JPS58150291A - High frequency heater with wireless probe - Google Patents

High frequency heater with wireless probe

Info

Publication number
JPS58150291A
JPS58150291A JP57033242A JP3324282A JPS58150291A JP S58150291 A JPS58150291 A JP S58150291A JP 57033242 A JP57033242 A JP 57033242A JP 3324282 A JP3324282 A JP 3324282A JP S58150291 A JPS58150291 A JP S58150291A
Authority
JP
Japan
Prior art keywords
circuit
temperature
oscillation
heated
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57033242A
Other languages
Japanese (ja)
Inventor
田口 俊一
大川 修治
満 渡部
菊池 厳夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Netsu Kigu KK
Original Assignee
Hitachi Netsu Kigu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Netsu Kigu KK filed Critical Hitachi Netsu Kigu KK
Priority to JP57033242A priority Critical patent/JPS58150291A/en
Priority to GB08305698A priority patent/GB2119127B/en
Priority to US06/471,433 priority patent/US4518839A/en
Priority to CA000422729A priority patent/CA1200583A/en
Publication of JPS58150291A publication Critical patent/JPS58150291A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/6408Supports or covers specially adapted for use in microwave heating apparatus
    • H05B6/6411Supports or covers specially adapted for use in microwave heating apparatus the supports being rotated
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1902Control of temperature characterised by the use of electric means characterised by the use of a variable reference value
    • G05D23/1905Control of temperature characterised by the use of electric means characterised by the use of a variable reference value associated with tele control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • G05D23/24Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature the sensing element having a resistance varying with temperature, e.g. a thermistor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/6447Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors
    • H05B6/645Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors using temperature sensors
    • H05B6/6452Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors using temperature sensors the sensors being in contact with the heated product
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/6447Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors
    • H05B6/6467Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors using detectors with R.F. transmitters

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、被加熱物の温度データをワイヤレスで送受信
を行ない、調理の制御の自動化を行なう高周波加熱装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high-frequency heating device that wirelessly transmits and receives temperature data of a heated object and automates cooking control.

従来の高周波加熱装置において、加熱制御の自 P 勧化の方式として、被加熱物から発生する温度や湿度あ
るいはガスを、それぞれサーミスタ、湿度センサおよび
ガスセンサを用いて検出し、被加熱物の仕上りを検知す
るものがある。また被加熱物の表面温度を赤外線センサ
で測り、被加熱物の仕上りを検知し、自動制御を行なう
ものもある。
In conventional high-frequency heating equipment, as an automatic method of heating control, the temperature, humidity, or gas generated from the object to be heated is detected using a thermistor, humidity sensor, and gas sensor, respectively, and the finish of the object to be heated is determined. There is something to detect. There are also devices that measure the surface temperature of the heated object with an infrared sensor, detect the finish of the heated object, and perform automatic control.

これらの方式は、検知するセンサが高周波等の影響を受
けないように、被加熱物と離れた加熱室外部に設置され
ているため、調理の操作は良いが加熱室内の雰囲気の温
度、湿度およびガスを検出しているため、仕上りに多少
のばらつきがあったり、また被加熱物の中間温度で加熱
制御することが困難であった。赤外線センサによる方式
は、検出する領域が狭く、その領域から外れたら検出不
可能で、被加熱物の設置位置や、容器の形状等に難点が
あった。これらを解決する方式として、被加熱物にサー
ミスタを設けたプローブを挿入し。
These methods are installed outside the heating chamber, away from the objects to be heated, so that the detection sensor is not affected by high frequencies, etc., so the cooking operation is good, but the temperature, humidity, and Since gas is detected, there is some variation in the finish, and it is difficult to control the heating at an intermediate temperature of the heated object. In the method using an infrared sensor, the detection area is narrow, and it is impossible to detect anything outside of that area, and there are problems with the installation position of the object to be heated, the shape of the container, etc. To solve these problems, a probe equipped with a thermistor is inserted into the heated object.

その温度データを有線で取り出し、加熱制御を行なう方
式がある。この方式は被加熱物の温度を正確にとらえる
ことができ、またユーザの希望の設3 P 定温度で加熱制御することが可能である。しかしプロー
ブを有線で加熱室外部の制御回路と接続しているため、
被加熱物の加熱むら対策に最も効果あるターンテーブル
方式が使用できない欠点があった。
There is a method that extracts the temperature data via wire and performs heating control. This method can accurately measure the temperature of the object to be heated, and also allows heating to be controlled at a fixed temperature desired by the user. However, since the probe is connected by wire to the control circuit outside the heating chamber,
There was a drawback that the turntable method, which is most effective in countering uneven heating of objects to be heated, could not be used.

この上記の欠点を解消する方式として、ワイヤレスプロ
ーブが考えられる。これは被加熱物の温度データを電波
や超音波あるいは光を媒体としてプローブから送信し、
加熱室外部で受信し、加熱制御を行なうもので、この方
式はターンテーブルの使用も可能となる。またこのプロ
ーブは、ビード型サーミスタを温度検知素子として、プ
ローブ先端に封じ、被加熱物の温度変化を抵抗値変化と
してとらえ、抵抗値変化を電圧変化あるいは発振周波数
変化として信号を送る。この送信の電子回路の電源とし
ては、電池が考えられるが、電池は寿命時間の問題があ
り、交換が必要となる。電池を使用せずに加熱室内の高
周波をアンテナで受け。
A wireless probe can be considered as a method to eliminate the above-mentioned drawbacks. This transmits temperature data of the heated object from a probe using radio waves, ultrasonic waves, or light as a medium.
The signal is received outside the heating chamber and heating control is performed, and this method also allows the use of a turntable. In addition, this probe uses a bead-type thermistor as a temperature detection element sealed at the tip of the probe, detects changes in the temperature of the object to be heated as changes in resistance value, and sends signals as changes in resistance value as changes in voltage or changes in oscillation frequency. A battery can be considered as a power source for the electronic circuit for this transmission, but batteries have a limited lifespan and must be replaced. The antenna receives the high frequency waves inside the heating chamber without using batteries.

これをダイオードで整流して、電源として用いることが
考えられる。
It is conceivable to rectify this with a diode and use it as a power source.

本発明は、上記のワイヤレスプローブを実現するためな
されたもので2周囲の温度変化や電源電圧の変動に対し
ても安定し、使い勝手に優れたワイヤレスプローブを備
えた高周波加熱装置を提供することを目的とする。
The present invention has been made to realize the above-mentioned wireless probe. 2. It is an object of the present invention to provide a high-frequency heating device equipped with a wireless probe that is stable against changes in ambient temperature and power supply voltage and is easy to use. purpose.

その目的達成のため、被加熱物の温度変化をサーミスタ
の抵抗値変化で検知し、それを発振周波数変化に変換し
、超音波を媒体として送信を行い。
To achieve this goal, changes in the temperature of the heated object are detected by changes in the resistance value of a thermistor, which is converted into changes in the oscillation frequency and transmitted using ultrasonic waves as a medium.

更にその送信部の電子回路の電源を高周波をアンテナで
受けだものをダイオードで整流して得るようにしだもの
である。
Furthermore, the power source for the electronic circuit of the transmitting section is obtained by rectifying the high frequency signal received by the antenna using a diode.

以下1本発明の一実施例を図を用いて説明する。An embodiment of the present invention will be described below with reference to the drawings.

第1図はワイヤレスプローブを用いた場合の高周波加熱
装置の全体斜視図であるが、1は高周波加熱装置本体で
あり、2はコントロールパネル、6は加熱室、4はドア
である。5はターンテーブル。
FIG. 1 is an overall perspective view of a high-frequency heating device using a wireless probe, in which 1 is the main body of the high-frequency heating device, 2 is a control panel, 6 is a heating chamber, and 4 is a door. 5 is a turntable.

6は被加熱物、7はワイヤレスプローブである。6 is an object to be heated, and 7 is a wireless probe.

この図に示すように、ワイヤレスプローブ7は被加熱物
に挿入され、被加熱物の温度データを送信する。加熱室
外部には受信素子を設け、制御回路 P に接続する。信号を送る媒体は超音波である。この装置
の使用法および動作順序は。
As shown in this figure, the wireless probe 7 is inserted into the object to be heated and transmits temperature data of the object. A receiving element is provided outside the heating chamber and connected to the control circuit P. The medium for transmitting the signal is ultrasound. How to use this device and the order of operation.

(1)ターンテーブル5に被加熱物6を載置し、ワイヤ
レスプローブ7を挿入してドア4を閉じる。
(1) Place the object to be heated 6 on the turntable 5, insert the wireless probe 7, and close the door 4.

(2)希望温度をコントロールパネル2に設定し。(2) Set the desired temperature on control panel 2.

スタートボタンを押す。Press the start button.

(3)加熱室内に高周波が入ると、被加熱物6は加熱さ
れ同プローブ7からは温度データが送信される。
(3) When high frequency waves enter the heating chamber, the object to be heated 6 is heated and temperature data is transmitted from the probe 7.

(4)設定した温度と送信された温度データの値が一致
したら、制御回路が動作し、マグネトロンの電源回路が
OFFとなり、調理完了となる。
(4) When the set temperature matches the value of the transmitted temperature data, the control circuit operates, the magnetron power supply circuit is turned off, and cooking is completed.

次にワイヤレスプローブ7の本体を第2図に示す。8は
ビート形のサーミスタが封入された突起部で、被加熱部
6に挿入する部分である。9は送信素子を内蔵した部分
である。また送信回路部は本体7に収納されている。送
信回路の電源は同プローブ7の一部にアンテナを設け、
加熱室3内の高周波を受け、ダイオードで整流して使用
する。
Next, the main body of the wireless probe 7 is shown in FIG. 8 is a protrusion portion in which a beat-shaped thermistor is enclosed, and is a portion to be inserted into the heated portion 6 . 9 is a part containing a transmitting element. Further, the transmitting circuit section is housed in the main body 7. The power supply for the transmitting circuit is provided by installing an antenna on a part of the probe 7.
It receives high frequency waves in the heating chamber 3, rectifies them with a diode, and uses them.

ワイヤレスプローブ7のシステムにおいて、す P −ミスタは温度変化を抵抗値変化としてとらえ。In the wireless probe 7 system, -Mister treats temperature changes as resistance value changes.

抵抗値の変化を発振周波数の変化に変換し、超音波送信
素子より温度のデータ信号を送信する。送信された信号
は加熱室3外部に設けた受信素子で受け、増幅して波形
整形を行ない、パルス化する。
The change in resistance value is converted into a change in oscillation frequency, and a temperature data signal is transmitted from the ultrasonic transmitting element. The transmitted signal is received by a receiving element provided outside the heating chamber 3, amplified, waveform-shaped, and pulsed.

この温度のデータ信号のパルス周期をマイクロコンピュ
ータで読み込み、演算処理を行ない、被加熱物の温度を
把握する。
A microcomputer reads the pulse period of this temperature data signal, performs arithmetic processing, and determines the temperature of the heated object.

第3図に、プローブの送信回路のブロック図を示す。1
0は電源部、11は発振部、12は温度検出部のサーミ
スタである。13は超音波送信素子14に共振する共振
回路部で、送信効率を向上させる。
FIG. 3 shows a block diagram of the transmitting circuit of the probe. 1
0 is a power supply section, 11 is an oscillation section, and 12 is a thermistor of a temperature detection section. 13 is a resonant circuit section that resonates with the ultrasonic transmitting element 14 to improve transmission efficiency.

このブロック図の発振部11と温度検出部12の具体的
な回路が第4図である。発振回路は、 CMOSイ −
ンバータを用い、RCの充放電を利用した回路である。
FIG. 4 shows a specific circuit of the oscillation section 11 and temperature detection section 12 in this block diagram. The oscillation circuit is a CMOS i-
This is a circuit that utilizes RC charging and discharging using an inverter.

そしてこの回路の動作タイミングは第5図のように表わ
せる。この発振回路の発振周期T26は。
The operation timing of this circuit can be expressed as shown in FIG. The oscillation period T26 of this oscillation circuit is as follows.

一般にT = 2.2RT−CTで表わされる。したが
って。
It is generally expressed as T=2.2RT-CT. therefore.

RT18をサーミスタにすると1発振周期Tは温度変化
によって変わる。サーミスタは、温度が上昇す7 P ると抵抗値が小さくなるのが普通で1発振周期は上式よ
り短くなる。同回路で抵抗R,は、 CMOSインバー
タA15の入力保護ダイオードに流れる電流を小さくす
るだめの保護抵抗である。インバータA15の入力電圧
V120は、第5図の(a)23となる。ここで電源電
圧は、ローレベル(グランド)をvs8とし、ハイレベ
ルをVDDとした。入力電圧V 20の電圧波形は、イ
ンバータのスレッショルド電圧VTIHで変化し、電圧
V221の波形はインバータA15にょシ第5図(b)
24に示すような立上りと立下がりがゆるやかな矩形波
となる。さらに電圧■221は、インバータB16によ
り整形された矩形波となる。このパルス発振回路に超音
波送信素子14の送信周波数に共振する共振回路を付加
した回路が第6図である。第6図で発振回路部のサーミ
スター8の部分は。
When RT18 is a thermistor, one oscillation period T changes depending on temperature changes. As the temperature of a thermistor increases, the resistance value generally decreases, and one oscillation period becomes shorter than the above equation. In the same circuit, the resistor R is a protection resistor for reducing the current flowing to the input protection diode of the CMOS inverter A15. The input voltage V120 of the inverter A15 becomes (a) 23 in FIG. Here, the power supply voltage has a low level (ground) as vs8 and a high level as VDD. The voltage waveform of the input voltage V20 changes with the threshold voltage VTIH of the inverter, and the waveform of the voltage V221 changes with the inverter A15.
The waveform becomes a rectangular wave with gentle rise and fall as shown in 24. Furthermore, the voltage 221 becomes a rectangular wave shaped by the inverter B16. FIG. 6 shows a circuit in which a resonant circuit that resonates with the transmission frequency of the ultrasonic transmitting element 14 is added to this pulse oscillation circuit. In Figure 6, the thermistor 8 in the oscillation circuit section is shown.

サーミスター8にパラレルに固定抵抗R227を設け。A fixed resistor R227 is provided in parallel to thermistor 8.

シリーズに半固定抵抗R□26を設けた。半固定抵抗R
126は周期T26調整用で、固定低動227はサーミ
スタRj18の抵抗値変化の幅を小さくするためである
。発振回路の出力電圧Vo22をインバータC28を介
して反転させ、コンデンサC1と抵抗R3で微分する。
A semi-fixed resistor R□26 was provided in the series. Semi-fixed resistance R
126 is for adjusting the period T26, and the fixed low voltage 227 is for reducing the width of the resistance value change of the thermistor Rj18. The output voltage Vo22 of the oscillation circuit is inverted via an inverter C28 and differentiated by a capacitor C1 and a resistor R3.

微分した電圧V4をインバータD36を介して反転させ
、超音波送信時間を決め、 LC直列共振回路に接続す
る。直列共振回路の共振周波数fは、コンデンサーの容
量を0235 mコイルのインダクタンスをL136と
したとき2次式で表わされる。
The differentiated voltage V4 is inverted via an inverter D36 to determine the ultrasonic transmission time and connected to the LC series resonant circuit. The resonant frequency f of the series resonant circuit is expressed by a quadratic equation where the capacitance of the capacitor is 0235 m and the inductance of the coil is L136.

f−2吋。□。2〔H2〕 したがって2周波数fの値を超音波送信周波数に一致す
るようにLl 、 C2の値を決定する。超音波送振素
子はコイルL166の両端に接続し、高周波電流を流し
、送信効率を向上させた。
f-2 inches. □. 2 [H2] Therefore, the values of Ll and C2 are determined so that the value of the two frequencies f matches the ultrasound transmission frequency. Ultrasonic transmitting elements were connected to both ends of coil L166 to flow high frequency current and improve transmission efficiency.

第7図に、第6図の回路の各点の電圧波形を示した。同
(a)38は発振回路の出力電圧Vo22の波形で。
FIG. 7 shows voltage waveforms at each point in the circuit of FIG. 6. (a) 38 is the waveform of the output voltage Vo22 of the oscillation circuit.

同(b)39はインバータCを介した電圧V329の波
形で。
(b) 39 is the waveform of voltage V329 through inverter C.

同(c)40は電圧V8を微分した電圧v432の波形
である。
(c) 40 is the waveform of voltage v432 obtained by differentiating voltage V8.

同(a) 41は微分した電圧■432をインバータD
33を介した出力電圧Vfi34の波形で、同(e)4
2は超音波送信素子14の両端の電圧v637の波形で
ある。
(a) 41 is the differentiated voltage ■432 is connected to the inverter D
The waveform of the output voltage Vfi34 via 33 is (e) 4
2 is the waveform of the voltage v637 across the ultrasonic transmitting element 14.

次に、他の送信回路の実施例を示す。第8図は P 発振回路が上記のものと同じで、積分回路を設け。Next, an example of another transmitting circuit will be shown. Figure 8 is P The oscillation circuit is the same as the one above, but an integration circuit is provided.

矩形波の立上シをゆるやかとし、立下りの時直列共振回
路を動作させ、超音波送信を行なう回路である。発振回
路の出力にRCの積分回路を接続し。
This circuit transmits ultrasonic waves by making the rising edge of the rectangular wave gentle and operating the series resonant circuit at the falling edge. Connect the RC integration circuit to the output of the oscillation circuit.

抵抗R443に逆方向のダイオードD144をパラレル
に接続する。このようにすると、矩形波の立上りはダイ
オードDi43が高インピーダンスとなるため。
A reverse diode D144 is connected in parallel to the resistor R443. If this is done, the diode Di43 will have a high impedance at the rise of the rectangular wave.

抵抗R446とコンデンサC345の充電カーブがゆる
やかとなる。また立下りすなわち放電時においては。
The charging curve of resistor R446 and capacitor C345 becomes gradual. Also, at the time of falling, that is, during discharge.

タイオードD1が順方向となって低インピーダンスとな
るため、急峻に放電が行なわれる。第9図にこの回路の
電圧波形を示す。同(a)38は発振回路の出力電圧V
o22で、同(b)50は積分回路の出力v746の波
形である。超音波送信素子は前に述べた通りである。
Since the diode D1 is in the forward direction and has a low impedance, discharge occurs rapidly. FIG. 9 shows the voltage waveform of this circuit. (a) 38 is the output voltage V of the oscillation circuit
In o22, (b) 50 is the waveform of the output v746 of the integrating circuit. The ultrasonic transmitting element is as described above.

次に超音波送信回路の温度特性と電源電圧VDDの特性
について述べる。本発明のワイヤレスプローブは先に記
述したように、サーミスタの抵抗値変化をそのtま発振
周期の変化に変換し、受信回路においてこの周期をマイ
コンで読み込み、演算0P 処理を行ない、被加熱物の温度を把えるため、送信回路
部が周囲の温度や電源電圧■DDの変動で周期が著しく
変化しては被加熱物の温度を正確に把えることはできな
い。しだがって送信回路は周囲の条件で発振周期が変動
し々いことが望ましい。
Next, the temperature characteristics of the ultrasonic transmitting circuit and the characteristics of the power supply voltage VDD will be described. As described above, the wireless probe of the present invention converts the change in the resistance value of the thermistor into a change in the oscillation period, reads this period with a microcomputer in the receiving circuit, performs arithmetic 0P processing, and In order to determine the temperature, if the period of the transmitting circuit changes significantly due to fluctuations in the ambient temperature or the power supply voltage DD, it will not be possible to accurately determine the temperature of the object to be heated. Therefore, it is desirable that the oscillation period of the transmitting circuit fluctuates easily depending on the surrounding conditions.

第10図と第11図に第6図の送信回路のみの温度特性
と電源電圧の特性を示す。第10図はプローブの周囲温
度を一40〜90℃に変化させたとき、固定した発振周
期の変化率を実測して示したものである。
FIGS. 10 and 11 show the temperature characteristics and power supply voltage characteristics of only the transmitting circuit shown in FIG. 6. FIG. 10 shows the measured rate of change in the fixed oscillation period when the ambient temperature of the probe was varied from -40 to 90°C.

この特性曲線より、温度変化に対して発振周期の変動は
非常に小さい。また第11図に電源電圧■DDをDC3
〜9vに変化させたとき、固定した発振周期の変化率を
実測して示した。この特性より、電源電圧”DDは5■
以上にとれば、はとんど周期変動はないと言える。
This characteristic curve shows that the fluctuation in the oscillation period is very small with respect to temperature changes. Also, in Figure 11, the power supply voltage ■DD is DC3
The rate of change of the fixed oscillation period was actually measured and shown when the voltage was changed to ~9V. From this characteristic, the power supply voltage "DD" is 5■
Given the above, it can be said that there is almost no periodic variation.

加熱室6内の高周波をアンテナで受け、ダイオードで整
流して送信回路の電源として使用する方式は、ターンテ
ーブル上のプローブの位置変動に伴い電源電圧の変動が
生じる。従って電源電圧がDC5V以下になることはあ
シ1発振周期の変化率は11P 大きくなり、かつ周期は長くなる傾向を示す。したがっ
て、受信システムのマイコンで最小の周期を正信号とし
てとらえるようにアルゴリズムを作成すると、低電圧に
おける問題は生じない。DC9VC10電圧に対しては
、電源回路にツェナーダイオードを用いれば問題はない
In the method in which the high frequency waves in the heating chamber 6 are received by an antenna, rectified by a diode, and used as a power source for a transmitting circuit, the power source voltage fluctuates as the position of the probe on the turntable changes. Therefore, when the power supply voltage becomes less than DC5V, the rate of change in one oscillation cycle increases by 11P, and the cycle tends to become longer. Therefore, if an algorithm is created in the microcomputer of the receiving system so that the minimum period is regarded as a positive signal, problems at low voltages will not occur. For DC9VC10 voltage, there is no problem if a Zener diode is used in the power supply circuit.

以上の如く本発明によれば、プローブの送信回路の発振
周波数(あるいは周期)の変化率が周囲の温度変化や電
源電圧の変動に対して非常に小さいため、被加熱物の温
度を精度良くとらえることができ、又送信部の部品点数
が少ないため、プローブを小型軽量にでき、特に電源と
して高周波を整流したものを使用するので使い勝手が良
いという効果がある。
As described above, according to the present invention, the rate of change in the oscillation frequency (or period) of the transmitting circuit of the probe is extremely small with respect to changes in ambient temperature and power supply voltage, so the temperature of the heated object can be accurately captured. In addition, since the number of parts in the transmitting section is small, the probe can be made small and lightweight, and in particular, since a rectified high-frequency wave is used as a power source, it is easy to use.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例によるワイヤレスプローブを
用いた高周波加熱装置の外観図、第2図ハ同ワイヤレス
プローブの斜視図、第6図は同プローブの回路構成ブロ
ック図、第4図は同プローブの発振回路図、第5図は同
発振回路の各点の電圧波形図、第6図は同送信回路図、
第7図はその回路の各点の電圧波形図、第8図は回能の
実施例による送信回路図、第9図はその回路の各点の電
圧波形図、第10図は第6図の送信回路の温度特性図、
第11図は同電源電圧変動に対する特性図である。 1・・・高周波加熱装置、6・・・被加熱物。 7・・・ワイヤレスプローブ、11・・・発振回路。 14・・・超音波送信素子。 12.18・・・サーミスタ、  15.16・・・C
MOSインバータ。 出願人  日立熱器具株式会社 第1図 第2図 第3図 琵 第4図 第5図 第8図 第9図 415− 第10図 第11図
Fig. 1 is an external view of a high frequency heating device using a wireless probe according to an embodiment of the present invention, Fig. 2 is a perspective view of the wireless probe, Fig. 6 is a block diagram of the circuit configuration of the probe, and Fig. 4 is The oscillation circuit diagram of the probe, Figure 5 is a voltage waveform diagram at each point of the oscillation circuit, Figure 6 is the transmission circuit diagram,
Fig. 7 is a voltage waveform diagram at each point in the circuit, Fig. 8 is a transmission circuit diagram according to an embodiment of the circuit, Fig. 9 is a voltage waveform diagram at each point in the circuit, and Fig. 10 is the voltage waveform diagram at each point in the circuit. Temperature characteristics diagram of the transmitter circuit,
FIG. 11 is a characteristic diagram for the same power supply voltage fluctuation. 1... High frequency heating device, 6... Heated object. 7... Wireless probe, 11... Oscillation circuit. 14...Ultrasonic transmitting element. 12.18...Thermistor, 15.16...C
MOS inverter. Applicant: Hitachi Thermal Equipment Co., Ltd. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 8 Figure 9 Figure 415- Figure 10 Figure 11

Claims (1)

【特許請求の範囲】[Claims] 加熱室内の被加熱物の温度を検出する感熱素子と、検出
した信号に応じて発振周波数が変化する発振機構と、超
音波を送信する送信機構とを有したワイヤレスプローブ
と、それからの信号を受信し1発振周波数をマイクロコ
ンピュータで読み取り、被加熱物の温度をとらえ、調理
を自動制御する機構とを備え、送信機構の発振回路を無
安定ノ(イブレータで、又感熱素子をサーミスタで、更
に電源として高周波を整流したもので各構成し、広範な
温度範囲で安定した発振周波数を得ることを特徴とした
ワイヤレスプローブを備えた高周波加熱装置。
A wireless probe that has a heat-sensitive element that detects the temperature of the object to be heated in the heating chamber, an oscillation mechanism that changes the oscillation frequency according to the detected signal, and a transmission mechanism that transmits ultrasonic waves, and receives signals from it. It is equipped with a mechanism that reads the oscillation frequency with a microcomputer, captures the temperature of the object to be heated, and automatically controls cooking. A high-frequency heating device equipped with a wireless probe that consists of rectified high-frequency waves and obtains a stable oscillation frequency over a wide temperature range.
JP57033242A 1982-03-03 1982-03-03 High frequency heater with wireless probe Pending JPS58150291A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP57033242A JPS58150291A (en) 1982-03-03 1982-03-03 High frequency heater with wireless probe
GB08305698A GB2119127B (en) 1982-03-03 1983-03-02 High-frequency heating apparatus with wireless temperature probe
US06/471,433 US4518839A (en) 1982-03-03 1983-03-02 High frequency heating apparatus with wireless temperature probe
CA000422729A CA1200583A (en) 1982-03-03 1983-03-02 High-frequency heating apparatus with wireless temperature probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57033242A JPS58150291A (en) 1982-03-03 1982-03-03 High frequency heater with wireless probe

Publications (1)

Publication Number Publication Date
JPS58150291A true JPS58150291A (en) 1983-09-06

Family

ID=12380998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57033242A Pending JPS58150291A (en) 1982-03-03 1982-03-03 High frequency heater with wireless probe

Country Status (2)

Country Link
JP (1) JPS58150291A (en)
GB (1) GB2119127B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014505912A (en) * 2010-10-28 2014-03-06 ヘレーウス エレクトロ−ナイト インターナシヨナル エヌ ヴイ Wireless lance

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8623552D0 (en) * 1986-10-01 1986-11-05 Davies B G Temperature control system
US4827104A (en) * 1986-10-16 1989-05-02 Dart Industries Inc. Phototransistor relay electronic temperature control for cordless irons
EP0477023A3 (en) * 1990-09-21 1992-07-22 Samsung Electronics Co. Ltd. Gas detection for microwave ovens
JPH06307645A (en) * 1993-04-26 1994-11-01 Toshiba Corp Heating and cooling device
FR2887331B1 (en) * 2005-06-15 2008-01-25 Peugeot Citroen Automobiles Sa SENSOR STRUCTURE, IN PARTICULAR FOR A SEVERE ENVIRONMENT IN A MOTOR VEHICLE.
EP3121573B1 (en) * 2008-05-08 2020-03-25 Electrolux Home Products Corporation N.V. Oven, in particular baking oven or microwave oven
NL1037286C2 (en) * 2009-09-15 2011-03-16 Jan Johannes Maria Lierop DEVICE FOR MEASURING NUCLEAR TEMPERATURE OF FOODS HEATING IN A MICROWAVE.
US11006487B2 (en) 2015-04-10 2021-05-11 Danmarks Tekniske Universitet Microwave powered sensor assembly for microwave ovens
KR20190062528A (en) * 2016-10-12 2019-06-05 덴마크스 텍니스케 유니버시테트 Sensor assembly for microwave oven cooking chamber and method of controlling energy consumption of such sensor assembly
CN107087323A (en) * 2017-05-22 2017-08-22 吴凡 Microwave heats heat conductive rod
WO2021239231A1 (en) * 2020-05-28 2021-12-02 Senserna A/S A method and a system for prompting a user of a microwave oven to decide upon user operation of the microwave oven

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5391437A (en) * 1977-01-20 1978-08-11 Sharp Corp Temperature controlling apparatus
JPS592156A (en) * 1982-06-29 1984-01-07 Fujitsu Ltd List output controlling system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5391437A (en) * 1977-01-20 1978-08-11 Sharp Corp Temperature controlling apparatus
JPS592156A (en) * 1982-06-29 1984-01-07 Fujitsu Ltd List output controlling system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014505912A (en) * 2010-10-28 2014-03-06 ヘレーウス エレクトロ−ナイト インターナシヨナル エヌ ヴイ Wireless lance

Also Published As

Publication number Publication date
GB2119127B (en) 1985-09-04
GB8305698D0 (en) 1983-04-07
GB2119127A (en) 1983-11-09

Similar Documents

Publication Publication Date Title
JPS58150291A (en) High frequency heater with wireless probe
US4471354A (en) Apparatus and method for remotely measuring temperature
US8319612B2 (en) Transponder detector for an RFID system generating a progression of detection signals
EP1646851B1 (en) A food temperature monitoring device
CA1200583A (en) High-frequency heating apparatus with wireless temperature probe
US4475024A (en) Wireless food temperature-sensing assembly
GB2117925A (en) Heating apparatus of thawing sensor controlled type
JPS62154593A (en) Cooker
EP0198430A2 (en) Heating apparatus with piezoelectric device sensor
JPS599893A (en) High frequency heater with wireless probe
JPS599892A (en) High frequency heater with wireless probe
JPS5944791A (en) High frequency heater with wireless probe
JPS58135428A (en) Wireless temperature probe
CN217743981U (en) Intelligent cooker, intelligent cooker and intelligent cooker system
JPS5944792A (en) High frequency heater with wireless probe
JPS5811035Y2 (en) High frequency heating device
CN219036728U (en) Cooking device
JPS59194383A (en) Electronic range
IE930912A1 (en) Apparatus for monitoring temperature
JPS6188486A (en) High frequency heater with wireless temperature probe
JPS5944790A (en) High frequency heater with wireless temperature probe
JPS59157992A (en) Electronic range
JPS59194380A (en) Electronic range
JPS59157989A (en) Electronic range
JPS59157990A (en) Electronic range