JPS58150270A - Electrode for battery - Google Patents

Electrode for battery

Info

Publication number
JPS58150270A
JPS58150270A JP57033376A JP3337682A JPS58150270A JP S58150270 A JPS58150270 A JP S58150270A JP 57033376 A JP57033376 A JP 57033376A JP 3337682 A JP3337682 A JP 3337682A JP S58150270 A JPS58150270 A JP S58150270A
Authority
JP
Japan
Prior art keywords
nickel
electrode
fiber
active material
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57033376A
Other languages
Japanese (ja)
Inventor
Tsutomu Iwaki
勉 岩城
Hiroshi Kawano
川野 博志
Mieko Watanabe
渡辺 美栄子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57033376A priority Critical patent/JPS58150270A/en
Publication of JPS58150270A publication Critical patent/JPS58150270A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain an electrode, such as a nickel or a cadmium electrode for an alkaline battery, which can be formed by a pasting method or a pressing method, has a high utilization rate of its active material and an increased mechanical strength, and provides a high electric-discharge voltage by adding a longer insulating fiber and a shorter conductive fiber to an active material mixture for the electrode. CONSTITUTION:In preparing an active material mixture for a nickel electrode, after nickel hydroxide powder used as an active material, when necessary, is mixed with a conductive agent such as nickel or graphite, cobalt and the like, the mixture is combined with at least one kind of each of insulating fiber and conductive fiber. Then, in preparing a pasted nickel electrode, a binding-agent solution is added to thus obtained mixture so as to make a pasty mixture, and the pasty mixture is applied to a core member either by passing them between slits or by subjecting them to roller press. Here, appropriate lengths of the conductive fiber and the insulating fiber are 0.3-2mm. and 2-6mm. respectively, and the appropriate amounts of the conductive fiber and the insulating fiber added are 5-30wt% and 1-10wt% of the active material respectively. As a mateial for the conductive fiber, in a nickel or a cadmium electrode for an alkaline battery, nickel is most recommended, and an alkali-proof stainless steel may be used. In addition, a nickel-plated iron or a nickel-plated synthetic resin may be used in a cadmium electrode for an alkaline battery, and lead or alloy fiber is recommended in a pasted electrode for a lead battery. As a material for the insulating fiber, the usual synthetic resin fiber can be used.

Description

【発明の詳細な説明】 本発明は、結着剤を含む活物質混合物を芯材に塗着ない
し圧着した電池用電極、特にニッケル極。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a battery electrode, particularly a nickel electrode, in which an active material mixture containing a binder is applied or pressed onto a core material.

カドミウム極などのアルカリ電池用電極の改良に° 関
するものである。
This invention relates to improvements in electrodes for alkaline batteries, such as cadmium electrodes.

ニッケル極やカドミウム極には、構造別に分けると、筐
ず最も歴史が古いポケット式、ついで焼結式、さらに最
近提案さ扛ている非焼結式としての発泡メタルを用いる
ものや粉末加圧式、さらにペースト式などがある。こ扛
らのうち特性、つまり放電時に電圧低下や利用率の低下
が少なく、寿命も長いことから焼結式が最もよく使用さ
扛ている。しかし、よく知らnているように、焼結式は
、焼結基板が必要であるとともに焼結基板への活物質の
充てんに複雑な操作全必要とするところから工程費が冒
くなる欠点がある。
Nickel electrodes and cadmium electrodes can be categorized by structure: the pocket type, which has the oldest history, followed by the sintered type, and the more recently proposed non-sintered type, which uses foamed metal, and the powder press type. There are also paste types. Among these types, the sintered type is the most commonly used because of its characteristics, that is, there is little voltage drop or decrease in utilization rate during discharge, and it has a long life. However, as is well known, the sintering method requires a sintered substrate and requires complicated operations to fill the sintered substrate with active material, which increases process costs. be.

このような観点から最も安価にできるのは、芯材として
スクリーン、孔あキ板、エキスバンドメタルなどを用い
、結着剤を含む活物質混合物をペースト状にして芯材に
塗着するペースト式及び活物質混合物を芯材に加圧圧着
する方式である。っ1ジ、ニッケルやニッケルメッキし
た鉄の孔あき板などを芯材とし、水酸化ニッケル又は酸
化カドミウムに導電材としてニッケル粉末や黒鉛粉末を
加え、こ扛に結着剤としてポリビニルアルコールやカル
ボキシメチル士ルロースの水溶液など全力口えてペース
ト状にしたものをスリソトヲ通して芯材に塗着する方法
による電極である。また、ポリエチレン、ポリ塩化ビニ
ルなどのディスパージョンや有機溶媒溶液を力1えて同
じくペースト状にしてスリットを通したり、あるいはロ
ーラ間を通すなどして電極を得る方法もある。また、加
圧式では活物質混合物を加圧成形により芯材と一体に結
合踵必要に応じ熱処理する。このように、まず芯材とし
て最も安価なスクリーンや孔あき板、エキスバンドメタ
ルなどを用いることにより他の方式より安価であること
、さらに活物質全連続的に塗着や加圧するのみでよいこ
となどにより製法が簡単であるので、他の電極に比べて
経済性の点で有利になるのである。
From this point of view, the cheapest option is the paste method, which uses a screen, perforated plate, expanded metal, etc. as the core material, and forms a paste of an active material mixture containing a binder and applies it to the core material. This is a method in which the active material mixture is pressure-bonded to the core material. First, the core material is nickel or a perforated plate of nickel-plated iron, nickel powder or graphite powder is added as a conductive material to nickel hydroxide or cadmium oxide, and polyvinyl alcohol or carboxymethyl is used as a binder. This electrode is made by applying an aqueous solution of shiruulose, etc., which is made into a paste by applying it to the core material. There is also a method of obtaining an electrode by strengthening a dispersion or an organic solvent solution of polyethylene, polyvinyl chloride, etc. to form a paste and passing it through a slit or between rollers. In addition, in the pressure type, the active material mixture is combined with the core material by pressure molding, and is heat-treated as necessary. In this way, firstly, it is cheaper than other methods by using the cheapest screen, perforated plate, expanded metal, etc. as the core material, and secondly, it is only necessary to apply or pressurize the active material completely continuously. Because the manufacturing method is simple, it is economically advantageous compared to other electrodes.

ところが、とくに水酸化ニッケルは、他のカドミウム極
や亜鉛極と異なり、充電状態、放電状態ともにほとんど
電導性がない。焼結式や発泡メタルを用いる方式では、
このような活物質が導電性のある骨格に包1扛た形で存
在するので、電圧や容量の点で優nた電極が得らfる。
However, unlike other cadmium and zinc electrodes, nickel hydroxide in particular has almost no conductivity in both charged and discharged states. In methods using sintered or foamed metal,
Since such an active material exists in the form of a conductive skeleton, an electrode with excellent voltage and capacity can be obtained.

しかし、スクリーンなど全芯材とする場合には、活物質
は芯材と接している部分は別にしてその他は導電性がな
いので、不質的には充放電できなくなる。ニッケル粉末
などの導電材を加えるのは、このような活物質と導電性
多孔体、つ捷9芯材との電気的接触ケよくするためであ
る。ところが粉末では十分その役目を果たすことは困難
であって、多量に加えnばその点は改良さfるが、活物
質の割合が減少するので容量が減少してしまう。
However, in the case where the entire core material is used, such as a screen, the active material has no conductivity except for the part that is in contact with the core material, so it cannot be qualitatively charged or discharged. The reason why a conductive material such as nickel powder is added is to improve electrical contact between the active material, the conductive porous body, and the core material. However, it is difficult for powder to fulfill its role satisfactorily, and adding a large amount improves this point, but the ratio of the active material decreases, resulting in a decrease in capacity.

つ捷ジ、スクリーンや孔あき板などの芯材に水酸化ニッ
ケル活物質混合物をペースト状にしてスリット間を通し
て塗着する方法や、活物質混合物者 全加圧竪マーる方法は・製法は簡単であるが・放電電圧
や利用率、さらには寿命の点で焼結式よりもはるかに劣
るのである。カドミウム極でもこのような傾向がある。
The manufacturing method is simple: applying the nickel hydroxide active material mixture in paste form to the core material of a wire, screen, perforated plate, etc. through the slits, or applying the active material mixture vertically under full pressure. However, it is far inferior to the sintered type in terms of discharge voltage, utilization rate, and even lifespan. This tendency also exists in cadmium poles.

そこで、不発明者らはこnを改善し、導電性全向上する
ために導電性繊維を活物質混合物中に添7I11するこ
とを提案した。
Therefore, the inventors proposed to improve this problem and to add conductive fibers to the active material mixture in order to improve the conductivity.

5t\ 。5t\.

不発明は、こ′nをさらに改良するものであって、その
目的とするところは、ペースト法や加圧法の簡便さ全そ
のまま残しつつ、活物質の利用率、放電電圧、電極の機
械的強度の向上と電池における寿命の向上などを可能に
することである。
The invention aims to further improve this, and its purpose is to improve the utilization rate of active materials, discharge voltage, and mechanical strength of electrodes while retaining all the simplicity of the paste method and pressurization method. The goal is to make it possible to improve battery life and battery life.

具体的には、活物質混合物に、長さの異なる繊維を加え
、長い方を絶縁性とし、短い方を導電性とするものであ
る。つまり、電極本来の上記特性の上では、導電性でし
かも長い繊維を用いることが好ましい。しかし、ペース
ト式にしても加圧式にしても、繊維が長いと電極から剥
離してセパレータを介して対極と短絡を生じることにな
る。また、スリソH−用いるペースト式の場合には、導
電性繊維でもとくに好ましい金属繊維では、スリット間
にひっかかって塗着がスムースに行わ扛ないことがしば
しば生じる。
Specifically, fibers of different lengths are added to the active material mixture, with the longer fibers being insulating and the shorter fibers being conductive. In other words, considering the above-mentioned characteristics inherent to the electrode, it is preferable to use conductive and long fibers. However, whether the paste type or the pressure type is used, if the fibers are long, they will peel off from the electrode and cause a short circuit with the counter electrode via the separator. Further, in the case of a paste type using Sliso H, conductive fibers, particularly metal fibers, often get caught between the slits and cannot be applied smoothly.

ところで導電性繊維を短く、たとえば0.3〜2問程度
にしても、導電性の粉末よりははるかに大きく、とくに
長さの方向で活物質との接触が有利になるので、電池特
性の向上にはより効果的であす、また、短絡の原因にも
ならない。しかし、電極の強度の向上には、長い繊維に
比べると劣るので、取扱い上の不便さや寿命に問題が生
じる。そこで本発明では、長い方の繊維としては、たと
えば樹脂製のような絶縁性繊維を用いるものであって、
勿論短絡の原因にはならず、丑だ、強度の向上には効果
があり、丑た、スリットを用いても柔軟性が犬合いので
スリットにひっかかることがない。長い方の繊維の長さ
としては、2〜6闘程度がよい。勿論薄い電極では短く
、厚い場合には長くするのがよい。
By the way, even if the conductive fiber is short, for example, 0.3 to 2 times, it is much larger than the conductive powder, and the contact with the active material is particularly advantageous in the length direction, so the battery characteristics can be improved. It is more effective and does not cause short circuits. However, since it is inferior to long fibers in terms of improving the strength of the electrode, it causes inconvenience in handling and problems with longevity. Therefore, in the present invention, insulating fibers such as those made of resin are used as the longer fibers, and
Of course, it does not cause short circuits, but it is effective in improving the strength, and even if slits are used, the flexibility is so good that it will not get caught in the slits. The length of the longer fibers is preferably about 2 to 6 fibers. Of course, if the electrode is thin, it is better to shorten it, and if it is thick, it is better to make it longer.

こ扛ら繊維の添加量については、線径が犬であ扛ば全体
として添加量を少なくし、小であ扛ば多ましい。前者は
、重量で活物質に対して1〜10重量係程度、後者は同
じく6〜30重量係が適している。また、導電性繊維の
材料については、アルカリ電池のニッケル極やカドミウ
ム極に対してはニッケルが最もよく、耐アルカリ性ステ
ンレススチールも使える。カドだラム極の場合には、鉄
も使える。さらに合成樹脂にニッケルメッキしたもので
もよい。鉛電池用のペースト極には、鉛あるいは合金繊
維がよい。一方の絶縁性繊維は、通常の合成樹脂繊維が
使える。
Regarding the amount of these fibers to be added, if the wire diameter is small, the total amount added should be small, and if the diameter is small, the amount should be large. Suitably, the former is about 1 to 10 parts by weight relative to the active material, and the latter is similarly 6 to 30 parts by weight. Regarding conductive fiber materials, nickel is best for the nickel and cadmium electrodes of alkaline batteries, and alkali-resistant stainless steel can also be used. Iron can also be used in the case of cadaver poles. Furthermore, a synthetic resin plated with nickel may be used. Lead or alloy fibers are suitable for paste electrodes for lead batteries. On the other hand, ordinary synthetic resin fibers can be used as the insulating fibers.

たとえば、ニッケル極では活物質としての水酸化ニッケ
ル粉末、必要に応じてニッケル、黒鉛などの導電材、さ
らにコバルトなどを加え、こ扛に少なくとも一種の絶縁
性繊維と導電性繊維を混入し、ペースト式では、こnに
結着剤溶液を加えてペースト状とし、スリット間を通し
て芯材に塗着、あるいはローラプレスで塗着して電極と
する。
For example, in the case of nickel electrodes, nickel hydroxide powder is used as the active material, conductive materials such as nickel and graphite are added as necessary, and cobalt is added, and at least one kind of insulating fiber and conductive fiber is mixed into the paste. In the formula, a binder solution is added to this paste to form a paste, and the paste is applied to a core material through slits or applied with a roller press to form an electrode.

スリン)k通した後は、必要に応じて加圧する。After passing through the surin), apply pressure as necessary.

壕だ、加圧後、ポリエチレン、ポリ塩化ビニル。It's a trench, after pressurization, polyethylene, polyvinyl chloride.

ポリスチレン、フッ素樹脂などのディスパージョンを加
えると、電極表面に多孔性の樹脂層が形成さ扛、こnが
電極からの活物質の脱落や繊維の脱落を抑制し、長寿命
になる効果を持つ。
When a dispersion such as polystyrene or fluororesin is added, a porous resin layer is formed on the electrode surface, which suppresses the falling of active material and fibers from the electrode and has the effect of extending the life of the electrode. .

以下、本発明をペースト式ニッケル極に適用した実施例
を説明する。
An example in which the present invention is applied to a paste-type nickel electrode will be described below.

市販の水酸化ニッケル粉末6kqにカーボニルニッケル
粉末15of/、  コバルト粉末150g、IJン状
黒鉛1了ogを加える。こnに平均線径10μ、長さ平
均6mmの塩化ビニル−アクリロニトリル共重合体繊維
’112017、同じく平均線径1071、平均長さ0
.5m7ffのニッケル繊維を300g加エル。以上の
混合物にカルボキシメチルセルロースの2重量多水溶液
を51加え、十分攪拌し、さらにポリエチレン粉末を1
1097J11える。
Add 15 kg of carbonyl nickel powder, 150 g of cobalt powder, and 1 kg of IJ-like graphite to 6 kq of commercially available nickel hydroxide powder. In this case, vinyl chloride-acrylonitrile copolymer fiber '112017 with an average wire diameter of 10 μ and an average length of 6 mm, also with an average wire diameter of 1071 and an average length of 0
.. Add 300g of 5m7ff nickel fiber. Add 5 parts of a 2-weight polyhydric solution of carboxymethyl cellulose to the above mixture, stir well, and add 1 part of polyethylene powder.
1097J11 get.

スリットとして櫛状スリンI・を用い、その間隔’(r
l、1mffとした。一方、孔径1.8闘の孔をピッチ
2.6mmで設けた厚さ0−13mffのニッケルメッ
キ鉄製の孔あき板を芯材として用い、こnの両面に上記
ペースト−を塗着した後にこのスリット間を通した。つ
いで100℃で1.5時間乾燥し、さらに100℃で2
0分間熱処理してポリエチレンを溶解させて伺着力を向
上させた。さらに550kg/c4の圧力で力■圧して
平均厚さ0.63mmの電極とした。
A comb-shaped Surin I was used as the slit, and the interval '(r
l, 1mff. On the other hand, a perforated plate made of nickel-plated iron with a thickness of 0 to 13 mff, in which holes with a diameter of 1.8 mm are provided at a pitch of 2.6 mm, was used as the core material, and after applying the above paste on both sides of the plate, passed through the slit. Next, it was dried at 100°C for 1.5 hours, and further dried at 100°C for 2 hours.
Heat treatment was performed for 0 minutes to dissolve the polyethylene and improve adhesion. Further, the electrode was pressed at a pressure of 550 kg/c4 to obtain an electrode with an average thickness of 0.63 mm.

この電極を公知のカドζラム電極と組合せて単2形電池
とし人とした。人と同じく加圧後にフッ素樹脂の水性デ
ィスパージョン(樹脂分7重量%)中に浸せきし、乾燥
して得らnた電極を用いた電池をA′とした。また、比
較例として、側繊維の添力ロ量を変化させ、A、A’と
同様の方法で電極を製作し、電池を構成した。電極の製
法の上での問題点や出来上った電極の外観などを第1表
に示す。
This electrode was combined with a known quadram electrode to make an AA battery. A battery was designated as A' using an electrode obtained by immersing the battery in an aqueous fluororesin dispersion (resin content: 7% by weight) and drying it after pressurization, as in humans. In addition, as a comparative example, electrodes were manufactured in the same manner as A and A' by changing the amount of applied force of the side fibers, and a battery was constructed. Table 1 shows the problems with the electrode manufacturing method and the appearance of the finished electrode.

第1表 つぎに各電極を用いた単2形電池で0.20.IC放電
での利用率と0.25 Gで150%充電、0.3C放
電の繰9返しにおける寿命とを一括して 0 第2衣に示す。
Table 1: AA batteries using each electrode are 0.20. The utilization rate in IC discharge and the lifespan after 9 repetitions of 150% charging at 0.25 G and 0.3 C discharging are shown in Figure 2.

第2表 ■ 均一な電極シ゛えら扛ないので測定せずf■ 充て
ん容量がA〜Eでは2.2〜2.4ムhの範囲にできた
がこの場合は樹脂の嵩が大きいので1.6ムhであった
○ 11ベー、を 第2表で明らかなように、利用率、寿命ともすぐ扛てい
るのは、本発明による人、A′であり、絶縁性繊維のみ
を加えたB、B′、D、D’は、寿命は長いが利用率の
点で劣る。また導電性繊維を長いもの全多く用いると電
極の出来上Vに問題があり、少なくても長いものは短絡
の原因になり易く、利用率の向上も期待できない。1だ
、導電性繊維は多く加えると、利用率は向上するが、強
度が小さく寿命が期待できない(c、c’ 、  L 
y、’ )。
Table 2 ■ No measurements were taken because the electrodes were not uniform f ■ The filling capacity was in the range of 2.2 to 2.4 mm h for A to E, but in this case, the bulk of the resin was large, so 1. As is clear from Table 2, the material of the present invention, A', has the highest utilization rate and lifespan, while B, which has only insulating fibers added, , B', D, and D' have long lifetimes but are inferior in terms of utilization. Furthermore, if long conductive fibers are used, there will be a problem in the finished V of the electrode, and if the conductive fibers are at least long, they will easily cause short circuits, and no improvement in utilization rate can be expected. 1. If you add a lot of conductive fibers, the utilization rate will improve, but the strength will be low and you can't expect a long life (c, c', L
y,').

このようじ、強度の向上じ役立ち、電極から剥離しても
短絡の原因にならない絶縁性の長繊維と、電圧や利用率
の向上に役立つ導電性の短繊維を混入することは、ペー
スト式や加圧式電極の特性の向上に効果が太さい。
Mixing insulating long fibers, which help improve strength and do not cause a short circuit even if peeled from the electrode, and conductive short fibers, which help improve voltage and utilization, is a paste method or processed It is highly effective in improving the characteristics of pressure type electrodes.

Claims (3)

【特許請求の範囲】[Claims] (1)結着剤を含む活物質混合物を芯材に塗着ないし圧
着してなる電池用電極であって、前記活物質混合物が、
導電性の短繊維と絶縁性の長繊維とを含有することを特
徴とする電池用電極。
(1) A battery electrode formed by applying or pressing an active material mixture containing a binder onto a core material, the active material mixture comprising:
A battery electrode characterized by containing conductive short fibers and insulating long fibers.
(2)導電性繊維の長さが0.3〜2朋、絶縁性繊維の
長さが2〜6朋である特許請求の範囲第1項、記載の電
池用電極。
(2) The battery electrode according to claim 1, wherein the length of the conductive fiber is 0.3 to 2 mm, and the length of the insulating fiber is 2 to 6 mm.
(3)導電性繊維及び絶縁性繊維の添加量がそnぞn活
物質の5〜30重量%及び1〜1o重量%相当である特
許請求の範囲第1項記載の電池用電極。
(3) The battery electrode according to claim 1, wherein the conductive fibers and the insulating fibers are added in amounts corresponding to 5 to 30% by weight and 1 to 10% by weight of the active material, respectively.
JP57033376A 1982-03-02 1982-03-02 Electrode for battery Pending JPS58150270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57033376A JPS58150270A (en) 1982-03-02 1982-03-02 Electrode for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57033376A JPS58150270A (en) 1982-03-02 1982-03-02 Electrode for battery

Publications (1)

Publication Number Publication Date
JPS58150270A true JPS58150270A (en) 1983-09-06

Family

ID=12384866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57033376A Pending JPS58150270A (en) 1982-03-02 1982-03-02 Electrode for battery

Country Status (1)

Country Link
JP (1) JPS58150270A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1763097A1 (en) 2005-09-09 2007-03-14 Saft Positive electrode for alkaline battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1763097A1 (en) 2005-09-09 2007-03-14 Saft Positive electrode for alkaline battery
FR2890784A1 (en) * 2005-09-09 2007-03-16 Accumulateurs Fixes POSITIVE ELECTRODE FOR ALKALINE ACCUMULATOR

Similar Documents

Publication Publication Date Title
US4415636A (en) Secondary batteries having a zinc negative electrode
JPS58150270A (en) Electrode for battery
JP3644427B2 (en) Cadmium negative electrode and nickel cadmium storage battery containing the same
JP3116681B2 (en) Non-sintered nickel electrode and its manufacturing method
JPS5931177B2 (en) Zinc electrode for alkaline storage battery
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JPS60143569A (en) Positive plate for alkaline battery
JPH10334898A (en) Alkaline storage battery, its electrode and manufacture thereof
JPS6215994B2 (en)
JPS60211770A (en) Positive electrode plate for alkaline battery
JPS5923464A (en) Manufacture of nickel electrode for battery
JPH07335210A (en) Electrode for alkaline battery
JPS5814465A (en) Manufacture of cadmium negative electrode
JPH10334892A (en) Manufacture of alkaline storage battery and its electrode
JPH044558A (en) Manufacture of positive electrode plate for alkaline storage battery
JPS63310565A (en) Manufacture of paste type cadmium negative electrode
JPH0119619B2 (en)
JPH0566714B2 (en)
JPH06283166A (en) Secondary battery
JPS60151964A (en) Manufacture of positive plate for alkaline battery
JPS60140656A (en) Production of cadmium negative electrode plate for alkaline storage battery
JPH04162352A (en) Positive plate of lead storage battery
JPS59217950A (en) Flexible electrode for alkaline storage battery
JPS6028167A (en) Manufacture of non-sintered type electrode for battery
JPS6327822B2 (en)