JPS5814583A - Amorphous semiconductor and amorphous semiconductor- amorphous silicon heterojunction photo voltaic element - Google Patents

Amorphous semiconductor and amorphous semiconductor- amorphous silicon heterojunction photo voltaic element

Info

Publication number
JPS5814583A
JPS5814583A JP56112572A JP11257281A JPS5814583A JP S5814583 A JPS5814583 A JP S5814583A JP 56112572 A JP56112572 A JP 56112572A JP 11257281 A JP11257281 A JP 11257281A JP S5814583 A JPS5814583 A JP S5814583A
Authority
JP
Japan
Prior art keywords
type
amorphous semiconductor
amorphous
transparent electrode
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56112572A
Other languages
Japanese (ja)
Other versions
JPH0554272B2 (en
Inventor
Yoshihiro Hamakawa
圭弘 浜川
Yoshihisa Owada
善久 太和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP56112572A priority Critical patent/JPS5814583A/en
Priority to DE8282106293T priority patent/DE3280112D1/en
Priority to EP88117644A priority patent/EP0309000B1/en
Priority to EP82106293A priority patent/EP0070509B2/en
Priority to DE8888117644T priority patent/DE3280418T2/en
Priority to US06/399,312 priority patent/US4450316A/en
Publication of JPS5814583A publication Critical patent/JPS5814583A/en
Priority to US06/552,951 priority patent/US4499331A/en
Priority to US06/552,952 priority patent/US4491682A/en
Publication of JPH0554272B2 publication Critical patent/JPH0554272B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To obtain a highly efficient solar cell by a method wherein a heterojunction is composed of a P type or N type impurity doped amorphous semiconductor, which is expressed by general formula of a-Si1-x-yCxNy containing 0.5- 30atmic% of hydrogen and/or fluorine. CONSTITUTION:The electrode construction of a heterojunction photo voltaic element is consisted of a transparent electrode, a P type a-Si1-x-yCxNy', an i-type a-Si and an N type a-Si, or of a transparent electrode, an N type a-Si1-x-yCxNy', an i-type a-Si and a P type a-Si. In the former construction, wherein the rays of the sun are insidented on the P-side, the element consists of a glass substrate 1, a transparent electrode 2 of SnO2 or the like, a P type amorphous semiconductor 3, an i-type a-Si 4, an N type a-Si 5 and an electrode 6, and in the latter construction, wherein the rays of the sun are insidented on the N-side, the element consists of a transparent electrode 11, an N type amorphous semiconductor 10, an i type a-Si 9, a P type a-Si 8 and an electrode substrate 7. At this point, the relations between x and y are to be made as follows: 0.05<=x<=0.75, 0.05<=y<= 0.75, and 0.05<=x+y<=0.80.

Description

【発明の詳細な説明】 本発明は、新規なアモルファス半導体並びにアモルファ
ス半導体/アモルファスシリコンへテロ接合光電素子に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel amorphous semiconductor and an amorphous semiconductor/amorphous silicon heterojunction optoelectronic device.

シラン(EliII、)のプラズマ分解法で得られるア
モルファスシリコンは、W、 1.8p@ar等によっ
て、PH,やB、 il、でドープする事によシ、その
伝導度を大きく変える事ができる仁とが発見され(19
76年)、D、 Ii、 oarlson 等によって
アモルファスシリコンを用い九太陽電池が試作(197
6年)されて以来注目を集め、アモルファスシリーン薄
膜太陽電池の効率を改善する研究が活発に行なわれてい
る〇これまでの研究により、アモルファスシリコン薄膜
光電素子の構造として祉シ1ットキーパリャー型、pl
n型、MIB型、ヘテ冑接合型があ如、・そのうち前三
者が高効率太陽電池として有望視されている。すなわち
ショットキーバリヤー型で5.5−(I)、&カールソ
ン他、1977年)、MID型?4.81(J、工、B
、クィルソン他、1978)、 pin型で4.5−(
浜用圭弘 1978)の変換効率が達成されている0p
lnジヤ、ンクション型太陽電池の場合、p型又はn型
アモルファスシリコンではキャリヤーの寿命が短かく、
有効なキャリヤーにならず、また光の吸収係数が1層に
比べて大きい事から1層での光の吸収ロスが大舞い点に
問題があった。
The conductivity of amorphous silicon obtained by plasma decomposition of silane (EliII) can be greatly changed by doping it with PH, B, il, etc. using W, 1.8p@ar, etc. Jin was discovered (19
Nine solar cells were prototyped using amorphous silicon by D. Ii, Oarlson et al. (1976),
6) Since then, research has been actively conducted to improve the efficiency of amorphous silicon thin-film solar cells. Previous research has shown that the structure of amorphous silicon thin-film photovoltaic devices is a transparent cell type, pl.
There are n-type, MIB-type, and heterojunction types; the first three are considered promising as high-efficiency solar cells. That is, Schottky barrier type 5.5-(I), & Carlson et al., 1977), MID type? 4.81 (J, Engineering, B
, Quilson et al., 1978), 4.5-(
0p has achieved the conversion efficiency of Keihiro Hamayo (1978).
In the case of 1N-type solar cells, p-type or n-type amorphous silicon has a short carrier life;
The problem was that it did not become an effective carrier, and since the light absorption coefficient was larger than that of a single layer, there was a large loss of light absorption in the single layer.

このような欠点を改良する為にインバーティドルミn型
の光電素子が提案されている0すなわちn型アモルファ
スシリコン側から光を照射する素子である。この素子は
p型に比べると光の吸収係数が比較的小さい為にやや有
利と考えられる。しかしこのn型アモルファスシリコン
でも光の吸収ロスがある点ではp型と変シない。
In order to improve these drawbacks, an invertive n-type photoelectric element has been proposed, which is an element that irradiates light from the 0, that is, n-type, amorphous silicon side. This element is considered to be somewhat advantageous because it has a relatively small light absorption coefficient compared to the p-type element. However, this n-type amorphous silicon is no different from the p-type in that there is light absorption loss.

本発明者は、pin型光電変換の効率を改善する為に鋭
意研究した結果、a −81(1−X −y) O1N
yで示される水素又は7ツ索化アモルファス半導体のp
型又はn型ドープ薄膜を、pin接合接合光子素子又は
n層の少なくとも一方に用いる事により短絡電流り開放
電圧を大巾に改善できることを見い出したもので、太陽
電池や光スイッチ尋の光起電力素子として用いる仁とが
できる。以下にその詳細を説明する。
As a result of intensive research to improve the efficiency of pin-type photoelectric conversion, the present inventor discovered that a -81(1-X -y) O1N
Hydrogen denoted by y or p of a seven-stranded amorphous semiconductor
It was discovered that short-circuit current and open circuit voltage can be greatly improved by using a type or n-type doped thin film in at least one of the pin-junction photon element or the n-layer, and this can significantly improve the short-circuit current and open voltage of photovoltaic devices such as solar cells and optical switches. It can be used as an element. The details will be explained below.

本発明に用いるアモルファスシリプン社、シラン(81
11,)又はその誘導体又は7ツ化シラン又はその誘導
体、又はこれらの混合物と、水素又は水素で希釈したア
ルゴン、ヘリウム咎の不活性ガスとの混合ガスを、容量
結合法又は銹導結合法による高周波グロー分解又社直流
グーー放電分解することにより得られる。混合ガス中の
シランの一度社、通常0.5〜son、好ましくは1〜
20%であるO 基板の温度は200〜300℃が好ましく、透明電極(
ITO、BnOH等)を蒸着し九ガラスや高分子フィル
ム、金属等、太陽電池の構成に必要なあらゆる基板が含
まれる。
Amorphous Silane Co., Ltd., Silane (81) used in the present invention
11,) or its derivatives, or a mixture of these and hydrogen or an inert gas such as argon or helium diluted with hydrogen, by a capacitive coupling method or a conductive coupling method. It can be obtained by high frequency glow decomposition or direct current glow discharge decomposition. The concentration of silane in the mixed gas is usually 0.5~son, preferably 1~son.
The temperature of the substrate is preferably 200 to 300°C, and the transparent electrode (
It includes all the substrates necessary for the construction of solar cells, such as glass, polymer films, metals, etc., on which ITO, BnOH, etc. are deposited.

太陽電池の基本構成は、第1図の(→、(b)に代表例
が示される。(a)はp@から光を照射するタイプで、
例えばガラス−透明電極−p −1−n−ム1の構成、
(b)はn側から光を照射するタイプで、例えばステン
レス−p −i −vs−透明電極の構成である。その
他、」層又da層と透明電極の間に薄い絶縁層をつけ九
夛、薄い金属層をつけた構造でもよい。!!’Fip−
1−n接合を基本とす今ものであればいかなる構成でも
よい〇 シラン若しくはその誘導体、又はフッ化シラン命で約1
4?’csm−”・マー1以下の局在単位密度および1
G−”am”77以上の易動度をもつ真性アモルファス
シリ、コン(以下、1型a−81という)を1層として
、p型とn型ドープ半導体で接合したpan接合構造に
するわけであるが、本発明ではp層又ti勤層の少なく
とも一方、すなわち少なくとも光を照射する@に、一般
式a−sl(t−z−y)’!’7で示される水素又は
フッ素を含むアモルファス半導体のp型又はn型ドープ
薄膜を用いることを4111とする01層とn層の両方
に用いてもよい。又本発明のアモルファス半導体を用い
ないドープ層は、1紀1型&−81をp型で用いる場合
は周期率表m族の元素でドープし、n型で用いる場合は
周期率表マ族の元素でドープすればよい。
A typical example of the basic configuration of a solar cell is shown in Figure 1 (→, (b). (a) is a type that emits light from p@,
For example, the structure of glass-transparent electrode-p-1-n-mu1,
(b) is a type in which light is irradiated from the n side, and has, for example, a stainless steel-p-i-vs-transparent electrode structure. Alternatively, a structure may be used in which a thin insulating layer is provided between the layer or the transparent electrode, and a thin metal layer is provided between the layer and the transparent electrode. ! ! 'Fip-
Any current configuration based on 1-n junction may be used. Silane or its derivatives, or fluorinated silane, approximately 1
4? 'csm-'・mer localized unit density below 1 and 1
A PAN junction structure is created in which a single layer of intrinsic amorphous silicon and silicon (hereinafter referred to as type 1 A-81) with a mobility of G-"am" 77 or higher is joined with p-type and n-type doped semiconductors. However, in the present invention, the general formula a-sl(t-z-y)'! A p-type or n-type doped thin film of an amorphous semiconductor containing hydrogen or fluorine shown in 4111 may be used for both the 01 layer and the n layer. In addition, the doped layer of the present invention that does not use an amorphous semiconductor is doped with an element of group M of the periodic table when using 1/1 type &-81 as a p-type, and doped with an element of group M of the periodic table when used as an n-type. It can be doped with elements.

本発明のアモルファス半導体は、一般式& −81(1
−z −y) 0XNFで示されるア毫ル7アスシリコ
ンーカーボンナイトライドである。これ社シリコンの水
素又社フッ素化合物と炭素およびフッ素の水素又はフッ
素化合物をグロー放電分解して得られるものであって、
その中KO,5〜3Q atom %の水率及び/又は
フッ素を含む。また、これはp型又はn型に不純物でド
ープされることが望ましいものである。さらに好ましく
は光学的バンドギャップが約1.85eV以上でありか
つ20℃における電気伝導度が約1O−(n 5cs)
−’以上であり、かつp−1−n接合した場合の拡散電
位vaが約1−1volta以上であるp型又はn型ア
モルファス半導体を満足するものである。
The amorphous semiconductor of the present invention has the general formula &-81(1
-z -y) It is a 7-asilicon-carbon nitride represented by 0XNF. It is obtained by glow discharge decomposition of hydrogen or fluorine compounds of silicon and hydrogen or fluorine compounds of carbon and fluorine,
It contains KO, 5-3Q atom % of water and/or fluorine. Further, it is desirable that this is doped with a p-type or n-type impurity. More preferably, the optical bandgap is about 1.85 eV or more and the electrical conductivity at 20°C is about 1O-(n 5cs).
-' or more, and satisfies a p-type or n-type amorphous semiconductor in which the diffusion potential va when forming a p-1-n junction is about 1-1 volta or more.

これらのアモルファス半導体は光学的バンドギャップが
大きくその為に、p−1−n接合光起電力木子の慾材料
として用いると短絡電流Jacの増加は当然考えられる
が、いずれの場合も非常に大きな開放電圧Toeを示す
。本発明の光起電力素子においても特願昭56−666
89号と同様に第2図に示すバンドプロファイルの拡散
電位Vaとその素子の開放電圧TOOK相関がある。
Since these amorphous semiconductors have a large optical band gap, it is natural that the short circuit current Jac will increase if they are used as a material for a p-1-n junction photovoltaic device. Indicates voltage Toe. Regarding the photovoltaic device of the present invention, patent application No. 56-666
Similar to No. 89, there is a correlation between the diffusion potential Va of the band profile shown in FIG. 2 and the open circuit voltage TOOK of the element.

本発明の場合もVaは約1. l yolts以上であ
るが、この関係は光照射する側のアモルファス半導体の
種類に関係なくほぼ同一の傾向を示す。この拡散電位V
aは光照射する側の7モル77ス半導体の光学的バンド
ギャップ−0゜ptからP e ”ドープ層のフェルミ
レベルlfの差を差し引く事によって得られる。すなわ
ち第2図に示すようKn側の伝導帯のエネルギーレベル
10゜、p側の価電子帯のエネルギーレベルを−1とし
て、電気伝導度の温度依存性から活性化エネルギーΔl
pとΔ−が求められる。p型の場合ΔKp = Hf、
−Kyp 、 ys型の場合Δln= l、。−釘でs
Vl=Icg*opt  (ΔIp+Δzn)であるO n儒から光照射する場合も同様icn型アモルファス半
導体の光学的バンドギャップ−@ optからp、nの
7エルンレペル1fの差を差し引いて求められる。
Also in the case of the present invention, Va is about 1. However, this relationship shows almost the same tendency regardless of the type of amorphous semiconductor on the side to which light is irradiated. This diffusion potential V
a can be obtained by subtracting the difference in the Fermi level lf of the P e '' doped layer from the optical bandgap -0°pt of the 7M77 semiconductor on the side to which light is irradiated.In other words, as shown in Figure 2, Assuming that the energy level of the conduction band is 10° and the energy level of the p-side valence band is -1, the activation energy Δl is calculated from the temperature dependence of electrical conductivity.
p and Δ- are found. For p-type, ΔKp = Hf,
-Kyp, Δln=l, for ys type. - with a nail
In the case of light irradiation with Vl=Icg*opt (ΔIp+Δzn), the optical bandgap of the icn type amorphous semiconductor is similarly determined by subtracting the difference of 7 Ern lepel 1f between p and n from the optical band gap −@opt.

本発明の一般式&−810−X−ア) 0,1アで表わ
されるアモルファス半導体の場合もN@ * Optが
約1.85・7以上でかつVaが約1.1voxt−以
上上ある仁とが望ましい。このような条件を温良すアモ
ルファス半導体を用いたへチル接合光起電力素子FiJ
g、とTooが著しく改豊される〇 本発明は、さらに好ましくは、室温での電気伝導度が1
0=(Ω・国)−1以上である・これ以下であるとフィ
ルファクターyyが小さくなシ愛換効率が実用的でなく
なるからである・ 本発明のへチル接合光起電力素子について以下に具体的
に説明すると、次oanである。代表的碌構造は透明電
極/p型a −at (* =x−y) OzMy /
1fia−817n型&−817電極の構造で、透明電
極側から光を照射する。透明電極はエテ0や8n4IK
 8nO,が好ましく、ガラス基板Klらかしめ蒸着し
て用い九k)p型アモルファス半導体上に直接蒸着して
もよい。光を照射する側のpII IL −81(* 
−x7)0117層の厚みは約30Kから300ム好ま
しくは50ムから200ム、1型a−81層の厚みは本
発明の場合限定されないが約2500〜10000ムが
用いられるOo’。
In the case of an amorphous semiconductor represented by the general formula &-810-X-a)0,1a of the present invention, N is desirable. Hethyl junction photovoltaic device FiJ using an amorphous semiconductor that satisfies these conditions
g, and Too are significantly improved. More preferably, the present invention has an electrical conductivity of 1 at room temperature.
0 = (Ω・Country) - 1 or more. If it is less than this, the exchange efficiency will be impractical if the fill factor yy is small. The following describes the hethyl junction photovoltaic device of the present invention. To be more specific, it is the following oan. A typical structure is transparent electrode/p-type a-at (* = x-y) OzMy/
With the structure of 1fia-817n type & -817 electrode, light is irradiated from the transparent electrode side. The transparent electrode is Ete0 or 8n4IK.
8nO is preferable, and is used by caulking vapor deposition on a glass substrate K1.9k) It may also be directly vapor-deposited on a p-type amorphous semiconductor. pII IL-81 (*
-x7) The thickness of the 0117 layer is approximately 30K to 300 μm, preferably 50 μm to 200 μm, and the thickness of the type 1 a-81 layer is not limited in the case of the present invention, but is approximately 2500 μm to 10000 μm Oo′.

n型1−81層の厚みは限定されないが約150ム〜6
00ムが用いられる0又このnMIla−J31の代わ
夛に本発明の!l Jll SL −81(1−1−y
) 01lyを用いてもよい〇もう1つの代表的な構造
は 透明電極/n型a−81(i−2−y) O1My/ 
tm a−81/pp型L−817電極の構造で、透明
電極側から光を照射する0光を照射する側のn型a −
st (m −x7) OxMyの厚み社約30ムから
300ム好ましくは50ム〜200ム、1型−−81層
の厚み祉限定されないが約2500ム〜10000ムが
通常用いられる。pMI!a−81層の厚みは限定され
ないが約150ム〜600ムが用いられる〇又このpg
a−81の代わ夛に本発明のp型a−81(1−1−y
)OlMyを用いても良い。透明電極の素材及び蒸着法
については前同様である。
The thickness of the n-type 1-81 layer is not limited, but is approximately 150 μm to 6 μm.
In this invention, in place of nMIla-J31, 0.00μ is used! l Jll SL-81(1-1-y
) 01ly may be used 〇 Another typical structure is transparent electrode/n-type a-81(i-2-y) O1My/
tm a-81/pp type L-817 electrode structure, irradiating light from the transparent electrode side 0 n type a - on the side that irradiates light
st (m - x 7) OxMy thickness of about 30 µm to 300 µm, preferably 50 µm to 200 µm, type 1 - 81 layer thickness, although not limited, about 2,500 µm to 10,000 µm is usually used. pMI! The thickness of the a-81 layer is not limited, but approximately 150mm to 600mm is used.Also, this pg
In place of a-81, p-type a-81 (1-1-y
) OlMy may also be used. The material and vapor deposition method for the transparent electrode are the same as before.

次に実施例により本発明の効果について説明する0内径
11mの石英反応管を用い13.5616層高周波でグ
ー−放電分解を行う。1型a−81は、水素で希釈した
シランを2〜10力汀でグー−放電分解して得られる6
 nfI!a−81は水素で希釈したシランドア * 
、X 7 (7(I’llJ (N、/81Ha = 
Q、54ル%)を同様にグロー放電分解して得られる。
Next, the effects of the present invention will be explained with reference to Examples. Using a quartz reaction tube with an inner diameter of 11 m, Goo discharge decomposition is carried out at a 13.5616 layer high frequency. Type 1 a-81 is obtained by decomposing silane diluted with hydrogen by goo-discharge under 2 to 10 degrees of force.
nfI! a-81 is a siland door diluted with hydrogen *
,X 7 (7(I'llJ (N, /81Ha =
Q, 54%) can be similarly obtained by glow discharge decomposition.

p型& −81(1−X−7)OlMy #i水素で希
釈し九シラン、メタン(OH,)、アンモニア(mt、
)、ジポラン(鳥■・)(II/(81+c+1 ) 
=6.50層w%)を同様にグー−放電分解して得られ
る。ζこで& −81(1−X−7)場は、グルー放電
時のガス組成を変量してそのアト2ツクフラクシヨン(
x+y)が0.80〜0.05になルヨうkしえ。
p-type & -81(1-X-7)OlMy #i9 diluted with hydrogen, silane, methane (OH, ), ammonia (mt,
), Ziporan (bird ■・) (II/(81+c+1)
= 6.50 layer w%) is similarly obtained by goo-discharge decomposition. ζ Here & -81(1-X-7) field is calculated by changing the gas composition during glue discharge and calculating its at2 fraction (
x+y) should be between 0.80 and 0.05.

太陽電池の構成は、25 n /(l f)BnO@薄
膜のついたガラス基板の8nO瀧面Kyp型’−816
−xy)OxNy *1型a−81、n IJ a−8
1の順に堆積し最後に3.3flのアル2=ウムを蒸着
してム一−1(1’0OWII/ctX )のソーラー
シー沙−ターで太−電池特性を−ベ九。
The structure of the solar cell is an 8nO cascade Kyp type '-816 on a glass substrate with a 25n/(lf)BnO@ thin film.
-xy) OxNy *1 type a-81, n IJ a-8
Finally, 3.3 fl of Al2=U was deposited in the order of 1 and 3.3 fl was deposited in a solar seater of 1'0 OWII/ctX to obtain thick battery characteristics.

7゜−0、。基□度□25G’Cア行Off。!、1層
の厚みは135ムである。p m! IL−81(1−
x−y) Ox”yの膜組成による太陽電池特性を表−
IKyす0効率(以下、1という)4.611であるの
に対して本発明Oa−si (1−z−y) QxMy
を用いるとx=0.05y=o、osで4W=6.5’
lと増加し、z se Q、l Qy==Q、2Q”i
’は?=7.3f[も改善サレル。X=0.37=0.
3 ”t”ti W=7.6 %FC4mしシ9ン10
0−の時に比し極めて高い値が得られる◇ここて注目す
べき点はa−81(m −X−y)oxIya光学的禁
止帯巾が1−81より大きくなることから短絡電流qa
cの増加社浩然であるにして亀、開放電圧vocの増加
は予よってこのような効率 これらの結果はgiF、とOH4,12111,を用い
ても全く同様であつ苑。
7°-0. Base □ degree □ 25G'C A row Off. ! , the thickness of one layer is 135 μm. PM! IL-81(1-
x-y) Table of solar cell characteristics depending on the film composition of Ox”y.
IKysu0 efficiency (hereinafter referred to as 1) is 4.611, whereas the present invention Oa-si (1-z-y) QxMy
Using x=0.05y=o, os 4W=6.5'
z se Q, l Qy==Q, 2Q”i
'teeth? =7.3f [also improved Salel. X=0.37=0.
3 “t”ti W=7.6 %FC4m and S9in10
An extremely high value is obtained compared to the case of 0- ◇The point to note here is that the short circuit current qa is
Although the increase in c is natural, the increase in the open-circuit voltage voc preliminarily results in such efficiency.These results are exactly the same even when using giF and OH4,12111.

この&−81(1−X−7) CjzMyの光学的バン
ドギャップ−・optは、表−1に示すように亀−81
よ)も大きな値を示しているので、これらのアモルファ
ス半導体を窓材料にすればJseの増加Fi轟然期待さ
れる。ところがJsaだけでな(Toeも著しく改良さ
れる0この理由について拡散電位VaとWoeの関係を
調べてみると第3図に−示すように、vOCと■の関に
は明瞭な直線関係のある事が判る。すなわちVaの増加
とともK Toe Ili直線的に増加する。この事は
、光学的バンドギャップの大きなアモルファス半導体を
p−ト1接合光起電力素子の窓材料にすれば、拡散電位
の増加によって輪も改良される事を示している@ すなわち−・学が約1−85aV以上でp−1−n接合
の拡散電位Vdが1.1 volを以上になるアモルフ
ァス半導体を窓材料としたへテロ接合光起電力素子はJ
aeだけでな(Toeも著しく改良されるわけである0
これらの効果社第1図(b)の太陽電池の構成でn側に
n m IL−81(m −X−7) 0zNyを用い
て屯同様に発現される0
The optical band gap of &-81(1-X-7) CjzMy is as shown in Table 1.
y) also shows a large value, so if these amorphous semiconductors are used as window materials, a dramatic increase in Jse and Fi is expected. However, not only Jsa (Toe is also significantly improved).As for the reason for this, when we investigate the relationship between diffusion potential Va and Woe, as shown in Figure 3, there is a clear linear relationship between vOC and ■. In other words, as Va increases, K Toe Ili increases linearly.This means that if an amorphous semiconductor with a large optical bandgap is used as the window material of a p-to-1 junction photovoltaic device, the diffusion potential will increase. It is shown that the ring is also improved by increasing the value of the window material. The heterojunction photovoltaic device is J
Not only ae (Toe is also significantly improved0)
These effects are expressed in the same way as in tun by using n m IL-81(m -X-7) 0zNy on the n side in the solar cell configuration shown in Figure 1(b).

【図面の簡単な説明】[Brief explanation of the drawing]

第り図(a)up層側から光を照射するタイプの光電素
子を示す構造図で轡って、図中1はガラス、2は透明電
極、3はp型アモルファス半導体、4はi型&−81,
5はnfJ半一体(例えばn型a−81)、6Fi電極
である。同(b)はn層側から光を照射するタイプを示
す構造図で、7は電極基板、8はp型&−81,9は1
型a−81,10#in型アモルファス半導体、llは
透明電極である。92図は本発明に係るヘテ’C1p−
1−n接金光起電力素子のエネルギー具ントブロ7アイ
ル+ある◎第3図はp型のアモルファス半導体を窓側に
した場合の拡散電位■と開放電圧の関係を示すグラフで
ある。 特許出願人 鐘淵化学工業株式会社 ・   代理人弁理士内田敏彦
Figure 2 (a) is a structural diagram showing a type of photoelectric element that irradiates light from the up layer side. In the figure, 1 is glass, 2 is a transparent electrode, 3 is a p-type amorphous semiconductor, and 4 is an i-type & -81,
5 is an nfJ half-integrated (for example, n-type A-81), 6Fi electrode. (b) is a structural diagram showing a type that irradiates light from the n-layer side, where 7 is an electrode substrate, 8 is a p-type &-81, and 9 is a 1
Type A-81, 10#in type amorphous semiconductor, 11 is a transparent electrode. Figure 92 shows Hete'C1p- according to the present invention.
Figure 3 is a graph showing the relationship between the diffusion potential (■) and the open circuit voltage when a p-type amorphous semiconductor is placed on the window side. Patent applicant Kanebuchi Chemical Industry Co., Ltd. Representative patent attorney Toshihiko Uchida

Claims (1)

【特許請求の範囲】 l 一般式& −81(1−1−y) OxMy テ示
すtL、カッ水素及び/又紘フッ素を0.5〜30at
om−含むアモルファス半導体0 2 P型又は11型に不純−ドープされ九ことを特徴と
するIf!fiFFlll!求の範囲第1項記載のアモ
ルファス半導体。 3 20℃におする電気伝導度が10.”” ((1a
m cs)−”以上である事を特徴とする特許請求の範
囲第2項記載のアモルファス半導体。 4  p−1−n接合アモルファスシリコン系光起電力
素子において、II型又はn型ア士ル7アス半導体が一
般式’ −” (1−x−y) OxMyで表わされる
アモルファス半導体である事を特徴とするp−1−nア
モルファスシリコン系光起電力素子。 S4I許請求の範囲第1項記載のアモルファス半導体に
&hて0.051 x l 0.75 、 O,05l
y10.75 。 0、05?x+y?0.80である事を特徴とする7%
ルファスシリコン系先光起電力素子
[Claims] l General formula & -81(1-1-y) OxMy tL, 0.5 to 30 at of dihydrogen and/or fluorine
If! characterized in that it is an om-containing amorphous semiconductor 0 2 P-type or 11-type impurity-doped. fiFFllll! Amorphous semiconductor according to claim 1. 3 Electric conductivity at 20°C is 10. ”” ((1a
The amorphous semiconductor according to claim 2, characterized in that the amorphous semiconductor has an amorphous silicon-based photovoltaic element with a p-1-n junction amorphous silicon-based photovoltaic device, which is characterized in that the amorphous semiconductor is larger than or equal to "mcs)". 1. A p-1-n amorphous silicon-based photovoltaic device, characterized in that the amorphous semiconductor is an amorphous semiconductor represented by the general formula '-'' (1-x-y)OxMy. S4I The amorphous semiconductor according to claim 1 &h is 0.051 x l 0.75, O,05l
y10.75. 0,05? x+y? 7% characterized by 0.80
Rufus silicon-based photovoltaic device
JP56112572A 1981-07-17 1981-07-17 Amorphous semiconductor and amorphous semiconductor- amorphous silicon heterojunction photo voltaic element Granted JPS5814583A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP56112572A JPS5814583A (en) 1981-07-17 1981-07-17 Amorphous semiconductor and amorphous semiconductor- amorphous silicon heterojunction photo voltaic element
DE8282106293T DE3280112D1 (en) 1981-07-17 1982-07-14 AMORPHOUS SEMICONDUCTOR AND PHOTOVOLTAIC DEVICE MADE OF AMORPHIC SILICON.
EP88117644A EP0309000B1 (en) 1981-07-17 1982-07-14 Amorphous semiconductor and amorphous silicon photovoltaic device
EP82106293A EP0070509B2 (en) 1981-07-17 1982-07-14 Amorphous semiconductor and amorphous silicon photovoltaic device
DE8888117644T DE3280418T2 (en) 1981-07-17 1982-07-14 AMORPHOUS SEMICONDUCTOR AND PHOTOVOLTAIC DEVICE MADE OF AMORPHOUS SILICON.
US06/399,312 US4450316A (en) 1981-07-17 1982-07-19 Amorphous silicon photovoltaic device having two-layer transparent electrode
US06/552,951 US4499331A (en) 1981-07-17 1983-11-17 Amorphous semiconductor and amorphous silicon photovoltaic device
US06/552,952 US4491682A (en) 1981-07-17 1983-11-17 Amorphous silicon photovoltaic device including a two-layer transparent electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56112572A JPS5814583A (en) 1981-07-17 1981-07-17 Amorphous semiconductor and amorphous semiconductor- amorphous silicon heterojunction photo voltaic element

Publications (2)

Publication Number Publication Date
JPS5814583A true JPS5814583A (en) 1983-01-27
JPH0554272B2 JPH0554272B2 (en) 1993-08-12

Family

ID=14590063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56112572A Granted JPS5814583A (en) 1981-07-17 1981-07-17 Amorphous semiconductor and amorphous semiconductor- amorphous silicon heterojunction photo voltaic element

Country Status (1)

Country Link
JP (1) JPS5814583A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61232685A (en) * 1985-04-09 1986-10-16 Agency Of Ind Science & Technol Amorphous silicon solar battery and manufacture thereof
US4803901A (en) * 1985-10-07 1989-02-14 Toyota Jidosha Kabushiki Kaisha Method and system for detecting the rotation rate of the output shaft of a torque converter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0853201A (en) * 1994-08-10 1996-02-27 Hiromi Hatakeyama Dust box

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5464981A (en) * 1977-10-12 1979-05-25 Energy Conversion Devices Inc High temperature amorphous semiconductor member and method of producing same
JPS5513938A (en) * 1978-07-17 1980-01-31 Shunpei Yamazaki Photoelectronic conversion semiconductor device and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5464981A (en) * 1977-10-12 1979-05-25 Energy Conversion Devices Inc High temperature amorphous semiconductor member and method of producing same
JPS5513938A (en) * 1978-07-17 1980-01-31 Shunpei Yamazaki Photoelectronic conversion semiconductor device and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61232685A (en) * 1985-04-09 1986-10-16 Agency Of Ind Science & Technol Amorphous silicon solar battery and manufacture thereof
US4803901A (en) * 1985-10-07 1989-02-14 Toyota Jidosha Kabushiki Kaisha Method and system for detecting the rotation rate of the output shaft of a torque converter

Also Published As

Publication number Publication date
JPH0554272B2 (en) 1993-08-12

Similar Documents

Publication Publication Date Title
Carlson Recent developments in amorphous silicon solar cells
Yamaguchi et al. CdS–CdTe solar cell prepared by vapor phase epitaxy
US4388482A (en) High-voltage photovoltaic cell having a heterojunction of amorphous semiconductor and amorphous silicon
EP0070509B1 (en) Amorphous semiconductor and amorphous silicon photovoltaic device
US4217148A (en) Compensated amorphous silicon solar cell
AU2005200023B2 (en) Photovoltaic device
JP2006080557A (en) Improved stabilizing properties of amorphous silicon series element manufactured by high hydrogen dilution low temperature plasma vapor deposition
Yu et al. Photovoltaic cell of carbonaceous film/n‐type silicon
JPH07123111B2 (en) Method for manufacturing semiconductor film and method for manufacturing photovoltaic structure
US4396793A (en) Compensated amorphous silicon solar cell
US4409424A (en) Compensated amorphous silicon solar cell
JPS5814583A (en) Amorphous semiconductor and amorphous semiconductor- amorphous silicon heterojunction photo voltaic element
JPH0544198B2 (en)
JPH0340515B2 (en)
de Vrijer et al. Chemical stability and performance of doped silicon oxide layers for use in thin-film silicon solar cells
JPH0122991B2 (en)
Wilson et al. Recent progress in thin-film solar cells
JP2980546B2 (en) Semiconductor devices and solar cells
JP4253966B2 (en) Amorphous thin film solar cell
Klyui et al. High efficient solar cells and modules based on diamond-like carbon film-multicrystalline Si structures
JP2737111B2 (en) Photovoltaic element and method for manufacturing the same
NL2011796C2 (en) High efficiency photoelectrochemical device for splitting water.
Dubow Oxide semiconductor silicon heterojunction cells. Final progress report, September 17, 1976-November 16, 1977
KR810001313B1 (en) Semiconductor device having an amorphous silicon
JPH0722633A (en) High voltage amorphous semiconductor/amorphous silicon hetero junction semiconductor device