面側の光軸を挾む対称位置に互いにほぼ平行
な一対の光ビームを投射する光源を設け、レンズ他面か
ら出た後、拡散するこれら光ビームを横切って多数の微
小な光電変換受光素子を配列し、ピーク光量を示す受光
素子間の距離を求める信号処理回路、を設けたことを特
徴とするレンズの光学定数測定装置。
A light source that projects a pair of nearly parallel light beams is installed at symmetrical positions sandwiching the optical axis on one side of the lens, and after exiting from the other side of the lens, a large number of minute photoelectric conversions are carried out across these diffused light beams. 1. An optical constant measuring device for a lens, comprising a signal processing circuit for arranging light-receiving elements and determining a distance between the light-receiving elements indicating a peak light amount.
JP3369482A 1982-03-03 1982-03-03 Measuring apparatus for optical constant of lens Pending JPS58150838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3369482A JPS58150838A (en) 1982-03-03 1982-03-03 Measuring apparatus for optical constant of lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3369482A JPS58150838A (en) 1982-03-03 1982-03-03 Measuring apparatus for optical constant of lens

Publications (1)

Publication Number Publication Date
JPS58150838A true JPS58150838A (en) 1983-09-07

Family

ID=12393521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3369482A Pending JPS58150838A (en) 1982-03-03 1982-03-03 Measuring apparatus for optical constant of lens

Country Status (1)

Country Link
JP (1) JPS58150838A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0575031A2 (en) * 1992-04-10 1993-12-22 Metaphase Corporation Automated lensometer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0575031A2 (en) * 1992-04-10 1993-12-22 Metaphase Corporation Automated lensometer
EP0575031A3 (en) * 1992-04-10 1995-08-02 Metaphase Corp Automated lensometer.

Similar Documents

Publication Publication Date Title
US3807870A (en) Apparatus for measuring the distance between surfaces of transparent material
US3319515A (en) Interferometric optical phase discrimination apparatus
Brayton et al. Two-component dual-scatter laser Doppler velocimeter with frequency burst signal readout
GB1603155A (en) Apparatus and method for determination of wavelength
US4815856A (en) Method and apparatus for measuring the absolute thickness of dust defocus layers
JPH02500860A (en) optical angle measuring device
JPS62197711A (en) Optically image forming type non-contacting position measuring apparatus
US4893024A (en) Apparatus for measuring the thickness of a thin film with angle detection means
US3454772A (en) Photoelectric monitoring system for holding the object plane in proper focus
US3316759A (en) Apparatus for measuring flexure of a rotating object
US3486032A (en) Apparatus for measuring speed comprising a light-electric translating device
JPS58150838A (en) Measuring apparatus for optical constant of lens
JPH0599659A (en) Method and device for measuring light-beam incident angle and usage of distance measuring equipment
CN106403829A (en) Dual-optical path infrared reflection method-based coating thickness gauge
EP0013725A1 (en) Remote width measurement system
US4077723A (en) Method of measuring thickness
CA1056593A (en) Apparatus for direct measurement of linear and angular displacements with digital readout
JPS6423126A (en) Multiple light source polarization analyzing method
JPS57199909A (en) Distance measuring device
JPS55155204A (en) Measuring instrument for thickness of film
CN210894086U (en) Device for measuring optical nonlinearity of material
US2376166A (en) Sensitometry
SU1187133A1 (en) Photoelectric automatic collimator
SU1508092A1 (en) Apparatus for measuring displacements
SU705313A1 (en) Automatic reflectometer