JPS58146398A - Drier - Google Patents

Drier

Info

Publication number
JPS58146398A
JPS58146398A JP57029703A JP2970382A JPS58146398A JP S58146398 A JPS58146398 A JP S58146398A JP 57029703 A JP57029703 A JP 57029703A JP 2970382 A JP2970382 A JP 2970382A JP S58146398 A JPS58146398 A JP S58146398A
Authority
JP
Japan
Prior art keywords
drying
section
dryer
exhaust
relative humidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57029703A
Other languages
Japanese (ja)
Inventor
敦 西野
昭彦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57029703A priority Critical patent/JPS58146398A/en
Publication of JPS58146398A publication Critical patent/JPS58146398A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 不発明は経済的で、省エネルギーに貢献できる乾燥機に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The invention relates to a dryer that is economical and can contribute to energy savings.

さらに詳しくは、不発明は、ガス、石油または電気によ
る熱源部、被乾燥物を乾燥する乾燥部、水蒸気を含有し
た乾燥排気ガスを排気する刊気部からなり、排気部に設
置さnた感湿素子の検知信号により乾燥機の稼動状況を
自動制(財)するものであり、乾燥機の稼動にあたって
省エネルギーに貢献できるだけでなく、衣類等の乾燥の
場合、乾燥直後のアイロン掛けや適度の風合いの乾燥筒
イ・」加価値の高い乾燥が可能となる等の新機能を有す
る乾燥機を提供するものである。
More specifically, the invention comprises a heat source section using gas, oil, or electricity, a drying section for drying objects to be dried, and a ventilation section for exhausting dry exhaust gas containing water vapor. This system automatically controls the operating status of the dryer based on the detection signal from the moisture element.It not only contributes to energy saving when operating the dryer, but also helps with ironing immediately after drying and creating a suitable texture when drying clothes. The purpose of the present invention is to provide a dryer with new functions such as a drying tube that enables high value-added drying.

概して、物を早く乾燥させるには、温度をより高く、周
囲の湿度がより低く、風速が大きい程良いとさ扛、この
3者が乾燥条件とさ扛ている。しかし一般に、乾燥機の
設計にあたっては、適当な湿度検出素子がないため、乾
燥温度差と風速とに留意し、湿度制菌による乾燥機は未
発売の状態である。
Generally speaking, in order to dry things quickly, the higher the temperature, the lower the ambient humidity, and the higher the wind speed, the better.These three conditions are used as drying conditions. However, in general, when designing a dryer, due to the lack of a suitable humidity detection element, consideration must be given to the drying temperature difference and wind speed, and a dryer that uses humidity control has not yet been released.

次に家庭用洗濯機と電気式回転衣類乾燥機を用い、従来
例と不発明と比較対象しこの両者の説明を行なう。
Next, using a household washing machine and an electric rotary clothes dryer, a conventional example and an uninvented example will be compared and explained.

一般に、洗濯機などで洗濯し、脱水し終えた衣類を力l
熱した熱風を吹き付けて乾燥する場合、被乾燥物中を通
過して米たいわゆる排ガスの温度は、第11図の如くな
る。すなわち、熱源であるヒーターの立ち上カリ期間に
相当する温度上昇成人、衣類中の水分と力11熱風との
熱交換が干衡に保た扛、いわゆる恒率乾燥の行なわ牡る
領域B、さらにこの領域Bを過ぎて減率乾燥が行なわ汎
、衣類の温度が徐々に上昇して行く領域Cの3つに区分
さ扛る。例えば、衣類の乾燥度合と、」二記温度領域と
の関係を考えると、排ガス温度が領域Cに入ることが必
要条件となる。しかしながら領域Cのどの位置でも良い
わけでなく、一度に負荷さ扛る衣類の量との関係から、
領域C内においても、縫合わせ部分や厚手の部分に若干
湿り気が残留していたり、逆に乾燥はさnているものの
、ばんばんに乾燥され過ぎた状態であったジする。
Generally, clothes that have been washed and dehydrated in a washing machine etc. are
When drying by blowing hot air, the temperature of the so-called exhaust gas that passes through the material to be dried becomes as shown in FIG. That is, the temperature rises corresponding to the start-up period of the heater that is the heat source, the area B where the heat exchange between the moisture in the clothes and the hot air is maintained at equilibrium, and the so-called constant rate drying occurs. After passing through region B, the clothes are divided into three regions: region B, where lapse rate drying occurs, and region C, where the temperature of the clothing gradually increases. For example, considering the relationship between the degree of dryness of clothing and the temperature range 2, it is a necessary condition that the exhaust gas temperature falls within range C. However, any position in area C is not sufficient, and due to the relationship with the amount of clothing that is loaded at once,
Even in area C, there was some moisture remaining in the seamed parts and thick parts, and on the contrary, although it was dry, it was in a state where it was dried too quickly.

このように考えていくと、衣類の乾燥においては、温度
のみの検知によって乾燥機を自動制(財)運転をし、適
度な風あいを有する乾燥度合を達成することは非常に困
難である。
Considering this, when drying clothes, it is extremely difficult to automatically operate the dryer by detecting only temperature and achieve a degree of dryness with appropriate airflow.

従来の衣類乾燥機は、上記の様な理由と適当な感湿検知
素子が未開発であったこと等が原因して、はとんど湿度
センサを用いた自動運転は行わ扛ておらず、手動のタイ
マー設定による時間制(財)運転が主流である。しかし
ながら、この方式で−、次の様ないくつかの不都合な問
題が発生する。
Conventional clothes dryers rarely operate automatically using humidity sensors due to the reasons mentioned above and the fact that suitable moisture-sensitive sensing elements have not yet been developed. Hourly operation with manual timer settings is the mainstream. However, this method causes some disadvantages as follows.

0)負荷する衣類の種類、惜により1.使用者の経験と
、勘で運転時間を設定せねばならない。この場合、前述
した様な乾燥の過不足が生じ易い。
0) Depending on the type of clothing that will be loaded, 1. The operating time must be set based on the user's experience and intuition. In this case, over-drying or under-drying as described above is likely to occur.

■ 省エネルギーの観点からす扛ば、既に乾燥が終了し
ているのに継続して運転さ扛ることも起こり得るので好
しくない。また過剰の乾燥は衣類を劣化させたり、乾燥
の風合いを損なうことになる。
■ From the point of view of energy saving, it is undesirable to continue operating even though drying has already been completed. In addition, excessive drying can cause the clothes to deteriorate and the texture of the clothes to be lost.

■ 乾燥終了後、即座にアイロンがけができるのが最適
な乾燥仕上が9といわ扛るが、この様な状態を得るのd
:、タイマー設定のみではほとんど不可能に近い。
■ It is said that the best dry finish is one that can be ironed immediately after drying is finished, but it is difficult to achieve this condition.
:, It is almost impossible to do this only by setting the timer.

■ 縫合わせ部や厚手の衣服が未乾燥にもかかわらず乾
燥を終ることになる。
■ The seams and thick clothing end up drying even though they are not yet dry.

こnらの問題を解決すべく、被乾燥物の湿り具合を検知
して、その運転を自動側倒jする方式の乾燥機が提案さ
n、市販さnるに至っている。第2図は、その基本構成
を示すものである。
In order to solve these problems, a type of dryer that detects the wetness of the material to be dried and automatically turns the dryer to its side has been proposed and is now commercially available. FIG. 2 shows its basic configuration.

第2図はニクロム線ヒータ、又は正の抵抗温度特性を有
する半導体ヒータを熱源(以下単にヒータという)とし
た衣類乾燥機の断面構造を示し、1は不体外枠、2は本
体前面板、3は被乾燥物を収納する回転ドラム、4はヒ
ータ取付板で、本体前面板2との間にヒータ取付台5を
介してヒータ6を備える。7は衣類を投入するだめの本
体前面板2の開I」部に開閉自在に設けたドアーで、外
周一部に外気を吸入するための吸気日子2Lを開設して
いる。8は送風用ファンで、モータ9の動力がベルト1
oによって伝達さ扛回転する。同様に回転ドラム3は、
モータ9の動力がベルト11を介して伝達さ扛ることに
よって、駆動さ扛る。12は綿ごみを収集するフィルタ
である。
Figure 2 shows the cross-sectional structure of a clothes dryer using a nichrome wire heater or a semiconductor heater with positive resistance-temperature characteristics as a heat source (hereinafter simply referred to as a heater), where 1 is an incorporeal outer frame, 2 is a main body front plate, and 3 is a clothes dryer. numeral 4 is a rotating drum for storing the material to be dried; numeral 4 is a heater mounting plate; a heater 6 is provided between the main body front plate 2 and a heater mount 5; Reference numeral 7 denotes a door that can be opened and closed at the opening I'' part of the main body front plate 2 into which clothes are put, and has an intake port 2L on a part of its outer periphery for inhaling outside air. 8 is a fan for blowing air, and the power of the motor 9 is supplied to the belt 1.
Rotation is transmitted by o. Similarly, the rotating drum 3 is
The power of the motor 9 is transmitted through the belt 11, thereby driving the motor. 12 is a filter for collecting cotton waste.

13は回転ドラム3の前壁にヒータ6に連絡するように
設けた吸気口、14は回転ドラム3に設けた衣類投入口
である。
Reference numeral 13 indicates an intake port provided on the front wall of the rotating drum 3 so as to communicate with the heater 6, and 14 indicates a clothing input port provided in the rotating drum 3.

16は排気口で、回転ドラム3よりなる乾燥部に連絡し
た排気部16に設けである。17.18は回転ドラム3
の内壁部に設けた一対の導電性電極である。
Reference numeral 16 denotes an exhaust port, which is provided in the exhaust section 16 connected to the drying section made up of the rotating drum 3. 17.18 is rotating drum 3
A pair of conductive electrodes provided on the inner wall of the

さらに、不発明の効果を比較するために、ドア=7の内
面側には、乾燥部である回転ドラム3内の湿度を検知す
る湿度センサ19が配してあり、この湿度センサ19に
は、熱電対湿度計が併設しである。寸た、排気部16の
排気[116近辺には、排気部16の湿度を検知する湿
度センサ20が配してあり、こflには熱電対湿度計が
併設しである。
Furthermore, in order to compare the effects of the invention, a humidity sensor 19 is placed on the inner surface of the door 7 to detect the humidity inside the rotating drum 3, which is a drying section. A thermocouple hygrometer is also installed. In addition, a humidity sensor 20 for detecting the humidity of the exhaust section 16 is disposed near the exhaust gas [116] of the exhaust section 16, and a thermocouple hygrometer is also installed in the vicinity of the exhaust section 116.

以上の構成によりなる衣類乾燥機の動作について説明す
ると、ヒータ6で熱せら扛だ空気は、送風用ファン8に
よジヒータ取付板4に設けた吸気[113により回転ド
ラム3内に導かt1被乾燥物と接触し熱交換して被乾燥
物全乾燥し、フィルタ1271・ら排気部16に導入さ
する。この間、被乾燥物中に含有さnていた水分は、水
蒸気として排気ガス中に含有さ扛ており、排気口15の
内部に設置さ扛た湿度センサ19周辺を通過して排気口
15より機外に排気さnる。
To explain the operation of the clothes dryer having the above configuration, the air heated by the heater 6 is guided into the rotating drum 3 by the air intake [113] provided on the heater mounting plate 4 by the blower fan 8, and is then guided into the rotating drum 3 by the air intake [113] to be dried. The material to be dried is completely dried by contacting with the material and exchanging heat, and then introduced into the exhaust section 16 through the filter 1271. During this time, the moisture contained in the material to be dried is contained in the exhaust gas as water vapor, passes around the humidity sensor 19 installed inside the exhaust port 15, and exits the exhaust gas from the exhaust port 15. Exhaust the air outside.

従来の回転ドラム式の乾燥機の乾燥終了時の検知方法に
ついて述べると、回転ドラム3が回転すると、被乾燥物
が導電性電極17.18に接触する。被乾燥物の含有水
分が多いと、水分の有する導電性のために、導電性電極
17.18間が短絡さ扛るが、被乾燥物が乾燥さ牡るに
従って被乾燥物のみかけの導電率が減少していき、導電
性電極17.18に接触した時のこの両者間の抵抗が徐
々に犬キくする。この抵抗値を予め固定しておき、この
固定抵抗値に対する大小を自動的に検知して乾燥機の運
転を自動的に行なう。この方式の乾燥機は、タイマー設
定運転のものに比較して優nた特性を有し、AiT述し
た問題点の■、■を解決するが、問題点■および■、す
なわち適度な乾燥度合の達成と乾燥風合の達成は、かな
らずしも解決さ′nない。
A method for detecting the end of drying in a conventional rotary drum type dryer will be described. When the rotary drum 3 rotates, the object to be dried comes into contact with the conductive electrodes 17 and 18. When the moisture content of the dried material is large, a short circuit occurs between the conductive electrodes 17 and 18 due to the conductivity of the moisture, but as the dried material is dried, the apparent conductivity of the dried material decreases. decreases, and the resistance between them when they contact the conductive electrodes 17, 18 gradually increases. This resistance value is fixed in advance, and the magnitude relative to this fixed resistance value is automatically detected to automatically operate the dryer. This type of dryer has superior characteristics compared to the timer-set type dryer, and solves the problems ① and ② mentioned in AiT. Achieving dry texture and dry texture are not always solved.

衣類乾燥において、その湿り具合を検知するめやすのひ
とつとして、衣類の含有水分量に注目する。
When drying clothes, we pay attention to the amount of moisture contained in the clothes as one of the indicators of how wet they are.

洗面前の衣類の重量W1、洗濯脱水後の衣類の重量W2
、乾燥後の衣類の重@W6とすると、が理想の仕上り状
態であるが、実際は、袖やえりの折9返しの部分は、−
衣の部分より乾燥速度が遅いので、 の水分重量変化が要求さnる。前述の湿り具合検知方式
の自動乾燥機において、設定さ扛る固定抵抗値は、この
値を目安に考えられている。
Weight of clothes before washing W1, weight of clothes after washing and dehydration W2
, the weight of the clothes after drying @W6 is the ideal finished state, but in reality, the folded parts of sleeves and collars are -
Since the drying speed is slower than that of the batter, a change in water weight is required. In the above-mentioned wetness detection type automatic dryer, the fixed resistance value to be set is determined using this value as a guide.

(2)式の如き乾燥が行なわ扛ると、−衣の部分は乾燥
さn過ぎてぼんぼんに’z、ip、(1)式の如き乾燥
では、衣類の折り返しの部分に水分がかなり残り単に湿
り具合を検知しだのみでは適度な乾燥度合を得ることが
難しい。
When the drying method shown in formula (2) is carried out, the part of the clothing becomes too dry and becomes dry. It is difficult to obtain an appropriate degree of dryness only by detecting the degree of wetness.

本発明は、以上の様な状況に鑑み、最適乾燥および風合
いを得る仕上が9と省エネルギーの2つの観点から、乾
燥排気の相対湿度、絶対水分量と温度などを検知して自
動制(財)運転する乾燥機を1>%供′f心もので、以
下、不発明につき、実施例等に基づき具体的に説明する
In view of the above-mentioned circumstances, the present invention has been devised to detect the relative humidity, absolute moisture content, temperature, etc. of drying exhaust air and automatically control it from the two viewpoints of achieving optimal drying and texture, and saving energy. The dryer to be operated is one with 1>% concentration, and the non-invention will be specifically explained below based on Examples.

 0 第3図は、乾燥機71)らの排気温度a、同排気の絶l
↑水分石すおよび相対湿度Cを、運転開始力・らの時間
に対して示したものである。排気温度2Lは第1図で示
した通り、A、  B、  Cの3つの領域(て分けら
几る。絶対水分計すは、温度上昇域で徐々に上昇し、恒
率乾燥域で一定にな9、減率乾燥域て゛徐々に減少する
。相対湿度Cは、温度に昇速度と、絶対水分量増加速度
との比の結果、初期に相対湿度Cの急itな−1−昇と
そ扛に続く降下を示す。
0 Figure 3 shows the exhaust temperature a of the dryer 71) and the exhaust temperature l of the same exhaust.
↑ Moisture scale and relative humidity C are shown against the start force and time. As shown in Figure 1, the exhaust gas temperature 2L is divided into three regions (A, B, and C).The absolute moisture meter gradually increases in the temperature rising region and remains constant in the constant rate drying region. 9. The lapse rate gradually decreases in the dry region.As a result of the ratio of the rate of increase in temperature to the rate of increase in absolute moisture content, the relative humidity Indicates the descent following the raid.

そして恒率乾燥域では相対湿度Cが一足になり、この期
間が過ぎると、相対湿度Cは徐々に減少する。
In the constant rate drying region, the relative humidity C becomes a little low, and after this period, the relative humidity C gradually decreases.

第4図は、第2図中の湿度センサ19,20の断面構造
を示している。この素子(dl タンタル。
FIG. 4 shows the cross-sectional structure of the humidity sensors 19 and 20 in FIG. 2. This element (dl tantalum.

チタン、アルミニウムのような弁金属基体21と、この
弁金属基体21上の誘電性陽極酸化皮膜22と、この誘
電性陽極酸化皮膜22土の一部に接触して存在する二酸
化マンガンのような半導電性金属酸化物層23と、この
半導電1’Ag金属酸化物層23上の水蒸気透過性導電
電極24とから基本的11 に構成さ牡、この構成物は、半田26Fよって通気孔2
6を有する金属ケース27に固定しである。
A valve metal base 21 such as titanium or aluminum, a dielectric anodic oxide film 22 on this valve metal base 21, and a semi-containing material such as manganese dioxide present in contact with a part of the soil of this dielectric anodic oxide film 22. Basically, it consists of a conductive metal oxide layer 23 and a water vapor permeable conductive electrode 24 on the semiconductive 1'Ag metal oxide layer 23.
It is fixed to a metal case 27 having a diameter of 6.

28はガラスハーメチックシールであり、陽極リード2
9.陰極リード30から静電容喰が出力さnる。
28 is a glass hermetic seal, and the anode lead 2
9. Electrostatic capacitance is output from the cathode lead 30.

第6図は、上記素子の相対湿度−静電容量特性であジ、
同図中に破線で示すような若干の温度依存性も有する。
Figure 6 shows the relative humidity-capacitance characteristics of the above element.
It also has some temperature dependence as shown by the broken line in the figure.

すなわち、特性aは温度が25℃の場合であるが、特性
すは10℃の場合を示し、特性Cは40℃の場合を示す
That is, characteristic a is for the case where the temperature is 25°C, characteristic A is for the case where the temperature is 10°C, and characteristic C is for the case where the temperature is 40°C.

第6図は、湿度センサ19,20の他実施例を示し、温
度計測のためのザーミスタ素子などを合わせて具備した
形のものである。¥なわち、第4図に示す素子31とこ
′rLに隣接するサーミスタ32とから基本的に構成さ
扛、全体は外装ケース33におさ1っている。この構造
の素子を用いることによって、例えば湿度検知素子の出
力を温度補償するような事が可能になり、より高効率の
自動運転が可能になる。
FIG. 6 shows another embodiment of the humidity sensor 19, 20, which is also equipped with a thermistor element for temperature measurement. That is, it basically consists of an element 31 shown in FIG. By using an element with this structure, it becomes possible to perform temperature compensation on the output of the humidity sensing element, for example, and more efficient automatic operation becomes possible.

次に具体的な作用効果を述べる。第2図に示す乾燥機の
湿度センサ19,20として、第4図に示すタンタル感
湿検知素子と熱電対温度計とを用いた。
Next, we will discuss specific effects. As the humidity sensors 19 and 20 of the dryer shown in FIG. 2, a tantalum humidity sensing element and a thermocouple thermometer shown in FIG. 4 were used.

回転ドラム式の衣類乾燥機は、出力1.25KWの正の
抵抗温度特性を有する半導体ヒータを熱源として内蔵し
、被乾燥物としては、カノターンヤツ11枚約2.2k
tjに充分水分を含有させた後脱水したものを使用する
。以下実験結果を述べる。
The rotary drum type clothes dryer has a built-in semiconductor heater with an output of 1.25 kW and positive resistance temperature characteristics as a heat source, and can dry 11 pieces of drying material, approximately 2.2 kg.
Use tj that has been made to contain sufficient water and then dehydrated. The experimental results are described below.

第7図は室温22℃、水温8℃、室内相対湿度38係の
条件下で、乾燥時間と排気口内部に設けら扛だ排気用湿
度検知素子である湿度センサ20および乾燥部である回
転ドラム3内方に面したドア−7内面に設けら扛た乾燥
部用湿度検知素子である湿度センサ19とで得ら扛た乾
燥中の相対湿度の経時変化を示しており、特性aは湿度
センサ2oの場合、特性すは湿度センサ19の場合であ
る。
Figure 7 shows the drying time, the humidity sensor 20, which is an exhaust humidity sensing element installed inside the exhaust port, and the rotating drum, which is the drying section, under the conditions of room temperature 22 degrees Celsius, water temperature 8 degrees Celsius, and indoor relative humidity 38 degrees. 3 shows the change over time of the relative humidity during drying obtained with the humidity sensor 19 which is a humidity detection element for the drying section provided on the inner surface of the door facing inward, and characteristic a is the humidity sensor 19. In the case of 2o, the characteristic is that of the humidity sensor 19.

第7図71)ら明らかなように、乾燥をスタートすると
同時に相対湿度は乾燥部、排気部ともに急上昇する。1
0分〜26分間は乾燥部、排気部とも 3 に恒率乾燥を意味する一定値を示すが、25分をすぎる
と乾燥部内の相対湿度はゆるやかに下降し始めていく。
As is clear from Fig. 7 (71), the relative humidity rises rapidly in both the drying section and the exhaust section as soon as drying starts. 1
From 0 minutes to 26 minutes, both the drying section and the exhaust section show a constant value of 3, meaning constant rate drying, but after 25 minutes, the relative humidity in the drying section begins to drop slowly.

しかし、排気口の相対湿度は55分間一定値を継続し、
60分を経過すると排気口の相対湿度は急降下し、70
分を過ぎると乾燥部と排気部の相対湿度は近似ないしは
同値を示すことになる。第7図には示さ扛ていないが、
排気口の相対湿度が急降下するとき、そ扛に逆比例して
排気ガスの温度は急上昇することになる。
However, the relative humidity at the exhaust port remained constant for 55 minutes,
After 60 minutes, the relative humidity at the exhaust port suddenly drops to 70 minutes.
After a few minutes, the relative humidity in the drying section and the exhaust section will be close to each other or at the same value. Although not shown in Figure 7,
When the relative humidity at the exhaust port suddenly drops, the temperature of the exhaust gas will rise rapidly in inverse proportion to the relative humidity.

乾燥後直ちにアイロン仕上げを必要とする場合には、相
対湿度70〜75%程度で終了することが好丑しい。ま
た、完全乾燥を行ないたい場合には、相対湿度60係以
下で電源オフの信号を与えるか、あるいは乾燥部と排気
部との相対湿度をコンパレータで比較してこ扛と同じ値
、あるいは近似した値になった時点で、電源オフの信号
と同期するように設定することも可能となる。
If ironing is required immediately after drying, it is preferable to finish at a relative humidity of about 70 to 75%. If you want to perform complete drying, either give a signal to turn off the power when the relative humidity is below 60 coefficients, or compare the relative humidity between the drying section and the exhaust section with a comparator and use the same value or a value similar to this value. It is also possible to set it to synchronize with the power off signal when the power is turned off.

次に第7図の特性を得る場合と同一条件、すなわち、カ
ノターンヤッ11枚約2.2kqf遠心脱水機で脱水し
た後乾燥機に投入し、排気口の相対湿 4 農を40〜95チに設定できるように排気口の開孔面積
を調整し、排気口の相対湿度と乾燥に要した時間および
乾燥に要した消費電力との関係を求めた場合を第8図に
示している。同図中、特性aは乾燥時間に関するもので
あり、特性すは消費電力(KWH)/乾燥物2.2(k
に/)に関するものである。
Next, under the same conditions as when obtaining the characteristics shown in Fig. 7, 11 pieces of paper were dehydrated using a centrifugal dehydrator of approximately 2.2 kqf, then placed in a dryer, and the relative humidity of the exhaust port was set to 40 to 95 degrees. FIG. 8 shows a case in which the aperture area of the exhaust port was adjusted as much as possible, and the relationship between the relative humidity of the exhaust port, the time required for drying, and the power consumption required for drying was determined. In the figure, characteristic a is related to drying time, and the characteristic is power consumption (KWH)/dry material 2.2 (k
/).

第8図71=ら明らかなように、相対湿度が95%であ
っても、実に乾燥風合いの素晴しい乾燥が可能となる他
、乾燥に要する消費電力が最も経済的となる意外な事実
が判明した。しかし相対湿度が96%のような高湿度排
気乾燥すると乾燥時間が約2倍必要となる。
As is clear from Figure 8, 71=, even at a relative humidity of 95%, it is possible to dry with a truly dry texture, and the surprising fact is that the power consumption required for drying is the most economical. found. However, if the relative humidity is high humidity exhaust drying such as 96%, the drying time will be approximately twice as long.

逆に、第8図から理解さ牡るように、排気口での相対湿
度が65%以下で乾燥するには、乾燥時間は60分以下
と短時間になるが、乾燥に要する電力が異常に犬となり
、省エネルギーの観点から好壕しくないだけでなく、排
気口の相対湿度55係以下で乾燥部ゐには熱源部のヒー
タの電力容量を1.25KW以上にしなけnは目的を果
すことができなくなる。
On the other hand, as can be seen from Figure 8, if the relative humidity at the exhaust port is 65% or less, the drying time will be short, less than 60 minutes, but the electricity required for drying will be abnormally high. Not only is this not a good shelter from an energy-saving perspective, but the power capacity of the heater in the heat source section must be set to 1.25 KW or more in a dry area where the relative humidity at the exhaust port is less than 55% to achieve the purpose. become unable.

15 したがって、排気口の相対湿度で乾燥機を自動側(財)
するには乾燥時間、乾燥用熱源容量、乾燥時のエネルギ
ー効率等を勘案して、特殊なもの、例えば紙、粘土、ケ
ーキ等を除いて、最適乾燥条件として排気口部の排気ガ
スの相対湿度が55〜95%で稼動状況を自動側(財)
することが好せしい。
15 Therefore, the relative humidity of the exhaust port will cause the dryer to be turned on the automatic side.
To do so, take into consideration the drying time, drying heat source capacity, energy efficiency during drying, etc., and set the relative humidity of the exhaust gas at the exhaust port as the optimal drying condition, excluding special items such as paper, clay, cake, etc. The operating status is 55-95% on the automatic side (goods)
It's good to do that.

次に第7図、第8図の特性を求めたと同一の乾燥条件を
用い、乾燥用の熱源部から乾燥部に空気が導入されるま
での最大流速をvsとし、寸だ乾燥部を出て排気口に至
る排気部のiA8での最大流速をvEとすると、vsは
通常、回転ドラムよりなる乾燥部への吸気[113での
流速となり、VEは通常排気口での流速となる。この排
気部での最大流速■E/熱源部での最大流速vsの比と
被乾燥物を乾燥するに要する消費電力との相関性を求め
たものが第9図に示さnている。
Next, using the same drying conditions used to obtain the characteristics shown in Figures 7 and 8, the maximum flow rate from the heat source for drying until the air is introduced into the drying area is vs, and when the air exits the drying area, If the maximum flow velocity at iA8 of the exhaust section leading to the exhaust port is vE, vs is the flow velocity at the intake air [113] to the drying section, which is usually a rotating drum, and VE is the flow velocity at the exhaust port. FIG. 9 shows the correlation between the ratio of maximum flow velocity (E) in the exhaust section/maximum flow velocity (vs) in the heat source section and the power consumption required to dry the material to be dried.

第9図において、vE/vsの比を犬にすることは、乾
燥部内での風圧を犬にする傾向を辿ることになり、した
がって、vsを一定として、排気部の排気口でのVE 
k犬にすると、乾燥部内での乾燥温度は高くなり、また
排気口での相対湿度も高くなり、乾燥に要する消費電力
は小さくなる傾向を辿る。
In Fig. 9, setting the ratio of vE/vs to 100% follows a tendency to make the wind pressure in the drying part 100%, and therefore, when vs is constant, the VE at the exhaust port of the exhaust section
When the temperature is set to K, the drying temperature in the drying section becomes high, the relative humidity at the exhaust port also becomes high, and the power consumption required for drying tends to become small.

第9図によnば、Vx/Vsの比が161以下(Cなゐ
と消費電力が犬となり、vZ/vsの比が1.1以」二
になると、乾燥時の消費電力減少化、すなわち、省エネ
ルギー化が可能となることが容易に理解できる。
According to FIG. 9, when the ratio of Vx/Vs is 161 or less (C), the power consumption becomes low, and when the ratio of vZ/vs is 1.1 or more, the power consumption during drying decreases. In other words, it is easy to understand that energy saving is possible.

なお、不実施例においては、不発明を衣類乾燥機に適用
した場合を例にと9説明を行なったが、その他の乾燥機
、例えば、食器乾燥機や業務用乾燥機にも不発明を応用
展開することが可能であることは言うまでもない。
In addition, in the non-example, 9 explanations were made using the case where the invention was applied to a clothes dryer, but the invention could also be applied to other dryers, such as a dish dryer or a commercial dryer. Needless to say, it is possible to expand.

以上のように不発明によ扛ば、湿度センサを用いて、排
気部の相対湿度を検知し、相対湿度の信号により、自動
運転側(財)を行うものであジ、被乾燥物を経済的に、
かつ、効率的に乾燥jることかできると共に、乾洋風付
を任意に調整することの可能な従来VCない新機能を有
する乾燥機を提供することができる。
As described above, according to the invention, the humidity sensor is used to detect the relative humidity of the exhaust part, and the automatic operation is performed based on the relative humidity signal. In particular,
In addition, it is possible to provide a dryer that has a new function that is not available in conventional VCs, allowing efficient drying and arbitrarily adjusting the drying air flow.

【図面の簡単な説明】[Brief explanation of the drawing]

 7 第1図は一般的な乾燥機の乾燥時間と排気温度との関係
を示す図、第2図は同乾燥機の縦断面図、第3図は同乾
燥機からの排気における温度、絶対水分量および相対湿
度を示した図、第4図は不発明の実施例における乾燥機
用の湿度センサを示す断面図、第5南は同湿度センサの
相対湿度と静電容量との関係を示す図、第6図は同温度
センサの他の実施例全示す断面図、第7図は不発明によ
る場合の乾燥部および排気部での乾燥時間と相対湿度と
の関係を示す図、第8図は排気部の排気[1における相
対湿度と乾燥時間および消費電力との関係を示す図、第
9図は排気部での最大流速vEと熱源部での最大流速v
sとの比と消費電力との関係を示す図である。 3・・・・・・回転ドラム(乾燥部)、6・・・・ヒー
タ(熱源部)、16・・・・・・排気口、16・・・・
・・排気部、19.20・・・・・・湿度センサ。 代理人の氏名 弁理士 中 尾 敏 男 はカ)1名第
2図 τ 区    一様 部上 第4図 第5J 0   20   グo   to   8o   /
θd第61 第8図 相、りつ“ンI(≧シ5− 第9図
7 Figure 1 is a diagram showing the relationship between drying time and exhaust temperature of a general dryer, Figure 2 is a longitudinal cross-sectional view of the dryer, and Figure 3 is a diagram showing the temperature and absolute moisture content of the exhaust air from the dryer. Fig. 4 is a cross-sectional view showing a humidity sensor for a dryer in an embodiment of the invention, and Fig. 5 South is a diagram showing the relationship between relative humidity and capacitance of the same humidity sensor. , FIG. 6 is a sectional view showing all other embodiments of the same temperature sensor, FIG. 7 is a diagram showing the relationship between drying time and relative humidity in the drying section and exhaust section in the case of the non-invention, and FIG. A diagram showing the relationship between relative humidity, drying time, and power consumption in the exhaust air [1] of the exhaust section, Fig. 9 shows the maximum flow velocity vE at the exhaust section and the maximum flow velocity v at the heat source section.
FIG. 3 is a diagram showing the relationship between the ratio of s and power consumption. 3... Rotating drum (drying section), 6... Heater (heat source section), 16... Exhaust port, 16...
...Exhaust section, 19.20...Humidity sensor. Name of agent Patent attorney Toshio Nakao 1 person (Fig. 2) Kazumo Ku (Fig. 4) 5J0 20 /
θd No. 61 8th phase, Ritsu “I” (≧ 5- Fig. 9

Claims (6)

【特許請求の範囲】[Claims] (1)  ガス、石油または電気を熱源とし、加熱空気
を供給する熱源部と、被乾燥物を収容しこ扛を乾燥する
乾燥部と、この乾燥部より排気口まで水蒸気を含有した
排気ガスを誘導する排気部とを備え、前記排気部に設け
た感湿センサの相対湿度を検知し、乾燥機の稼動を制餠
するように構成した乾燥機。
(1) A heat source section that uses gas, oil, or electricity as a heat source and supplies heated air, a drying section that stores the material to be dried and dries the rack, and exhaust gas containing water vapor from this drying section to the exhaust port. What is claimed is: 1. A dryer comprising: an exhaust section that guides humidity; the dryer is configured to detect relative humidity with a humidity sensor provided in the exhaust section and control the operation of the dryer.
(2)相対湿度55〜96%の範囲内で乾燥運転を行な
い、相対湿度50%以下で乾燥運転を停止するように構
成した特許請求の範囲第1項記載の乾燥機。
(2) The dryer according to claim 1, which is configured to perform drying operation at a relative humidity of 55% to 96% and to stop drying operation at a relative humidity of 50% or less.
(3)熱源部の熱風の最大流速をvsとし、排気部の最
大流速をvEとして、vX//vsO比が1・1以上に
なるように前記排気部の最大流速を熱源部のそ扛より犬
として、乾燥運転する特許請求の範囲第1項または第2
項記載の乾燥機。
(3) Let the maximum flow velocity of hot air in the heat source section be vs, and the maximum flow velocity in the exhaust section be vE, then set the maximum flow velocity in the exhaust section so that the vX//vsO ratio is 1.1 or more. Claim 1 or 2 for dry driving as a dog
Dryer as described in section.
(4)恒率乾燥期間中の乾燥部の平均温度をTDとし、
排気部に設けら扛た検知部での恒率乾燥期間中の排気温
度をT、として、TD−TE21・5℃F設定した特許
請求の範囲第1〜3項のいずn−n・に記載の乾燥機。
(4) Let TD be the average temperature of the drying section during the constant rate drying period,
In any of claims 1 to 3, the exhaust temperature during the constant rate drying period at the detection part provided in the exhaust part is T, and the TD-TE21 is set to 5°C. Dryer listed.
(5)排気部で検知した相対湿度に基づき熱源部の出力
を制(財)するように構成した特許請求の範囲第1〜4
項のいず扛かに記載の乾燥機。
(5) Claims 1 to 4 configured to control the output of the heat source section based on the relative humidity detected in the exhaust section.
The dryer described in any of the paragraphs.
(6)湿度センサが、誘電性陽極酸化皮膜と、この誘電
性陽極酸化皮膜上の一部に接触して存在する半導電性金
属酸化物層と、この半導電性金属酸化物層」二の水蒸気
透過性導電電極とからなる特許請求の範囲第1〜5項の
いずt′L力)に記載の乾燥機。
(6) The humidity sensor includes a dielectric anodic oxide film, a semiconductive metal oxide layer existing in contact with a portion of the dielectric anodic oxide film, and a second semiconductive metal oxide layer. A dryer according to any one of claims 1 to 5, comprising a water vapor permeable conductive electrode.
JP57029703A 1982-02-24 1982-02-24 Drier Pending JPS58146398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57029703A JPS58146398A (en) 1982-02-24 1982-02-24 Drier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57029703A JPS58146398A (en) 1982-02-24 1982-02-24 Drier

Publications (1)

Publication Number Publication Date
JPS58146398A true JPS58146398A (en) 1983-08-31

Family

ID=12283465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57029703A Pending JPS58146398A (en) 1982-02-24 1982-02-24 Drier

Country Status (1)

Country Link
JP (1) JPS58146398A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58210482A (en) * 1982-06-01 1983-12-07 松下電器産業株式会社 Drier
JPS615898A (en) * 1984-06-19 1986-01-11 東京電力株式会社 Heat pump type clothing dryer
JPS6137296A (en) * 1984-07-31 1986-02-22 株式会社日立製作所 Clothing dryer
JPS6158696A (en) * 1984-08-29 1986-03-25 株式会社日立製作所 Clothing dryer
CN110804847A (en) * 2019-11-13 2020-02-18 珠海格力电器股份有限公司 Drying apparatus, trunk determination method, and computer-readable storage medium

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58210482A (en) * 1982-06-01 1983-12-07 松下電器産業株式会社 Drier
JPS615898A (en) * 1984-06-19 1986-01-11 東京電力株式会社 Heat pump type clothing dryer
JPS6137296A (en) * 1984-07-31 1986-02-22 株式会社日立製作所 Clothing dryer
JPH024320B2 (en) * 1984-07-31 1990-01-26 Hitachi Ltd
JPS6158696A (en) * 1984-08-29 1986-03-25 株式会社日立製作所 Clothing dryer
JPH0211280B2 (en) * 1984-08-29 1990-03-13 Hitachi Ltd
CN110804847A (en) * 2019-11-13 2020-02-18 珠海格力电器股份有限公司 Drying apparatus, trunk determination method, and computer-readable storage medium
CN110804847B (en) * 2019-11-13 2020-10-30 珠海格力电器股份有限公司 Drying apparatus, trunk determination method, and computer-readable storage medium

Similar Documents

Publication Publication Date Title
RU2459020C2 (en) Method of control of drum dryer for laundry
EP2333141A1 (en) Clothes dryer
JP4858321B2 (en) Clothes dryer
JPH0747195A (en) Drum type washing/drying machine
JPS58146398A (en) Drier
JP2002282595A (en) Clothes dryer
JP2591726B2 (en) Clothes drying dehumidifier
JPH0557000B2 (en)
JPH10277292A (en) Dryer for clothes
JP7431103B2 (en) Washing and drying machine
JPS58210482A (en) Drier
JPS60234700A (en) Clothing dryer
JPS58198395A (en) Control apparatus of garment dryer
JP2001038099A (en) Clothes drying machine
JP3579083B2 (en) Clothes dryer
JPH01300997A (en) Moisture-removing drying machine
JPS5951319B2 (en) How to operate a clothes dryer
KR960001276A (en) Dry Washing Machine and Control Method
JPS5817640B2 (en) Dehumidifying clothes dryer
JPH0141359B2 (en)
CN114941226A (en) Drying control method and clothes treatment device
JP2002102580A (en) Washing/spin-drying machine
JPH058960Y2 (en)
JPH01119298A (en) Clothes-dryer of drum type
JPS615898A (en) Heat pump type clothing dryer