JPS58145704A - Production of chlorinated resin - Google Patents

Production of chlorinated resin

Info

Publication number
JPS58145704A
JPS58145704A JP2819882A JP2819882A JPS58145704A JP S58145704 A JPS58145704 A JP S58145704A JP 2819882 A JP2819882 A JP 2819882A JP 2819882 A JP2819882 A JP 2819882A JP S58145704 A JPS58145704 A JP S58145704A
Authority
JP
Japan
Prior art keywords
chlorinated
resin
chlorine gas
chlorination
dissolved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2819882A
Other languages
Japanese (ja)
Other versions
JPH0138405B2 (en
Inventor
Kunihiko Miwa
三輪 圀彦
Toshihiko Tanaka
稔彦 田中
Shigeki Mihashi
三橋 重喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Artience Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd, Toyo Ink Mfg Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Priority to JP2819882A priority Critical patent/JPS58145704A/en
Publication of JPS58145704A publication Critical patent/JPS58145704A/en
Publication of JPH0138405B2 publication Critical patent/JPH0138405B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To prevent the formation of by-products and the presence of unreacted chlorine gas and produce a chlorinated resin effectively, by dissolving chlorine gas in a system prepared by dissolving (dispersing) a resin in a solvent and irradiating the resulting solution (dispersion). CONSTITUTION:A resin to be chlorinated (e.g., polyolefin, ethylene/vinyl acetate copolymer, diene polymer) is dissolved (or dispersed in the form of finely divided powder) in a solvent resistant to a chlorination reaction (e.g., carbon tetrachloride, water), then a necessary amount of chlorine gas is introduced into the system and dissolved therein at about 30-50 deg.C (in this state, the system is yellow), and the system is irradiated with ultraviolet rays under agitation until the color of the system disappears. When the chlorination of the resin is carried out in several stages, the 2nd and subsequent chlorination reactions can proceed as soon as chlorine gas is dissolved in the system. Therefore, it becomes possible to carry out the subsequent chlorination reactions at a markedly decreased dosage of ultraviolet rays.

Description

【発明の詳細な説明】 本発明はポリオレフィン、エチレン−酢酸ビニル共重合
体、ジエン系ポリマー等の塩素化した樹脂の製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing chlorinated resins such as polyolefins, ethylene-vinyl acetate copolymers, and diene polymers.

ポリオレフィン、エチレン−酢酸ビニル共重合体、ジエ
ン系ポリマー等の塩素化方法としては、原料樹脂を溶解
しうる溶媒に該樹脂を溶解した状態で塩素ガスで塩素化
する溶媒塩素化方法、樹脂粉末を(水性)分散媒中に懸
濁させて行う(水性)懸濁法が主に行われている。前者
は樹脂への塩素の反応が均一に行われ、物件の均一な塩
素化樹脂が得られるが、溶四の選択が難しいなどの難点
がある。一方、後者は同相の状態で行われるため、塩素
化反応が不均一になりやすい欠点がある。これらの塩素
ガスによる塩素化反応は、低温でも進行するが、速度を
早める方法としては反応温度を高くしたり、光や過酸化
物などの触媒が用いられている。特に紫外線による光照
射の方法は効率が良く、かつ触媒が残らない有効な方法
である。
Methods for chlorinating polyolefins, ethylene-vinyl acetate copolymers, diene polymers, etc. include a solvent chlorination method in which resin is dissolved in a solvent that can dissolve the raw resin and then chlorinated with chlorine gas; The (aqueous) suspension method is mainly carried out by suspending the material in an (aqueous) dispersion medium. In the former method, the reaction of chlorine to the resin is uniform, and a uniformly chlorinated resin can be obtained, but there are drawbacks such as difficulty in selecting the melt. On the other hand, since the latter is carried out in the same phase, it has the disadvantage that the chlorination reaction tends to be non-uniform. These chlorination reactions using chlorine gas proceed even at low temperatures, but methods for speeding up the reaction include increasing the reaction temperature and using catalysts such as light and peroxides. In particular, the method of light irradiation with ultraviolet rays is an effective method that is efficient and leaves no catalyst behind.

一般に光照射を用いる塩素化反応では、溶媒塩素化法ま
たは懸濁法においても、光照射しながら塩素ガスを吹き
込む方法がとられる。この方法では塩素化反応速度と溶
媒中への溶解量の不均衡により未反応の塩素ガスがか々
り流出し、流出塩素ガスの回収を行なわなければならず
、経済的でない。捷た、必要な反応時間の間に、溶媒や
樹脂、さらには塩素化された樹脂などから成る系に胛射
される先般が多いための弊害もある。例えば四塩化炭素
中にエチレン−酢酸ビニル共重合体を溶解し、70℃で
、紫外線照射下で塩素ガスを吹き込みながら塩素化を行
うと塩素ガスの反応率は最大60〜80重量係であり、
未反応の塩素カスが流出する。捷た塩素化の進行ととも
に系が白濁し、架橋反応によるものと推定される溶媒不
溶の物質が生成する。さらには、溶媒として使用した四
塩化炭素が2昂体化L〜、刺激臭の強い六塩化エタンな
どが生成する。
Generally, in a chlorination reaction using light irradiation, a method is used in which chlorine gas is blown in while light irradiation is performed, even in the solvent chlorination method or the suspension method. In this method, a large amount of unreacted chlorine gas flows out due to the imbalance between the chlorination reaction rate and the amount dissolved in the solvent, and the flowed out chlorine gas must be recovered, which is not economical. Another drawback is that during the necessary reaction time, the system is often exposed to solvents, resins, and even chlorinated resins. For example, when ethylene-vinyl acetate copolymer is dissolved in carbon tetrachloride and chlorinated at 70°C while blowing chlorine gas under ultraviolet irradiation, the reaction rate of chlorine gas is at most 60 to 80% by weight.
Unreacted chlorine residue flows out. As the chlorination progresses, the system becomes cloudy and a solvent-insoluble substance is produced, which is presumed to be due to a crosslinking reaction. Furthermore, the carbon tetrachloride used as a solvent is converted into diagonal L~, and hexachloroethane with a strong pungent odor is produced.

これらの副生成物は、塩素化樹脂の用途によっては、軽
重しくなく、例えば、印刷インキ、塗料、接着剤などで
は顔料の発色性や臭気の点で問題となる。これらを除く
方法としては高圧、高温下で光を照射せずに塩素化する
方法があるが、装置が高価になり、操作も複雑となる。
These by-products are not light or heavy depending on the use of the chlorinated resin, and pose problems in terms of pigment color development and odor, for example, in printing inks, paints, adhesives, etc. As a method for removing these, there is a method of chlorination without irradiation with light under high pressure and high temperature, but the equipment is expensive and the operation is complicated.

本発明者等は、光触媒の利点を生かし、常圧下で効率良
く、塩素化する方法を検討した結果、樹脂を溶媒に溶解
量たは分散させた系に、低温下で、その系に溶解できる
量以下の量の塩素ガスを導入し、塩素ガスを溶解し、比
較的高濃度の塩素ガス溶液を用意して、光照射を行うと
連鎖反応的に塩素化が短時間に進行し、この方法を繰返
してもしくは連続化して目的の塩素化度迄、塩素化反応
を進めると、未反応塩素ガスがほとんどなく、副生成物
の極めて少ない塩素化樹脂が得られることを見い出し、
本発明に至った。即ち、本発明の特徴は連鎖反応を早め
るに必要な塩素ガス濃度下で連鎖反応が開始されるまで
必要々紫外線を照射すれば良く、必要以上の紫外線を照
射しない。
The present inventors have studied a method for efficiently chlorinating under normal pressure by taking advantage of the advantages of photocatalysts, and have found that it is possible to dissolve or disperse resin in a solvent at low temperatures. In this method, chlorine gas is introduced in an amount equal to or less than the amount of chlorine gas dissolved in the chlorine gas, a relatively high concentration chlorine gas solution is prepared, and light irradiation is performed. We have discovered that if the chlorination reaction is carried out repeatedly or continuously until the desired degree of chlorination is reached, a chlorinated resin with almost no unreacted chlorine gas and extremely few by-products can be obtained.
This led to the present invention. That is, the feature of the present invention is that it is sufficient to irradiate ultraviolet rays as necessary until the chain reaction starts under the chlorine gas concentration necessary to accelerate the chain reaction, and do not irradiate more ultraviolet rays than necessary.

本発明における反応温度は、反応速度の面からは高い方
が軽重しいが、反応温度が高すぎると、系への塩素ガス
の溶解量が少なくなり、未反応塩素ガスの量が増加する
ので、10℃〜60℃の低温が好ましく、留置しくは3
0〜50℃が適している。
In the present invention, the higher the reaction temperature, the lighter the reaction is from the viewpoint of reaction rate, but if the reaction temperature is too high, the amount of chlorine gas dissolved in the system will decrease, and the amount of unreacted chlorine gas will increase. A low temperature of 10°C to 60°C is preferable, and indwelling or 3
A temperature of 0 to 50°C is suitable.

本発明における、反応系の塩素ガス濃度は、光強度を一
定した場合、連鎖反応が開始されるまでの時間に太きく
影響する。すなわち、塩素ガス濃度が低い場合には、連
鎖反応が開始される捷での時間が長く、かつ光照射量も
増加する。
In the present invention, the chlorine gas concentration in the reaction system greatly influences the time until the chain reaction starts when the light intensity is constant. That is, when the chlorine gas concentration is low, the time required for the chain reaction to start is long, and the amount of light irradiation also increases.

また塩素ガス濃度が高すぎた場合は、光照射量が少なく
て良いが、連鎖反応が爆発的に起り、例えは塩素化反応
がラジカル置換反応の場合には、反応熱と生成する塩化
水素ガスによる危険性をともなう。従って、反応系の塩
素ガス濃度は、反応系の温度とその温度における媒体中
への塩素ガスの溶解度および反応熱と生成ガヌの危険性
や反応装置などを考慮して、光照射時間を短かくするよ
うに定めることが必要である。
In addition, if the chlorine gas concentration is too high, the amount of light irradiation may be small, but a chain reaction may occur explosively.For example, if the chlorination reaction is a radical substitution reaction, the reaction heat and hydrogen chloride gas generated There is a risk of Therefore, the concentration of chlorine gas in the reaction system should be determined by considering the temperature of the reaction system, the solubility of chlorine gas in the medium at that temperature, the heat of reaction, the danger of generated gas, the reaction equipment, etc., and reducing the light irradiation time. It is necessary to stipulate this.

例えば、2を丸フラスコ中で2 K9の四塩化炭素中に
エチレン−酢酸ビニル共重合体1502を溶解して、4
0℃にて塩素化反応を行う場合は、溶解させる塩素ガス
量は202程度が適当であり、これ以上濃度を高めると
連鎖反応が激しくなり、反応熱と発生する塩化水素が急
激に増加する。
For example, 2 is prepared by dissolving ethylene-vinyl acetate copolymer 1502 in 2K9 carbon tetrachloride in a round flask.
When carrying out the chlorination reaction at 0° C., the appropriate amount of chlorine gas to be dissolved is about 20 2. If the concentration is increased more than this, the chain reaction becomes intense, and the reaction heat and generated hydrogen chloride rapidly increase.

本発明において使用する光は一般に塩素化反応に用いら
れている水銀ランプから得られる紫外線でよく、光の照
射時間は照射強度にもよるが、連鎖反応が開始するまで
よい。一般に塩素ガスを溶解した系は黄色を呈しており
、塩素化反応が進行すると無色と々る。さらに塩素化反
応を進める場合には、必要量の塩素ガスを溶解し−てか
ら、光を照射する。継続して2回目の塩素化を行う場合
は光を照射しなくても塩素ガスの溶解と同時に塩素化反
応が進行するので、必要量の塩素ガス導入した後の光照
射は1回目に比べ、さらに短時間で反応が進行する。こ
れは系内に残っている塩素ラジカルから、導入された塩
素ガスにラジカルの移動が起り、塩素化反応に消費され
る。
The light used in the present invention may be ultraviolet light obtained from a mercury lamp generally used in chlorination reactions, and the light irradiation time may be until a chain reaction starts, although it depends on the irradiation intensity. Generally, a system in which chlorine gas is dissolved has a yellow color, and becomes colorless as the chlorination reaction progresses. If the chlorination reaction is to proceed further, light is irradiated after dissolving the necessary amount of chlorine gas. When performing the second chlorination in succession, the chlorination reaction will proceed at the same time as the chlorine gas is dissolved even without light irradiation, so the light irradiation after introducing the required amount of chlorine gas will be faster than the first time. The reaction proceeds in a shorter time. This causes radical transfer from the chlorine radicals remaining in the system to the introduced chlorine gas, which is consumed in the chlorination reaction.

本発明において使用される溶剤または分散媒体は従来塩
素化反応に用いられているものでよい。すなわち溶媒捷
たは分散媒体が塩素化反応を受けにくいものが軽重しく
、例えば、四塩化炭素、水などを用いることができるが
、一部塩素化反応を受けるような溶媒、例えばトリクロ
ルエタンやテトラクロルエチレンなども場合によっては
使用してもか捷わない。
The solvent or dispersion medium used in the present invention may be one conventionally used in chlorination reactions. In other words, the solvent or dispersion medium that is less susceptible to chlorination reactions is light and heavy, such as carbon tetrachloride and water, but solvents that partially undergo chlorination reactions, such as trichloroethane and tetrachloride, can be used. Even if chlorethylene is used in some cases, it will not work.

本発明における樹脂とは、ラジカル置換捷たはラジカル
付加によって塩素化が可能なものを対象としている。例
えばエチレン、プロピレン、イソブチレン等のオレンづ
ンの単独重合体もしくは共重合体、ブタジェン、イソプ
レンなどのジオレフィンの重合体も1〜くけ共重合体、
塩化ビニル、酢酸ビニルなどのビニル化合物の重合体も
しくは共重合体、(メタ)アクリル酸、(メタ)アクリ
ル酸メチルなどのアクリル化合物の重合体もしくは共重
合体、スチレンなどのスチレン化合物の重合体または共
重合体、さらにこれら重合体もしくは共重合体のケン化
や酸化、もしくは不飽和カルボン酸、エポキシ化合物、
スチレンなどでグラフトにより変性されたものも含丑れ
る。また、これらの樹脂と一部塩素化された樹脂との混
合物に適用することもできる。
The resin in the present invention is intended to be one that can be chlorinated by radical substitution or radical addition. For example, homopolymers or copolymers of olefins such as ethylene, propylene, and isobutylene; polymers of diolefins such as butadiene and isoprene;
Polymers or copolymers of vinyl compounds such as vinyl chloride and vinyl acetate; polymers or copolymers of acrylic compounds such as (meth)acrylic acid and methyl (meth)acrylate; polymers of styrene compounds such as styrene; Copolymers, saponification or oxidation of these polymers or copolymers, unsaturated carboxylic acids, epoxy compounds,
It also includes those modified by grafting with styrene or the like. It can also be applied to mixtures of these resins and partially chlorinated resins.

これらの樹脂は溶媒塩素化の場合は、主として塩素化反
応を受けにくい溶媒中に溶解し、捷た懸濁法による場合
は100〜200μ程度の粉末を媒体中に分散させて使
用される。
In the case of solvent chlorination, these resins are mainly dissolved in a solvent that is not susceptible to the chlorination reaction, and in the case of a shattered suspension method, a powder of about 100 to 200 microns is dispersed in the medium.

以下実施例をもって本発明を説明する。The present invention will be explained below with reference to Examples.

7− 実施例1 2tの40丸底フラスコ中で、エチレン−酢酸ビニル共
重合体(三片ポリケミカル社製 エバフレックスEv−
250)1007を2Kgの四塩化炭素中に60℃にて
溶解し、溶解後40℃に保ち、20グの塩素ガス吹き込
んで溶解させた。丸底フラスコの底部より3cmの距離
から水銀ランプ(東芝理化学用水銀ランプ(SHL−1
00UV)で、攪拌しながら紫外線照射したところ、約
6分間で塩化水素を発生しながら塩素ガス溶液の黄色が
消失し、透明な溶液となった。
7- Example 1 Ethylene-vinyl acetate copolymer (manufactured by Mikata Polychemical Co., Ltd. Evaflex Ev-
250) 1007 was dissolved in 2 kg of carbon tetrachloride at 60°C, and after dissolution, the temperature was kept at 40°C and 20 g of chlorine gas was blown into the solution. A mercury lamp (Toshiba Physical and Chemical Mercury Lamp (SHL-1)
When the solution was irradiated with ultraviolet rays at 00 UV) while stirring, the yellow color of the chlorine gas solution disappeared while generating hydrogen chloride in about 6 minutes, becoming a transparent solution.

この時の系の温度は40℃から55℃寸で上昇したが、
塩素ガスの流出はほとんどない。さらに塩素ガスを20
2溶解させ、温度40℃にて光照射を行ったところ、2
分間で塩素ガスの色が消失した。さらに10ii’の塩
素ガスを溶解し、光照射1分間で塩素ガスの色が消失し
た。終了後、系内に残っている塩化水素を75℃に加熱
して追出し、水中に回収したところ、回収した塩化水素
と導入した塩素ガスの化学理論量が一致した。また溶液
を減圧濃縮したところ、1242の塩素化エチレン−酢
酸ビニル共重合体(塩素化度−塩素含有率20重量係)
を得た。本市を25%のトルエン溶液にしたところ容易
に溶解し、透明な液体となった。光照射時間は全部で9
分間であった。
At this time, the temperature of the system rose from 40℃ to 55℃,
Almost no chlorine gas leaks. Add 20 more chlorine gas
When 2 was dissolved and irradiated with light at a temperature of 40°C, 2
The color of the chlorine gas disappeared within minutes. Furthermore, 10ii' of chlorine gas was dissolved, and the color of the chlorine gas disappeared after 1 minute of light irradiation. After completion, the hydrogen chloride remaining in the system was heated to 75°C to expel it and recovered in water, and the stoichiometric amounts of the recovered hydrogen chloride and the introduced chlorine gas matched. In addition, when the solution was concentrated under reduced pressure, 1242 chlorinated ethylene-vinyl acetate copolymer (degree of chlorination - chlorine content 20 weight ratio) was obtained.
I got it. When Motoichi was made into a 25% toluene solution, it was easily dissolved and became a transparent liquid. Total light irradiation time is 9
It was a minute.

比較例1 実施例1で用いた反応系で70℃にて、光照射しながら
塩素ガスを30f/hの流速で吹き込んで塩素化を行っ
たところ、1時間和度で系が白濁し始め、生成した塩化
水素の定量から2.8時間で塩素化度20重量係に達し
た。系は白濁しており、反応にあずかった塩素ガスは5
9.5重量係であった。減圧濃縮後1232の塩素化物
を得たが、25重量%トルエン溶液は白濁しており、沈
殿物を生じた。
Comparative Example 1 Chlorination was carried out in the reaction system used in Example 1 at 70°C by blowing chlorine gas at a flow rate of 30 f/h while irradiating light. The degree of chlorination reached 20% by weight in 2.8 hours from the quantitative determination of the generated hydrogen chloride. The system is cloudy, and the chlorine gas that took part in the reaction is 5
It was 9.5 weight. After concentration under reduced pressure, a chlorinated product of 1232 was obtained, but the 25% by weight toluene solution was cloudy and a precipitate was formed.

実施例2 マレイン化変性したエチレン−酢酸ビニル共重合体(三
菱油化製 モチイックE−100H)を用いて実施例1
と同一条件で塩素化反応を行ったところ同様の結果を得
た。
Example 2 Example 1 using a maleated ethylene-vinyl acetate copolymer (Motiic E-100H manufactured by Mitsubishi Yuka Co., Ltd.)
When the chlorination reaction was carried out under the same conditions, similar results were obtained.

比較例2 マレイン化変性したエチレン酢酸ビニル共重合体(実施
例2と同じ)を用いて比較例1と同一条件で塩素化反応
を実施したところ、同じように白濁現象が起った。
Comparative Example 2 When a chlorination reaction was carried out under the same conditions as in Comparative Example 1 using a maleated ethylene vinyl acetate copolymer (same as in Example 2), the same clouding phenomenon occurred.

実施例3 低密度ポリエチレン粉末(製鉄化学社製 フローセンG
=801、メルトインデックス20、密度0.920、
粒度80〜100メツシー)1002と、非イオン界面
活性剤(ポリオキシエチレンソルビタンモノラウレート
)Ifとを、水2を中に高速攪拌して分散させ、40℃
にて塩素ガス92を吹き込んで溶解させ、実施例1と同
様に光照射して塩素化を行った。光照射時間は第1回目
が8分間で、2回目以降4分間であった。6回繰返して
全量54ンの塩素ガスを導入し、反応終了後、口過、水
洗の後、乾燥して、塩素化度21重量係の塩素化ポリエ
チレン粉末を得た。
Example 3 Low-density polyethylene powder (manufactured by Steel Chemical Co., Ltd., Flocene G)
=801, melt index 20, density 0.920,
1002 (particle size 80-100) and a nonionic surfactant (polyoxyethylene sorbitan monolaurate) were dispersed in water 2 with high speed stirring, and the mixture was heated at 40°C.
chlorine gas 92 was blown into the solution to dissolve it, and chlorination was carried out by irradiation with light in the same manner as in Example 1. The light irradiation time was 8 minutes for the first time and 4 minutes for the second and subsequent times. A total of 54 liters of chlorine gas was introduced six times, and after the reaction was completed, the mixture was filtered, washed with water, and dried to obtain chlorinated polyethylene powder with a degree of chlorination of 21 by weight.

実施例4 ポリプロピレン粉末(製鉄化学社製 フローセンUF)
100fを実施例1と同一条件下で四塩化炭素中に分散
させ、202の塩素ガスを溶解後、4分間の光照射を行
う方法で、15回繰返し、全量300vの塩素ガスを導
入した。塩素化度の進行とともにポリプロピレン粉末表
面から溶解し、反応終了後は溶液状態となった。
Example 4 Polypropylene powder (Frosene UF, manufactured by Steel Chemical Co., Ltd.)
100f was dispersed in carbon tetrachloride under the same conditions as in Example 1, and after dissolving the chlorine gas of 202, light irradiation was carried out for 4 minutes, which was repeated 15 times to introduce a total amount of 300v of chlorine gas. As the degree of chlorination progressed, it dissolved from the surface of the polypropylene powder, and after the reaction was completed, it became a solution.

減圧濃縮し、塩素化度60重量%の塩素化ポリプロピレ
ン2482を得た。
The mixture was concentrated under reduced pressure to obtain chlorinated polypropylene 2482 with a degree of chlorination of 60% by weight.

実施例5 実施例1と同様条件で溶解したエチレン−酢酸ビニル共
重合体溶液にさらに塩素化度30重量係の塩素化ポリプ
ロピレン(東洋化成工業製バードレン15−LP)20
9を溶解し、以下実施例1と同一条件で塩素化反応を実
施した。反応終了後減圧乾燥したところ、1252の塩
素化エチレン−酢酸ビニル共重合体と塩素化ポリプロピ
レンの混合物を得た。本型を25重量係トルエン溶液に
したところ実施例1と同様透明−11= な溶液となった。
Example 5 To an ethylene-vinyl acetate copolymer solution dissolved under the same conditions as in Example 1, chlorinated polypropylene with a degree of chlorination of 30 by weight (Badren 15-LP manufactured by Toyo Kasei Kogyo) 20 was added.
9 was dissolved, and a chlorination reaction was carried out under the same conditions as in Example 1. After the reaction was completed, the mixture was dried under reduced pressure to obtain a mixture of 1252 chlorinated ethylene-vinyl acetate copolymer and chlorinated polypropylene. When this mold was made into a 25% by weight toluene solution, it became a transparent -11= solution as in Example 1.

特許出願人 東洋インキ製造株式会社 =12− 手続補正書(方式) %式% 1、事件の表示  昭和57年特許願第 28198号
2、発明の名称    塩素化樹脂の製造方法3、補正
をする者 事件との関係  特許出願人 昭和57年6月11日(発送日 昭和57年6月29日
)5、補正の対象 明細書全文 6、補正の内容 別紙訂正明細書のとおり
Patent applicant Toyo Ink Manufacturing Co., Ltd. = 12- Procedural amendment (method) % formula % 1. Indication of case 1982 Patent Application No. 28198 2. Title of invention Method for producing chlorinated resin 3. Person making the amendment Relationship to the case: Patent applicant: June 11, 1982 (Delivery date: June 29, 1982) 5. Full text of the specification to be amended 6. Contents of the amendment as shown in the attached amended specification

Claims (1)

【特許請求の範囲】 ■ 塩素化すべき樹脂の1種もしくは2種以上を溶媒中
に溶解もしくは分散させた系に60℃以下、好ましくは
30〜50℃の温度で、塩素ガスを前記樹脂の塩素化に
必要な所定量溶解させた後、塩素ガスによる系の色が消
失するまで紫外線照射により塩素化することを特徴とす
る塩素化樹脂の製造方法。 2 塩素化すべき樹脂がポリオレフィン、エチレン−酢
酸ビニル共重合体およびジエン系ポリマーから選ばれる
少なくとも1種である特許請求の範囲第1項記載の塩素
化樹脂の製造方法。 3 塩素化すべき樹脂が一部臭素化された樹脂である特
許請求の範囲第1項または第2項記載の塩素化樹脂の製
造方法。 4 塩素化すべき樹脂がエチレン−酢酸ビニル共重合体
および20重量係以上塩素化さゎたポリプロピレンであ
る特許請求の範囲第1項または第2項記載の塩素化樹脂
の製造方法。 5 該塩素化を2回以上行ない、かつ2回目以降の塩素
化は前回の塩素化における紫外線照射より、照射量を少
なくして紫外線照射を行なう特許請求の範囲第1項〜第
4項いずれが記載の塩素化樹脂の製造方法。
[Claims] ■ Chlorine gas is added to a system in which one or more resins to be chlorinated are dissolved or dispersed in a solvent at a temperature of 60°C or lower, preferably 30 to 50°C, to remove the chlorine of the resin. 1. A method for producing a chlorinated resin, which comprises dissolving a predetermined amount necessary for chlorination, and then chlorinating it by irradiating ultraviolet rays until the color of the system caused by chlorine gas disappears. 2. The method for producing a chlorinated resin according to claim 1, wherein the resin to be chlorinated is at least one selected from polyolefins, ethylene-vinyl acetate copolymers, and diene polymers. 3. The method for producing a chlorinated resin according to claim 1 or 2, wherein the resin to be chlorinated is a partially brominated resin. 4. The method for producing a chlorinated resin according to claim 1 or 2, wherein the resin to be chlorinated is an ethylene-vinyl acetate copolymer and polypropylene chlorinated to a weight ratio of 20 or more. 5 The chlorination is performed two or more times, and in the second and subsequent chlorinations, the ultraviolet irradiation is performed at a lower dose than the ultraviolet irradiation in the previous chlorination. The method for producing the described chlorinated resin.
JP2819882A 1982-02-25 1982-02-25 Production of chlorinated resin Granted JPS58145704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2819882A JPS58145704A (en) 1982-02-25 1982-02-25 Production of chlorinated resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2819882A JPS58145704A (en) 1982-02-25 1982-02-25 Production of chlorinated resin

Publications (2)

Publication Number Publication Date
JPS58145704A true JPS58145704A (en) 1983-08-30
JPH0138405B2 JPH0138405B2 (en) 1989-08-14

Family

ID=12241968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2819882A Granted JPS58145704A (en) 1982-02-25 1982-02-25 Production of chlorinated resin

Country Status (1)

Country Link
JP (1) JPS58145704A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010235787A (en) * 2009-03-31 2010-10-21 Mitsui Chemicals Inc Method for producing halogen-modified olefinic polymer pellet
CN104395359A (en) * 2013-03-29 2015-03-04 株式会社钟化 Production method and production device for chlorinated vinyl chloride-based resin
JP2017075298A (en) * 2015-07-29 2017-04-20 リライアンス、インダストリーズ、リミテッドReliance Industries Limited Process for chlorination of polymer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010235787A (en) * 2009-03-31 2010-10-21 Mitsui Chemicals Inc Method for producing halogen-modified olefinic polymer pellet
CN104395359A (en) * 2013-03-29 2015-03-04 株式会社钟化 Production method and production device for chlorinated vinyl chloride-based resin
CN104395359B (en) * 2013-03-29 2016-03-16 株式会社钟化 The manufacture method of chlorinated vinyl chloride-based resin and manufacturing installation
JP2017075298A (en) * 2015-07-29 2017-04-20 リライアンス、インダストリーズ、リミテッドReliance Industries Limited Process for chlorination of polymer

Also Published As

Publication number Publication date
JPH0138405B2 (en) 1989-08-14

Similar Documents

Publication Publication Date Title
KR970009231B1 (en) Process for the preparation of water-absorptive resin
US10391468B2 (en) Halogenation of hydrocarbons
CA1207497A (en) Process for chlorination of poly(vinyl chloride) with liquid chlorine and chlorinated poly(vinyl chloride) compositions
JP2001501236A (en) Bromination of polystyrene resin
JPS5844694B2 (en) Suibun Sunsage
US3594356A (en) Polymer recovery process and apparatus
TW200817447A (en) Terminating bromination of styrenic polymer in a bromination reaction mixture
EP3137514B1 (en) Apparatus for halogenation of polymer
US2890213A (en) Process for the production of polyethylene chlorination products
JPS58145704A (en) Production of chlorinated resin
GB2083052A (en) Preparation of water-soluble polymers having a low residual monomer content
EP0312213B1 (en) Romoval of catalyst residues
US3342755A (en) Oxidation stable halogen containing cation exchange resins
JP2001261707A (en) Method of depolymerizing natural rubber
US3551400A (en) Method for manufacturing the chlorinated polyvinyl chloride having improved quality
GB2245569A (en) Method of producing chlorinated rubber
JPS58157801A (en) Manufacture of water-in-oil emulsion of water-soluble polymer
US3005812A (en) Process for removing solvents from chlorinated polyethylene resins
US2964517A (en) Process for chlorinating oxidized polyethylene waxes and resinous oxidized chlorinated product
US3597342A (en) Method for the dry chlorination of polyvinyl chloride using a liquid swelling agent
JPH0633324B2 (en) Method for producing chlorinated polyolefin
JPH03187910A (en) Production of powdery or granular activated carbon
USRE29100E (en) Selective hydroperoxidation of polyolefins in an aqueous slurry
JPH0633327B2 (en) Method for producing chlorinated polyolefin
US3470147A (en) Chlorination of polyethylene