JPS58150423A - Granulation of coal fine powder in water - Google Patents

Granulation of coal fine powder in water

Info

Publication number
JPS58150423A
JPS58150423A JP3239082A JP3239082A JPS58150423A JP S58150423 A JPS58150423 A JP S58150423A JP 3239082 A JP3239082 A JP 3239082A JP 3239082 A JP3239082 A JP 3239082A JP S58150423 A JPS58150423 A JP S58150423A
Authority
JP
Japan
Prior art keywords
coal
fine powder
oil
particle size
granulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3239082A
Other languages
Japanese (ja)
Inventor
Toshio Hisaie
久家 利雄
Hiroshi Yokoyama
宏 横山
Shunsuke Nokita
舜介 野北
Yoichi Nakamura
陽一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3239082A priority Critical patent/JPS58150423A/en
Priority to US06/449,195 priority patent/US4461627A/en
Priority to EP82111623A priority patent/EP0082470B1/en
Priority to DE8282111623T priority patent/DE3277210D1/en
Priority to AU91479/82A priority patent/AU549208B2/en
Priority to CA000418028A priority patent/CA1187436A/en
Publication of JPS58150423A publication Critical patent/JPS58150423A/en
Pending legal-status Critical Current

Links

Landscapes

  • Glanulating (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

PURPOSE:To make it possible to reduce the necessary amount of an oil component in a state reducing the lowering of a deashing ratio, by adjusting a ratio occupied with a coal fine powder with a specific particle size or less used in granulation to a specific ratio. CONSTITUTION:In a method wherein a coagulant containing an oil component is added to an aqueous slurry of a coal fine powder to coagulate and granulate the coal fine powder and ash is simultaneously removed, a ratio occupied with the coal fine powder with a particle size of 74mum or less is adjusted to 20- 75% on the wt. basis. As the result, the lowering of a deashing ratio can be reduced and the necessary amount of the oil component can be also reduced. In addition, as the oil component used in granulating coal in water, other than coal tar, hydrocarbons such as light oil, fuel oil or kerosene, a lubricating oil such as creosote or anthrathene oil and heavy hydrocarbons such as heavy fuel oil can be also used. By the above mentioned method, the amount of the oil component required in granulating the coal fine powder can be conserved and granulated coal is convenient in transportation or storage as well as the heat generation amount thereof per a unit wt. is increased.

Description

【発明の詳細な説明】 本発明は、石炭微粉の水中造粒方法の改良に関するO 石炭類は、一般に燃料及び化学工業用として種々の用途
に供されているが、石炭中の灰分含有量が40−と為含
有のもの4hあり、灰分は輸送効率低下及び燃焼(転)
の熱効率低下の原因となる。石炭中の灰分除去法として
石炭を微粉にして行う方法が知られている。しかし、石
炭は一般的に反応性に富むものが多く微粉にすると自然
発火し易いため、貯蔵及び輸送が困−になる。また、粉
塵公害等の欠点もある。し良がって、石炭を燃料及び化
学工業用として幅広く利用するためKは、脱灰愛すると
同時に貯蔵及び輸送が害鳥な石炭に改質することが必要
である。現在は石炭に対して油分t15−〜301G使
用する水中造粒法が実施されている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in an underwater granulation method for fine coal powder. There are 4 hours containing 40- and ash, and the ash content reduces transportation efficiency and combustion (conversion).
This causes a decrease in thermal efficiency. A known method for removing ash from coal is to pulverize coal into powder. However, coal is generally highly reactive and tends to spontaneously ignite when pulverized, making storage and transportation difficult. There are also drawbacks such as dust pollution. However, in order to use coal widely as fuel and for chemical industry purposes, it is necessary to demineralize K and at the same time reform it into coal, which is harmful to storage and transportation. Currently, an underwater granulation method using coal with an oil content of t15-301G is being carried out.

本発明の目的は、石炭微粉の造aKl’する油の量を節
減することにある。
An object of the present invention is to reduce the amount of oil used to form coal fine powder.

本発明者勢は石炭の水中造粒方法に関して石炭の粉径と
油分必要量との関係を明らかにするために種々検討を重
ねた。その結果、粉径フ4建り四ン以下の占める割合が
重量基準で7511を越える石炭微粉では造粒に多量の
油分量が必要とされ、74ミクロン以下の占める割合が
20−以下の石炭微粉では脱灰率が低いという新しい事
実III@し、本発明を見出したものである。
The inventors of the present invention have conducted various studies to clarify the relationship between the coal powder diameter and the required amount of oil regarding the underwater granulation method of coal. As a result, a large amount of oil is required for granulation in the case of fine coal powder in which the proportion of particles with a diameter of 4 mm or less exceeds 7511 on a weight basis, and in the case of fine coal powder in which the proportion of particles with a diameter of 74 microns or less exceeds 20 mm, a large amount of oil is required for granulation. The present invention was discovered based on the new fact that the demineralization rate is low.

本発明者等は、上記の事実を確認する基礎実験として、
造粒時に必要な油分量と脱灰率の関係を石炭微粉に対し
て多角的に検討した。その結果を実験例として下記に起
す。
As a basic experiment to confirm the above fact, the inventors conducted
The relationship between the amount of oil required during granulation and the deashing rate was investigated from various angles for fine coal powder. The results are given below as an experimental example.

実験例 粒径*IIした褐炭を33−の水性スラリーにした。こ
れに油、水及び界面活性剤を攪拌搗合して乳濁状にした
もの(以下エマルジョンと呼ぶ)を添加して攪拌しなが
ら水中造粒を行わせ、脱灰率を絢定した。得られ±結果
を第1図に示す。
Experimental Example Lignite having a grain size of *II was made into a 33-mm aqueous slurry. To this was added an emulsion obtained by stirring and mixing oil, water, and a surfactant (hereinafter referred to as emulsion), and granulation in water was performed while stirring to determine the deashing rate. The results obtained are shown in FIG.

第2図は本実験で用いた褐炭の粒径分布を示したグラフ
である。縦軸は篩下JFI槓重量割合てあり、図中の”
+ b+ C* d+ e* ’+ g及びhは74ミ
クロン以下の占める割合がそれぞれ100−。
Figure 2 is a graph showing the particle size distribution of lignite used in this experiment. The vertical axis shows the JFI weight ratio under the sieve.
+ b+ C* d+ e* '+ The ratio of g and h to 74 microns or less is 100-, respectively.

85L 7511i、601.5011,401G、3
0−及び20−である。
85L 7511i, 601.5011, 401G, 3
0- and 20-.

第1図は74ミクロン以下の占める割合に対する造粒に
必要な油分量と脱灰率の関係【示したグラフであシ、図
中のa′及びbinコールタール及びAB混合重油の場
合の曲線を示し、C′は脱灰率曲森を示す、この図から
明らかなように、74ミクロン以下の占める割合が75
−を越えると造粒に必要な油分量が急激に増加すること
がわかる。
Figure 1 shows the relationship between the amount of oil necessary for granulation and the deashing rate for the proportion of grains of 74 microns or less. and C' indicates the demineralization rate curvature.As is clear from this figure, the proportion of particles of 74 microns or less is 75
It can be seen that when the value exceeds -, the amount of oil required for granulation increases rapidly.

造粒は石戻・水スラリー中に油を添加し、仁れt攪拌混
食することによって油をバイン〆−とした石炭微粉の赦
集体を形成し、さらに攪拌の転動作用によって圧密し、
粒状物を形成する操作である。
For granulation, oil is added to the stone return/water slurry, and the mixture is stirred to form an agglomerated body of coal fine powder with oil as a binder, which is further consolidated by the rotational action of stirring.
This is an operation that forms granules.

すなわち、微粉が75−を越えると造粒に必要な油分量
が増加する原因は微粉のI11面積か増加し、バイン〆
−としての油分が多く必−I!になるためである。
In other words, when the fine powder exceeds 75 mm, the amount of oil required for granulation increases because the I11 area of the fine powder increases, and there is a large amount of oil as a binder. This is to become.

仁れに対して、14ミクロン以下の占める割合が20s
以下の場合には造粒炭の脱灰率が低下することがわかる
。ここで、脱灰率Fi(13式によって求めた。
The proportion of grains below 14 microns is 20s.
It can be seen that the deashing rate of granulated coal decreases in the following cases. Here, the deashing rate Fi (calculated according to equation 13).

・・・(1) 脱灰は石炭と灰の滴れ性が違うために起こる。すなわち
、灰は親水性を示す。一方、石嶽鉱龜油性を示すため、
油分に石炭微粉が懺先的に凝集し、灰分粒子は凝集しな
い状態で液中に残留する。74ンクロン以下の占める割
合が20111以下て脱灰率が低下する原因は、完全に
灰と分離されている石炭が減少したためである。したが
って、上記した実験結果かられかるように造粒に使用す
る石炭黴@抹粉径74(クロン以下の占める割合Vr1
011〜75−とすることによって、脱灰率【低下させ
ることが少なく、必畳な油分量を少なくすることができ
、る。
...(1) Deashing occurs because the dripping properties of coal and ash are different. That is, ash exhibits hydrophilicity. On the other hand, since Ishitake mine shows oiliness,
Fine coal powder coagulates in the oil, while ash particles remain in the liquid without coagulating. The reason why the deashing rate decreases when the ratio of 74 nm or less is 20111 or less is that the amount of coal that is completely separated from the ash decreases. Therefore, as can be seen from the above experimental results, the coal mold used for granulation has a powder diameter of 74 (ratio of chlorine or less Vr1).
By setting it to 011 to 75-, the deashing rate is less likely to decrease, and the necessary amount of oil can be reduced.

石炭の水中造粒に用いる油分として、コールタールの他
に軽油、燃料油及びケロシンのような炭化水素類、クレ
オソート、アント2セン油等の―滑油及び他の重質燃料
油の如き重質炭化水1#類晦も使用てきる。
In addition to coal tar, oils used in the underwater granulation of coal include gas oil, fuel oil, hydrocarbons such as kerosene, creosote, anthose oil, etc., lubricating oil, and other heavy fuel oils. You can also use 1# quality hydrocarbon water.

具体的な制@を有する実施例に先立ち、まず本発明の非
制限的実施例を第3図に関連してm明する。
Prior to discussing specific embodiments, a non-limiting embodiment of the present invention will first be described with reference to FIG.

石炭はライン1より供給され、粉砕機2で黴肴砕される
・微粉砕された石炭はライン3によって粒径調整槽4に
送られ、粒’!*整が行われる。未粉砕のものはライン
14から戻され再び粉砕される。粒mawされた石炭は
ライン5からスクリー―豊檜6に送られ、ライン15か
らの水で水性スラリーにされ、水性スラリー社ライン7
から攪拌槽8に送られる。調整槽16で作られたエマル
ジョンはライン17から攪拌槽に送られ水中造粒される
。造粒された石炭は水及び灰分粒子と分離する九めに2
イン9から振動ふるいなどの分離器10に導かれる。そ
して分離された造粒炭はライン11から一層の脱水処1
1t−するための遠心分離機12へ導かれる。また、分
離された水分及び灰分はライン1B及びライン19を通
じて排出される。脱灰された造粒炭はライン13よp得
られる。
Coal is supplied through line 1 and crushed into powder by a crusher 2.The finely crushed coal is sent to a particle size adjustment tank 4 through line 3, where it is crushed into grains! *Adjustments will be made. The unground material is returned through line 14 and is ground again. The granulated coal is sent from line 5 to scree-toyohiki 6, where it is made into an aqueous slurry with water from line 15, and then transferred to aqueous slurry company line 7.
from there to the stirring tank 8. The emulsion produced in the adjustment tank 16 is sent from a line 17 to a stirring tank and granulated in water. Granulated coal is separated from water and ash particles at the ninth stage.
From the inlet 9, it is led to a separator 10 such as a vibrating screen. The separated granulated coal then passes through line 11 to a further dehydration process 1.
It is guided to a centrifugal separator 12 for 1t. Also, the separated moisture and ash are discharged through line 1B and line 19. Deashed granulated coal is obtained through line 13.

次に本実tl11を実施例によpa明する。Next, the actual implementation tl11 will be explained using an example.

実施例 実施例1 含有水分3α6L灰分(乾燥重量基準) 9.35−の
生褐炭1.2 kg i:ボールミルで黴聯砕し、粒1
調整した黴扮及びしない微粉を用いて造粒を行わせた。
Examples Example 1 1.2 kg of raw lignite with moisture content of 3α6L and ash (dry weight basis) of 9.35 i: Crushed with a ball mill to form grains of 1
Granulation was performed using the adjusted fine powders containing and not containing mold.

造粒は微粉を3116の水性スラリーにして攪拌槽に送
った後、褐炭の乾留によって得られたタール【エマルジ
ョンにしてス2り図中に加え、攪拌して行った。粒径調
整した微粉(74イクロン以下の占める割合2211)
及び粒径調整しない黴@(74ミクロン以下の占める割
合sigk)におけるタール必要量はそれぞれ3−及び
15g6であり、粒径1lIIIシたものは粒径調整し
ないものに比べて115のタール量で造粒できた。造粒
後の粒径はいずれの場合も、0.8−ないし2..0■
となり、造粒炭は遠心分yIIA後の重量で1.1−得
られた。この造粒炭の灰分は粒径調整した微粉で5.9
1s、粒径−竪しない微粉で5.6−であった。
Granulation was carried out by making the fine powder into an aqueous slurry of 3116, sending it to a stirring tank, and then adding it to a tar emulsion obtained by carbonization of lignite into a 2-diagram diagram and stirring. Fine powder with adjusted particle size (proportion of 74 microns or less: 2211)
The required amount of tar for mold and mold without particle size adjustment (sigk with a proportion of 74 microns or less) is 3- and 15 g6, respectively, and mold with a particle size of 1lIII is produced with a tar amount of 115 compared to that without particle size adjustment. A grain was formed. In either case, the particle size after granulation is between 0.8 and 2. .. 0■
Therefore, the weight of granulated charcoal after centrifugation yIIA was 1.1. The ash content of this granulated coal is 5.9 as a fine powder with adjusted particle size.
1s, and the particle size was 5.6 as a non-vertical fine powder.

実施例2 官有水分55−9灰分(乾燥重量基準)a31Gの生褐
炭1.5kgtボールミルで微粉砕1粒径調整した微粉
及びしない微粉を用いて造粒を行わせた。
Example 2 1.5 kg of raw lignite with an official moisture content of 55-9 ash (dry weight basis) a31G was pulverized in a ball mill, and granulation was carried out using fine powder whose particle size had been adjusted and fine powder whose particle size had not been adjusted.

造粒祉微粉t28−の水性スラリーにして攪拌槽に送っ
た後、AB混合重油をエマルジョンにしてスラリー中に
加え、攪拌して行った。粒径*!IL皮黴粉(微粉ミク
ロン以下の占める割合53−)及び粒径調整しない微粉
(74ミクロン以下の占める副台91−)における重油
必要量はそれぞれ5%及び26チでTo9、粒径−整し
たものは粒径調整しないものに比べて約115の重油量
で造粒で書た。造粒後の粒径はいずれの場合も1.0−
ないし23■となシ、造粒炭は遠心分離後の重量で1.
4−が得られた。この造粒炭の灰分はいずれの場合も&
7−であった。
After making an aqueous slurry of the granulated powder T28- and sending it to a stirring tank, AB mixed heavy oil was made into an emulsion and added to the slurry, followed by stirring. Particle size*! The required amount of heavy oil for IL skin mold powder (proportion of fine powder of microns or less 53-) and fine powder without particle size adjustment (sub-table 91- of particles of 74 microns or less) are 5% and 26 inches, respectively, and the particle size is adjusted to To9. The product was granulated with an amount of heavy oil of about 115% compared to the product without particle size adjustment. The particle size after granulation is 1.0-
The weight of granulated charcoal after centrifugation is 1.
4- was obtained. In any case, the ash content of this granulated coal is &
It was 7-.

実施例3 含有水分12−9灰分(乾燥重量基準)l&6−の粘結
炭を用い、実施例2と同様の方法で水中造粒を行った0
重油必要量は粒径*Ilた微粉で4.511.9■整し
ない微粉で24−であ)、粒径調整し九本のは粒径調整
しないものに比べて約175の重油量で造粒で1iた。
Example 3 Underwater granulation was carried out in the same manner as in Example 2 using coking coal with a moisture content of 12-9 ash (dry weight basis) l&6-0.
The required amount of heavy oil is 4.511.9 (for fine powder with particle size *Il) and 24 - (for unorganized fine powder), and the amount of heavy oil required for nine pieces with particle size adjustment is about 175 compared to that without particle size adjustment. It was 1i in grains.

造粒後の粒径扛いずれの場合も1.2園ないし201m
1となり、造粒炭は遠心分離後の重量で1.42kgが
得られた。この造粒炭の灰分けいずれの場合も9.1−
であった。
The particle size after granulation is 1.2 m to 201 m in either case.
1, and the weight of the granulated charcoal after centrifugation was 1.42 kg. In any case of ash separation of this granulated coal, 9.1-
Met.

実施例4 含有水分30.2 % 、灰分(乾燥重量基準)&3−
の生褐炭1kgtボールξルで微粉砕し、粒径調整した
微粉及びしない微粉を用いて造粒を行わせた。造粒は微
粉を30−の水性スラリーにして攪拌槽に送った後、コ
ークス炉タールをエマルジョンにしてスラリー中に加え
、攪拌して行った。粒径調整した微粉(74イクロン以
下の占める割合74s)及び粒径調整しない微粉(74
(クロン以下の占める割合971G)におけるタール必
要量はそれ、それ8−及び28慢でめp1粒径IM兼し
たものは粒径調整しない屯のに比べて約1/4のタール
量で造粒できた。
Example 4 Moisture content 30.2%, ash content (dry weight basis) &3-
1 kg of raw lignite was pulverized using a ball ξ mill, and granulation was performed using fine powder with and without particle size adjustment. Granulation was carried out by making the fine powder into a 30% aqueous slurry, sending it to a stirring tank, and then making coke oven tar into an emulsion, adding it to the slurry, and stirring. Fine powder with particle size adjustment (74s proportion of 74 microns or less) and fine powder without particle size adjustment (74s)
The required amount of tar for (971G ratio of chlorine or less) is 1/4 of that for 8- and 28-sized grains, which also serve as IM and grain size, and are about 1/4 of the amount of tar that is not adjusted in particle size. did it.

造粒後の粒径はいずれの場合41.2園ないし&0■と
なり、造粒炭は遠心分離後の重量で0.97kgが得ら
れた。この造粒炭の灰分けいずれの場合も4.8%でめ
った。
The particle size after granulation was 41.2 mm to &0 mm in each case, and the weight of the granulated charcoal after centrifugation was 0.97 kg. In both cases, the ash separation of this granulated coal was 4.8%.

実施例5 含有水分11−9灰分(を検電量基準)16.2−〇粘
結炭0.82kgtボールミルで微粉砕し、粒igm警
した微粉及びしない微粉を用いて造粒【行わせた。造粒
は微粉t27%の水性スラリーにして攪拌槽に送った後
、 炭の乾璽によって得られ+pルールエマルジョンに
してスラリー中に加え、攪拌して打った。粒径wIAJ
Iした微粉(74ミクロン以下の占める割合24911
)及び粒vus*しない黴@(74ミクロン以下の占め
る割合121Nにおけるタール必要量はそt’L−t’
tL5−及び45−とほとんど差はなかった。しかし、
造粒炭の灰分含有率は―葺した方が1α5−及び調整し
ない方が1179にとなシ、vI4!1効釆のあること
が線画できた。造粒後の粒径はいずれの場合も1.2■
ないし20■となシ、造粒炭は遠心分離後の重量で(L
8−が得られた。
Example 5 Moisture content: 11-9 Ash content (based on the amount of electricity detected): 16.2-〇 Caking coal 0.82 kgt was finely pulverized in a ball mill and granulated using fine powder with and without granulation. For granulation, an aqueous slurry containing 27% fine powder was sent to a stirring tank, and then a +P rule emulsion obtained by drying charcoal was added to the slurry, stirred, and pounded. Particle size wIAJ
I fine powder (proportion of 74 microns or less 24911
) and grains vs* not mold @ (the proportion of 74 microns or less is 121N), the required amount of tar is t'L-t'
There was almost no difference from tL5- and 45-. but,
The ash content of the granulated coal was 1α5- with the roofing and 1179 without adjustment, indicating that it had vI4!1 effectiveness. The particle size after granulation is 1.2■ in both cases.
The weight of granulated charcoal after centrifugation is (L)
8- was obtained.

以上説明したように、本発明によnは有脚微粉の造粒に
必要な油分量虻節約できるという効果がある。また、本
発明によって造粒された石炭は権送、貯蔵等に便利であ
るのみならず、単位重量当90発熱量が^くなっている
という利点がめる。
As explained above, the present invention has the effect of reducing the amount of oil necessary for granulating legged fine powder. In addition, the coal granulated according to the present invention is not only convenient for transportation, storage, etc., but also has the advantage of having a calorific value of 90% per unit weight.

【図面の簡単な説明】[Brief explanation of the drawing]

嬉1rIIAtj実験例の74jクロン以下の占める割
合に対する油分量と脱灰率の関係を示したグ27、第2
図は実験例の粒径分布を示したグンフ、第3図は本発明
の実施例の概略−である。 2・・・粉砕機、4・・・微粉径調整槽、6・・・スラ
リー―豊槽、8・・・攪拌槽、10・・・造粒物分離器
、12・・・茅1図 74ミクロン以下の冨り合(7−、) 軸柱しけり 菩3図
27, 2nd illustrating the relationship between the oil content and the deashing rate with respect to the proportion of 74j chlorine or less in the experimental example
The figure shows the particle size distribution of an experimental example, and FIG. 3 is a schematic diagram of an example of the present invention. 2...Crusher, 4...Fine powder diameter adjustment tank, 6...Slurry-toyo tank, 8...Agitating tank, 10...Granule separator, 12...Kaya 1 Figure 74 The depth of microns or less (7-,) Axis Pillar Shikeri Bodhisattva 3

Claims (1)

【特許請求の範囲】[Claims] 1、石炭微粉の水性スラリーに油分を含む凝集剤を添加
して石炭微粉を凝集造粒し、同時に灰分を除去する方法
において、前記石炭微粉中で1)1174ミクロン以下
の占める割合を重量基準で20−〜75嘔とすることt
特徴とする石炭微粉の水中造粒方法。
1. In a method of adding a flocculant containing oil to an aqueous slurry of fine coal powder to agglomerate and granulate the fine coal powder, and simultaneously removing ash, 1) the proportion of particles of 1174 microns or less in the fine coal powder is determined by weight. 20-~75 vomiting
Features: Underwater granulation method for fine coal powder.
JP3239082A 1981-12-18 1982-03-03 Granulation of coal fine powder in water Pending JPS58150423A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP3239082A JPS58150423A (en) 1982-03-03 1982-03-03 Granulation of coal fine powder in water
US06/449,195 US4461627A (en) 1981-12-18 1982-12-13 Upgrading method of low-rank coal
EP82111623A EP0082470B1 (en) 1981-12-18 1982-12-14 Upgrading method of low-rank coal
DE8282111623T DE3277210D1 (en) 1981-12-18 1982-12-14 Upgrading method of low-rank coal
AU91479/82A AU549208B2 (en) 1981-12-18 1982-12-14 Upgrading method of low rank coal
CA000418028A CA1187436A (en) 1981-12-18 1982-12-17 Method of upgrading low grade coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3239082A JPS58150423A (en) 1982-03-03 1982-03-03 Granulation of coal fine powder in water

Publications (1)

Publication Number Publication Date
JPS58150423A true JPS58150423A (en) 1983-09-07

Family

ID=12357621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3239082A Pending JPS58150423A (en) 1981-12-18 1982-03-03 Granulation of coal fine powder in water

Country Status (1)

Country Link
JP (1) JPS58150423A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6395294A (en) * 1986-10-13 1988-04-26 Nippon Steel Corp Ash removal and granulation of coal with high ash content
JPH0256231A (en) * 1988-02-17 1990-02-26 Showa Shell Sekiyu Kk Production of heavy microbead having high sphericity

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6395294A (en) * 1986-10-13 1988-04-26 Nippon Steel Corp Ash removal and granulation of coal with high ash content
JPH0256231A (en) * 1988-02-17 1990-02-26 Showa Shell Sekiyu Kk Production of heavy microbead having high sphericity

Similar Documents

Publication Publication Date Title
US8349285B2 (en) Method of reclaiming carbonaceous materials from scrap tires and products derived therefrom
CA1146894A (en) Process for removal of sulfur and ash from coal
US4284413A (en) In-line method for the beneficiation of coal and the formation of a coal-in-oil combustible fuel therefrom
CA1178568A (en) Methods for processing coal
CA1168871A (en) Method for de-ashing and transportation of coal
JP2009215421A (en) Method for producing coke
JPS61103992A (en) Deashing recovery of coal
WO2013129607A1 (en) Coal blend briquette and process for producing same, and coke and process for producing same
CA1134304A (en) Deashing of coal by the oil agglomeration process
JPH0220297B2 (en)
CA1109818A (en) Coke oven system and agglomerating carryover fines therein
US4461627A (en) Upgrading method of low-rank coal
JPS58150423A (en) Granulation of coal fine powder in water
US4360422A (en) Process for selectively aggregating coal powder
EP0029712B1 (en) An in-line method for the upgrading of coal
Kim et al. Effect of grinding conditions on the performance of a selective agglomeration process for physical coal cleaning
KR102410098B1 (en) High-grade anthracite powder cokes for carbon material and method for producting the same
RU2039787C1 (en) Method of preparation of coal charge to coking
US4217110A (en) Process for preparing a suspension of particles in a hydrocarbon oil
JPH04239093A (en) Manufacture of blast furnace coke
CA2129151C (en) Coal-water mixtures from low rank coal and process of preparation thereof
JPS62177092A (en) Pretreatment of charging coal for coke oven
CA1084268A (en) Process for preparing a suspension of particles in a hydrocarbon oil
JPH0657830B2 (en) Deashing granulation method for high ash coal
JPS62158793A (en) Production of deashed and highly concentrated coal-water slurry