JPS58147609A - Rotor magnetic circuit of device for measuring relative displacement angle - Google Patents

Rotor magnetic circuit of device for measuring relative displacement angle

Info

Publication number
JPS58147609A
JPS58147609A JP2888982A JP2888982A JPS58147609A JP S58147609 A JPS58147609 A JP S58147609A JP 2888982 A JP2888982 A JP 2888982A JP 2888982 A JP2888982 A JP 2888982A JP S58147609 A JPS58147609 A JP S58147609A
Authority
JP
Japan
Prior art keywords
yoke
annular
fixed
rotor
displacement angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2888982A
Other languages
Japanese (ja)
Inventor
Wahei Inoue
和平 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP2888982A priority Critical patent/JPS58147609A/en
Publication of JPS58147609A publication Critical patent/JPS58147609A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/2006Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils
    • G01D5/2013Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils by a movable ferromagnetic element, e.g. a core

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To enhance the resolution of the displacement angle, by attaching annular rotor yokes to a pair of rotary disks corresponding to the inner surface of the opening end of a U shaped annular fixed yoke, respectively, thereby increasing the amount of variation in inductive reactance. CONSTITUTION:The nonmagnetic rotary shaft disks 3 and 4 are fixed to coaxial shafts comprising a rotary shaft (a) 1 and a rotary shaft (b) 2, respectively. The (a) and (b) annular rotor yokes 5 and 6 are attached to the disks 3 and 4, and pole pieces (a, b) 7 and 8 are radially attached. The U shaped fixed annular yoke is constituted by annular stator yokes 9 and 10 surrounding a rotor exciting coil 12 and a tubular yoke 11. The opening side of the inner surface of the U shaped yoke corresponds to the annular rotor yokes (a, b) 5 and 6 through a gap. When the pole pieces (a, b) 7 and 8 face squarely to each other, magnetic circuit resistance becomes the minimum value, the inductive reactance becomes the maximum value, and the exciting current of the fixed exciting coil 12 becomes minimum.

Description

【発明の詳細な説明】 本発明は回転状態にある一対の円板相互の相対変位角に
対応して変化する誘導リアクタンスを環状固定励磁線輪
の励磁電流より測定する相対変位角測定装置の回転子の
磁気回路に関するもので娶る。
Detailed Description of the Invention The present invention relates to a rotating relative displacement angle measuring device that measures the inductive reactance that changes in response to the relative displacement angle between a pair of rotating discs using the excitation current of a fixed annular excitation coil. Marriage related to child's magnetic circuit.

回転状wAKおける同−心細上にある円板相互の相対変
位角の測定は捩れ軸動力針などに利用される。
Measurement of the relative displacement angle between concentric disks in a rotating wAK is used for torsion-axis power needles and the like.

この回転軸の捩れ角は回転トルクに比例するので、その
ときの回転数2の積より軸動力の測定を行うことが出来
るものである。このよ5な捩れ角の測定として回転軸に
対し、無接触の状態で測定することの出来る可変誘導リ
アクタンス型の相対変位角測定装置があり、その111
発が行われている、これは回転軸上に取りつけられt円
板と前記軸を軸心として回動し得る他の円板とに夫々放
射状に誘導鉄心を配設して相互に対向させておき、その
外局を囲繞してコ型固定環状継鉄で囲まれ念環状固定励
磁線輪を設け、この励磁電流より回転中の円板相互の相
対変位角を求めるようKし次ものである。
Since the twist angle of the rotating shaft is proportional to the rotational torque, the shaft power can be measured from the product of the rotational speed 2 at that time. To measure such twist angles, there is a variable inductive reactance type relative displacement angle measuring device that can measure the rotating shaft without contact.
This is done by arranging induction cores radially in a T-disk mounted on a rotating shaft and another disk that can rotate about the shaft and facing each other. The outer station is surrounded by a U-shaped fixed annular yoke, and an annular fixed excitation wire ring is provided, and the relative displacement angle between the rotating disks is determined from this excitation current. .

この場合、相対変位角に対し、環状固定励磁線輪よりの
出力を大きくするため、或は変位角の分解能を高める友
めKは、環状固定励磁線輪を囲むコ置固定環状継鉄の内
周開放端部と、放射状に配設された誘導鉄心のam片の
外周との空隙で生ずる磁気抵抗を少くし、誘導リアクタ
ンスの最大と最小値との差、即ち可変量を大きくするこ
とが必要である。
In this case, in order to increase the output from the annular fixed excitation wire ring with respect to the relative displacement angle, or to improve the resolution of the displacement angle, the companion K is inserted into the co-located fixed annular yoke that surrounds the annular fixed excitation wire ring. It is necessary to reduce the magnetic resistance that occurs in the gap between the circumferential open end and the outer periphery of the AM piece of the induction core arranged radially, and to increase the difference between the maximum and minimum values of inductive reactance, that is, the variable amount. It is.

従来はコ塵環状固定継鉄の開放端部に対し、前記鋳導鉄
心の磁極片は非磁性の回転円板の面上に放射状に複数個
配設されているものの、隣接の磁極片との間は磁気的に
は空間が形成されており、コ型環状固定継鉄の開放端の
内周に比較して前記磁極片の総合された有効長さはV2
以下となり、前記開放端の内周よりの磁束の利用率は、
これよりも更に僅かなものになってしまうものである。
Conventionally, a plurality of magnetic pole pieces of the cast iron core are arranged radially on the surface of a non-magnetic rotating disk at the open end of a dust ring fixed yoke, but the magnetic pole pieces of the cast iron core are arranged radially on the surface of a non-magnetic rotating disk. A magnetic space is formed between them, and the total effective length of the magnetic pole piece is V2 compared to the inner circumference of the open end of the U-shaped annular fixed yoke.
The utilization rate of the magnetic flux from the inner circumference of the open end is as follows:
It ends up being even smaller than this.

本発明は以上の点に鑑み行われたもので、コ型積状固定
継鉄の開放端の内周に対応し九一対の回転円板に夫々回
転子環状継鉄が取付けられる。コ型壜状固定継鉄の開放
端の内周よりの磁束は空隙を透して回転子環状継鉄に達
し、その磁束は前記継鉄面状に配設され九磁極片で絞ら
れて透過するので相対変位角に対応する固定励磁線輪よ
り発生する全磁束の利用率を高めることが出来、誘導リ
アクタンスの変化量を大なりしめ、変位角の分解能の高
揚を計ることが出来るものである。
The present invention has been made in view of the above points, and rotor annular yokes are respectively attached to 91 pairs of rotating disks corresponding to the inner periphery of the open end of the U-shaped solid fixed yoke. The magnetic flux from the inner periphery of the open end of the U-shaped fixed yoke passes through the air gap and reaches the rotor annular yoke, and the magnetic flux is narrowed by nine magnetic pole pieces arranged on the surface of the yoke and transmitted. Therefore, it is possible to increase the utilization rate of the total magnetic flux generated by the fixed excitation wire ring corresponding to the relative displacement angle, increase the amount of change in inductive reactance, and increase the resolution of displacement angle. .

これを図について説明する。第1図は本願の相対変位角
測定装置の断面図で、(1)は8回転軸、(2)は5回
転軸で前者(1)と同心軸にある。(8)、(4)は夫
々(al、 (b1回転軸に固定される非磁性の回転軸
円板、(5)、(6)は前記回転軸円板上(8)、(4
)に大々取付けられるa、b回転子環状継鉄、(71、
(8)は前記環状継鉄(5)、(6)面上に放射状に取
りつけられたa、b磁極片、(9)、+10は固定励磁
線輪02を囲む固定子環状継鉄、Iは筒状継鉄で、前記
環状継鉄(9)、haとによりコ型固定壌状継鉄を構成
し、その内周の開放端は空隙を透して(at、(b1回
転子項状継鉄(5)、(6)に対応するものである。第
2図■)は磁気回路の側面図、(B)はその正面図であ
る。第2図■)において固定励磁線輪(Iりの励磁電流
の励磁で生ずる磁気回路はa回転子項状継鉄(51−a
磁極片(7)−空隙−b磁極片(81−b回転子環状継
鉄(6)−空隙−b固定環状継鉄(1□−筒状継鉄01
1−4固定環状継鉄(91−空隙、とよりなり、矢印で
示した一循の磁気回路が形成される。
This will be explained with reference to the diagram. FIG. 1 is a sectional view of the relative displacement angle measuring device of the present application, in which (1) is an 8-rotation axis, and (2) is a 5-rotation axis, which are coaxial with the former (1). (8), (4) are respectively (al, (b1 non-magnetic rotating shaft disk fixed to the rotating shaft, (5), (6) are on the rotating shaft disk (8), (4)
a, b rotor annular yokes, (71,
(8) is the magnetic pole pieces a and b attached radially on the annular yoke (5) and (6); (9) and +10 are the stator annular yoke surrounding the fixed excitation wire ring 02; I is the annular yoke; It is a cylindrical yoke, and the annular yoke (9) and ha constitute a U-shaped fixed lug-like yoke, and the open end of the inner circumference passes through the gap (at, (b1) rotor-shaped yoke. These correspond to irons (5) and (6). Figure 2 ■) is a side view of the magnetic circuit, and (B) is its front view. In Figure 2 ■), the fixed excitation wire ring (I ring) is The magnetic circuit generated by the excitation of the excitation current is a rotor-shaped yoke (51-a
Magnetic pole piece (7) - air gap - b magnetic pole piece (81 - b rotor annular yoke (6) - air gap - b fixed annular yoke (1□ - cylindrical yoke 01
1-4 fixed annular yoke (91-gap), forming a circular magnetic circuit shown by the arrow.

第2図Bにおいて、固定環状継鉄(9)の内周開放端工
り空隙を透して磁極片(7)K達する磁束φ。、或は斜
め方向から磁極片(7)K達する磁束φ、があるが、更
に回転子m状継鉄(5)を通過して磁極片(71に達す
る磁束φ冨があり、この磁束φ、が磁束の利用率の向上
に役立つものである。a、b磁極片(7)、(8)が正
向した場合には磁気回路抵抗は最小となり、誘導リアク
タンスは最大となって、固定励磁線輪(12の励磁電I
!i!は最小となる。次に放射状に配設されたa、b磁
極片(7)、(8)が全く対向しないで外れ比場合の変
位角では、前述のように励磁電流は最大となる。本願の
相対変位角に対する励磁電流の変化は、従来の回転子環
状継鉄のない場合に較べて増大し、変位角の分解能を著
しく改善させることが出来るものである。
In FIG. 2B, the magnetic flux φ reaches the magnetic pole piece (7) K through the inner circumferential open end machining gap of the fixed annular yoke (9). , or there is a magnetic flux φ that reaches the magnetic pole piece (7) K from an oblique direction, but there is also a magnetic flux φ that passes through the rotor m-shaped yoke (5) and reaches the magnetic pole piece (71), and this magnetic flux φ, is useful for improving the efficiency of magnetic flux utilization.When the magnetic pole pieces a and b (7) and (8) face forward, the magnetic circuit resistance becomes the minimum, the inductive reactance becomes the maximum, and the fixed excitation line Ring (12 excitation electric I
! i! is the minimum. Next, at a displacement angle in which the radially arranged magnetic pole pieces (7) and (8) do not face each other at all and are out of alignment, the excitation current becomes maximum as described above. According to the present invention, the change in excitation current with respect to the relative displacement angle is increased compared to the conventional case without the rotor annular yoke, and the resolution of the displacement angle can be significantly improved.

sB図は回転子部分のみを図示しtもので■)図の回転
子環状継鉄(5)は、電気鉄板を環状に型抜きして積層
し、磁極片(7)は前記鉄板の面を細心に対して図の工
うに平行に積層し九ので、磁束は鉄、板面にそって透過
し、磁極片の磁気抵抗の減少を計ることが出来るもので
ある。第8図Bは磁極片(7)(8)をフェライトの如
きもので構成した一例で、磁極片(7)における磁気抵
抗を減少させるのに極めて有効である。第8図Cは回転
子環状鉄心(5)と磁極片(7)とを一体化して回転子
磁気回路を構成し次回転子の側面図 (5,図はその正
面図である。即ちC3図のように電気鉄板をL型に折り
曲げ積層し、樹脂などで接着し、これを背中合せにした
部分を磁極片(7+とし、その両脚を回転子環状継鉄(
5)となるようにし食ものである。コ型固定環状鉄心+
91. (10の磁束は空隙を通して回転子環状継鉄(
5)の切口方向より磁極片(7)の鉄板の面にそって磁
極片の切口より空隙を透して、これと対向の磁極片(6
)に至る磁気回路が形成される。磁気回路は前述のよう
に電気鉄板の法線方向を通過する部分が全くなく、磁気
抵抗を減少させる念めに一11有効りものである。
The rotor annular yoke (5) in the figure is made by cutting electric iron plates into an annular shape and stacking them, and the magnetic pole pieces (7) are made by laminating the sides of the iron plates. Since the layers are carefully stacked in parallel to each other as shown in the figure, the magnetic flux is transmitted along the surface of the iron plate, making it possible to measure the reduction in the magnetic resistance of the pole piece. FIG. 8B shows an example in which the magnetic pole pieces (7) and (8) are made of a material such as ferrite, which is extremely effective in reducing the magnetic resistance in the magnetic pole piece (7). Fig. 8C is a side view of the rotor, in which the rotor annular core (5) and the magnetic pole piece (7) are integrated to form a rotor magnetic circuit. The electrical iron plates are bent into an L shape as shown in the figure, stacked, and glued together with resin etc. The parts that are placed back to back are called magnetic pole pieces (7+), and both legs are used as the rotor ring yoke (
5) Food should be prepared as follows. U-shaped fixed annular core +
91. (The magnetic flux of 10 passes through the air gap to the rotor annular yoke (
From the cut direction of the magnetic pole piece (7), pass through the gap from the cut of the magnetic pole piece (7) along the surface of the iron plate of the magnetic pole piece (7), and insert the opposite magnetic pole piece (6).
) is formed. As mentioned above, the magnetic circuit has no part that passes through the normal direction of the electric iron plate, and is designed to reduce magnetic resistance.

本発明は以上のように、ツ型項状継鉄の内周の開放端に
対応した回転子゛環状継鉄を用い、これに被蔽の磁極片
を放射状に配設し、回転子磁気回路としたために、前記
コ型環状継鉄よりの磁束を極めて有効に利用することが
出来、相対変位角測定装置の出力を大ならしめ、変位角
の分解能を格段に増加させることが出来るものである。
As described above, the present invention uses a rotor ring-shaped yoke corresponding to the open end of the inner periphery of the square-shaped yoke, and arranges covered magnetic pole pieces radially on the rotor to form a rotor magnetic circuit. Therefore, the magnetic flux from the U-shaped annular yoke can be used extremely effectively, the output of the relative displacement angle measuring device can be increased, and the resolution of the displacement angle can be greatly increased. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は相対変位角測定装置の断面図、第2図は磁気回
路の説明図でAは側面II、Bは正面図、第8図は回転
子部分の説明図でAは回転子環状継鉄及び磁極片でこれ
を電気鉄板とし几場合、Bは磁極片をフェライトの如き
ものとしたもの、0は電気鉄板をL字状に折り曲げ積層
して磁極片と回転子環状継鉄とを一体化して構成し次回
転子の場合。 1.2:a及び5回転軸、 8.4:回転軸円板、5.
6:a及び5回転子環状継鉄、 7.8:a及びb磁極
片、 9、lo:a及びb固定子環状継鉄、 11:筒
状継鉄、 12:固定励磁線輪。
Fig. 1 is a sectional view of the relative displacement angle measuring device, Fig. 2 is an explanatory view of the magnetic circuit, A is a side view II, B is a front view, and Fig. 8 is an explanatory view of the rotor part, A is an explanatory view of the rotor annular joint. If this is an electric iron plate made of iron and magnetic pole pieces, B is a magnetic pole piece made of something like ferrite, and 0 is an electric iron plate bent into an L shape and laminated to integrate the magnetic pole piece and rotor annular yoke. For the rotor, configure the following. 1.2: a and 5 rotating shafts, 8.4: rotating shaft disk, 5.
6: a and 5 rotor annular yokes, 7.8: a and b pole pieces, 9, lo: a and b stator annular yokes, 11: tubular yoke, 12: fixed excitation wire ring.

Claims (1)

【特許請求の範囲】[Claims] 同心軸の一対の回転軸円板KlI数の誘導鉄心の磁極片
を放射状に配設して対向させ、前記磁極片の外周を囲繞
し、コm継鉄で囲まれた環状固定励磁線輪の励磁電流よ
り回転状態における相対変位角を測定する装置において
、前記コ型固定積状継鉄の内周の開放端に対応して前記
二対の回転軸甲板に回転子環状継鉄管取り付け、更゛に
前記継鉄に複数の磁極片を放射状に配設したことを特徴
とする相対変位角測定装置の回転子磁気回路。
The magnetic pole pieces of the induction iron core of a pair of rotating shaft disks of concentric shafts are arranged radially and faced each other, and the outer periphery of the magnetic pole pieces is surrounded by an annular fixed excitation wire ring surrounded by a yoke. In a device for measuring a relative displacement angle in a rotating state using an excitation current, rotor annular yoke pipes are attached to the two pairs of rotating shaft decks corresponding to the open ends of the inner circumference of the U-shaped fixed bulk yoke, and A rotor magnetic circuit for a relative displacement angle measuring device, characterized in that a plurality of magnetic pole pieces are arranged radially on the yoke.
JP2888982A 1982-02-26 1982-02-26 Rotor magnetic circuit of device for measuring relative displacement angle Pending JPS58147609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2888982A JPS58147609A (en) 1982-02-26 1982-02-26 Rotor magnetic circuit of device for measuring relative displacement angle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2888982A JPS58147609A (en) 1982-02-26 1982-02-26 Rotor magnetic circuit of device for measuring relative displacement angle

Publications (1)

Publication Number Publication Date
JPS58147609A true JPS58147609A (en) 1983-09-02

Family

ID=12260959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2888982A Pending JPS58147609A (en) 1982-02-26 1982-02-26 Rotor magnetic circuit of device for measuring relative displacement angle

Country Status (1)

Country Link
JP (1) JPS58147609A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2684180A1 (en) * 1991-11-26 1993-05-28 Sagem ABSOLUTE ANGULAR POSITION SENSOR WITH VARIABLE RELUCTANCE.

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56115903A (en) * 1980-02-18 1981-09-11 Mayekawa Mfg Co Ltd Measuring device for relative displacement angle in rotating condition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56115903A (en) * 1980-02-18 1981-09-11 Mayekawa Mfg Co Ltd Measuring device for relative displacement angle in rotating condition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2684180A1 (en) * 1991-11-26 1993-05-28 Sagem ABSOLUTE ANGULAR POSITION SENSOR WITH VARIABLE RELUCTANCE.
US5428290A (en) * 1991-11-26 1995-06-27 Societe D'applications Generales D'electricite Et De Mecanique Sagem Variable reluctance absolute angular position sensor with sectored housing and rotor

Similar Documents

Publication Publication Date Title
JP2695332B2 (en) Permanent magnet field type rotor
US4672247A (en) Synchronous or stepping motor with equal-torque stepping
US3999092A (en) Permanent magnet synchronous dynamoelectric machine
TW501327B (en) Electrical machine stator and rotor
US4309635A (en) Squirrel-cage rotor having end rings of double structure
US2423345A (en) Alternating-current dynamoelectric machine
US20130221789A1 (en) Rotor for modulated pole machine
US4394597A (en) Multiple pole axial field electromagnetic devices
TWI514726B (en) A manufacturing method of a coupling device and a coupling device
JP2003333777A (en) Claw-pole generator and hub dynamo for bicycle
JPH04217833A (en) Improved elctric motor and manufacture thereof
KR20100134673A (en) Integrated rotor pole pieces
JPH08223831A (en) Core and rotor core for rotating machine
JPS60160358A (en) Brushless dc motor
JPH0479741A (en) Permanent magnet rotor
JPS58147609A (en) Rotor magnetic circuit of device for measuring relative displacement angle
JPH0898440A (en) Stator for rotating field type motor
US2461685A (en) Torque and power measuring device for shafts
US3226584A (en) Induced-quadrature field synchronous motor
JPS6360629B2 (en)
US3441887A (en) High frequency rotary inductive coupling
JPS58123355A (en) Synchronous motor
JP7444855B2 (en) Claw pole motor with ring coil and serpentine coil
JPS6096145A (en) Equial polarity exciting ac machine
CH385986A (en) Homopolar alternator with flat air gap and reluctance variation