JPS58145072A - Concentration cell utilizing temperature difference - Google Patents

Concentration cell utilizing temperature difference

Info

Publication number
JPS58145072A
JPS58145072A JP2872282A JP2872282A JPS58145072A JP S58145072 A JPS58145072 A JP S58145072A JP 2872282 A JP2872282 A JP 2872282A JP 2872282 A JP2872282 A JP 2872282A JP S58145072 A JPS58145072 A JP S58145072A
Authority
JP
Japan
Prior art keywords
nitric acid
graphite
cell
temperature side
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2872282A
Other languages
Japanese (ja)
Inventor
Michio Inagaki
道夫 稲垣
Mototsugu Sakasai
基次 逆井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP2872282A priority Critical patent/JPS58145072A/en
Publication of JPS58145072A publication Critical patent/JPS58145072A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hybrid Cells (AREA)

Abstract

PURPOSE:To obtain high open voltage in a concentration cell utilizing a temperature difference, by forming low and high temperature side electrode parts with a graphite layer-between compound of graphite and nitric acid and nitric acid electrolyte. CONSTITUTION:About 30wt% nitric acid electrolyte 3 is filled in a Pyrex glass cell which forms a gas phase bridge by communicating a pipe 2 circulating nitric acid gas in cells C1, C2 on the upper part of a U-shaped pipe 1. Openings of the cells C1, C2 are sealed by caps 4, 4', and platinum electrodes E1, E2 are mounted to the caps 4, 4'. Bottom ends of each electrode E1, E2 are immersed in the electrolyte 3, and jackets 5, 5' are mounted to the cells C1, C2. A graphite electrode 6 consisting of a graphite layer-between compound of carbon fiber and nitric acid is mounted to the electrode E2 of the cell C2. Warm drain water or the like of a factory is circulated to the jacket 5 of the cell C1 to form a high temperature side electrode part while low temperature water is circulated to the jacket 5' of the cell C2 to form a low temperature side electrode part. In this way, open voltage is increased to improve electromotive force.

Description

【発明の詳細な説明】 本発明は低温141I111(4部を炭素順維または黒
鉛粉末などの黒鉛と硝酸との黒鉛層間化合物と硝酸電解
液により構成し、高温側磁極部に前記硝酸電解液を用A
る温度差を利用した濃淡電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides low-temperature 141I111 (4 parts are composed of a graphite intercalation compound of graphite and nitric acid such as carbon conformable fibers or graphite powder, and a nitric acid electrolyte, and the nitric acid electrolyte is applied to the high-temperature side magnetic pole part). For A
This invention relates to a concentration battery that utilizes temperature differences.

本発明の目的は、工嚇からの温排水ま7tはバラフチリ
ヤ醗酵などの熱源を利用して開路電圧を生じる温度差を
利用した濃淡電池を提供すもものである。
An object of the present invention is to provide a concentration battery that utilizes a temperature difference that generates an open circuit voltage using a heat source such as hot water from a factory or fermentation.

炭素原子の六角状網平面内では強い共有結合を、層間で
は弱いVan der Waals的結合をしている黒
鉛は、弱い納会を持つ層間に種々の金属元素、)・ロゲ
ン元素などが挿入されて黒鉛層間化合物となることが知
らルている。この黒鉛層間化合物については高′准導材
料、磁電材料などとして注目されている。
Graphite has strong covalent bonds within the plane of the hexagonal network of carbon atoms and weak Van der Waals bonds between the layers. Various metal elements such as ) and rogen elements are inserted between the layers with weak bonding, resulting in graphite. It is known that it forms an interlayer compound. This graphite intercalation compound is attracting attention as a highly conductive material, a magnetic material, etc.

近年Br−黒鉛層間化合物を入れた二つの磁極の間に@
度差をつけることによって起磁力が得られる濃淡電池が
J 、M、La1ancette  とR,Rouss
elがCan 、J 、Chem、 54 、3341
 (1976)にすでに発表した。
In recent years, between two magnetic poles, a Br-graphite intercalation compound has been added.
Concentration batteries that can obtain magnetomotive force by creating a difference in degree are J, M, Laancette and R, Rouss.
el Can, J, Chem, 54, 3341
(1976).

この文献による温度菱を利用した濃淡電池の概要は第1
図を参照して説明する。
The outline of the concentration battery using temperature diamond according to this document is given in the first part.
This will be explained with reference to the figures.

・ Br−黒鉛層間化合物を用−1′覗解液としてBr
tが溶解飽和しているKBrの水溶液を用いた例である
・ Using Br-graphite intercalation compound as a solution of Br-1'
This is an example using an aqueous solution of KBr in which t is dissolved and saturated.

パイレックス製のセルCI +C2に前記のBr−黒鉛
層間化合物(C,、Brの組成)aを25gづつ充填し
ている。セルC,、C,は環状に連結され、そして10
1KBr水溶液にBr を飽和(約3幅)した′電解液
すで満たされている。図中Cは電解ybを注入するため
の管である。セルC,,C,の上部はガスが流通するよ
うにパイプで連結されている。dはその一通のためのコ
ックである。セルC,,C,のF端にはガラスフィルタ
ーeが置かれ、黒鉛層間化合物を隔離する。El 、 
E2は白金′磁極でセルC,,C2内に挿入されている
。谷セルには所定の温匿の水が循環するジャケットfで
包囲されている。”l + Etは白金猷極である。
Each Pyrex cell CI+C2 was filled with 25 g of the Br-graphite intercalation compound (composition of C, Br) a. Cells C,, C, are connected in a ring, and 10
It is filled with an electrolyte containing a 1KBr aqueous solution saturated with Br (approximately 30%). In the figure, C is a tube for injecting electrolytic yb. The upper parts of cells C, ,C, are connected by pipes so that gas can flow therethrough. d is the cook for that one letter. A glass filter e is placed at the F end of cells C, , C, to isolate graphite intercalation compounds. El,
E2 is a platinum magnetic pole inserted into cells C, C2. The valley cell is surrounded by a jacket f in which a predetermined warm water circulates. ``l + Et is the platinum resistance.

この電池の反応機構は次の様に考えられる。The reaction mechanism of this battery is thought to be as follows.

一 陰極部(高a側)/′−〜−込陽極部(低温側)Br− 現段階では高温側の陰極部からBr、ガスが発生し、上
部のパイプを経て陽極部に移行する。そしてBr、ガス
の発生の際にBr−イオンが電子を放出する。一方低温
側の陽瘉部ではBr、および電子を受けて黒鉛層間化合
物を形成し、Br の一部はイオン化する。黒鉛層間の
Br、分子おtびbr−イオンはKBr水溶液に溶は込
み、溶液内を陰極部側に拡散する。つまシ13.が高温
側から低温側へBf、ガスとして移動し、低温側から高
温側へKBr水浴液を通してBr−イオンとして移動し
ており、黒鉛層間化合物の温度差による活量の差により
、かかる過程でのイオン化によって起電力が発生するも
のと考えられる。また陰、陽極間を導線で結べば電子は
陰極から陽極に流れ電池を構成する。
One cathode part (high a side)/'- to -inclusive anode part (low temperature side) Br- At this stage, Br and gas are generated from the cathode part on the high temperature side and migrate to the anode part through the upper pipe. When Br gas is generated, Br- ions release electrons. On the other hand, in the positive part on the low temperature side, a graphite intercalation compound is formed by receiving Br and electrons, and a part of Br is ionized. Br, molecules and br- ions between the graphite layers are dissolved in the KBr aqueous solution and diffused in the solution toward the cathode side. Tsumashi 13. Bf moves from the high temperature side to the low temperature side as a gas, and from the low temperature side to the high temperature side as Br- ions through the KBr water bath liquid.Due to the difference in activity due to the temperature difference of graphite intercalation compounds, It is thought that electromotive force is generated by ionization. Furthermore, if a conductive wire is used to connect the cathode and anode, electrons will flow from the cathode to the anode to form a battery.

この従来例の破泡では、黒鉛層間化合物が膨潤。In this conventional example of bubble breaking, the graphite intercalation compound swells.

凝集して凝固し陰極におけるBr、ガスの発生、蒸発お
よび陽極におけるBr のイオン化を妨げるため通電中
次第に′電位が下がる欠点があるため、この従来電池を
改良するものとして、気相法によって製造した黒鉛繊維
を用いる濃淡電池が特開昭55−86075号公報およ
び特開昭55−121275号公報で提案されて論る。
Since Br aggregates and solidifies at the cathode, and prevents gas generation, evaporation, and ionization of Br at the anode, the potential gradually decreases during current application. Concentration batteries using graphite fibers have been proposed and discussed in Japanese Patent Application Laid-open No. 55-86075 and Japanese Patent Application Laid-open No. 55-121275.

これらの公開公報には気相成長法による黒鉛繊維は30
’6 ”0附近の高温で熱処理することによって黒鉛繊
維材料中でも良好な結晶性が得られ黒鉛層面が繊維軸の
まわりに年輪状に配列し、繊維軸方向に直線的に成長し
た微細構造を有している。そして、その層面間隔は3.
36Aと黒鉛琳結晶の値に匹敵してbるため、前者の従
来例における黒鉛粉末の場合にみられた黒鉛の崩壊はほ
とんど起こらず、臭素気泡の生成による起電力の停止が
避けられ開路4圧が約80mVと約120mAの喧流が
得られるというものである。しかしこの従来電池でもB
r−黒鉛層間化合物のイオン化率が低いため起″踵力に
おいて改良すべき点がある。
In these publications, there are 30 graphite fibers produced by vapor phase growth method.
By heat-treating at a high temperature around '6'0, good crystallinity is obtained even in the graphite fiber material, and the graphite layer surface is arranged like a growth ring around the fiber axis and has a microstructure that grows linearly in the fiber axis direction. The interlayer spacing is 3.
36A is comparable to that of graphite phosphorus crystal, so the collapse of graphite that was observed in the case of graphite powder in the former example hardly occurs, and the stoppage of the electromotive force due to the generation of bromine bubbles is avoided, resulting in an open circuit 4 A pressure of about 80 mV and a current of about 120 mA can be obtained. However, even with this conventional battery, B
Since the ionization rate of the r-graphite intercalation compound is low, there is a need for improvement in heel force.

本発明者らは温度差を利用した黒鉛層間化合物について
種々検討した結果、硝酸と黒鉛との黒鉛層間化合物が従
来例に示した濃淡電池に匹敵する主 高い起電力を技じることに着目し、高、低温側電極部を
黒鉛と硝酸の層間化合物と硝酸電解液により構成するか
、または低温側電橋部を黒鉛と硝酸との黒鉛層間化合物
と硝酸電解液により構成し、高温側電極部に前記硝酸電
解液を用いることにより前述した従来の欠点を解消した
ものである。
As a result of various studies on graphite intercalation compounds that utilize temperature differences, the present inventors focused on the fact that a graphite intercalation compound of nitric acid and graphite produces a high electromotive force comparable to that of the conventional concentration battery. , the high and low temperature side electrode parts are made up of an intercalation compound of graphite and nitric acid and a nitric acid electrolyte, or the low temperature side bridge part is made up of a graphite intercalation compound of graphite and nitric acid and a nitric acid electrolyte, and the high temperature side electrode part is made up of a graphite intercalation compound of graphite and nitric acid and a nitric acid electrolyte. By using the nitric acid electrolyte, the above-mentioned conventional drawbacks are overcome.

以下本発明の実施例を図面を参照して説明する。Embodiments of the present invention will be described below with reference to the drawings.

実施例〔1〕 直径20zyxのセルCIおよびC1を直径12藷の液
相ブリジを形成するように環状に連結されたU字管1の
上部にセルC,,C,に硝酸ガスが流通するように直径
12躇の管2を連通して気相ブリジを形成シタパイレッ
クスガラス製のセルに30重量係の硝酸電解液3を注入
する。セルCI + C*の開口部にはキャラ7’ 4
 、4’で密封しである。キャップ4゜4′には白金電
極J + Jをそれぞれ取付けそれぞれ白金電極の下端
部は硝酸電解液3に浸すようにしである。セルC,,C
,にはそれぞれ所定の温度の水が循環するジャケット5
,5′が敗付けである。ジャケット5,5′はプラスチ
ックチューブをセルの周囲に螺旋状に取付けてもよ−。
Example [1] Cells CI and C1 with a diameter of 20 zyx were connected in a ring to form a liquid phase bridge with a diameter of 12 zyx. Nitric acid gas was introduced into the upper part of the U-shaped tube 1 to flow into the cells C, , C,. A tube 2 having a diameter of 12 is connected to form a gas phase bridge, and 30% by weight of a nitric acid electrolyte 3 is injected into a cell made of Pyrex glass. Character 7' 4 is placed in the opening of cell CI + C*.
, 4'. Platinum electrodes J + J are attached to the caps 4 and 4', respectively, so that the lower ends of the platinum electrodes are immersed in the nitric acid electrolyte 3. Cell C,,C
, each have a jacket 5 in which water at a predetermined temperature circulates.
, 5' is the losing one. The jacket 5, 5' may be a plastic tube spirally attached around the cell.

セルC3は白金電極単独か、または白金電極に炭素繊維
と硝酸との黒鉛層間化合物を取付けである。セルC1の
ジャケット5には工場排温水などの高温度の水を循環さ
せて高温側電極部とする。またセルC!のジャケット5
′には低温の水を循環させる。6は黒鉛棒である。この
黒鉛棒はポリアクリロニトリル系炭素線維を3000℃
に近い温度で処理して得た直径約8〜12ミクロン、長
さ5〜10cIrLの炭素線維を30重貸多の硝酸溶液
に2時間浸漬後、取出した硝酸との黒鉛層間化合物を0
.25g秤量し白金゛磁極E1に取付けである。そして
黒鉛棒を硝酸ガスの気相中に全体を曝した場合(Alと
、黒鉛棒を半分硝酸ガスの気相中に曝し、残り半分を硝
酸電解液に浸漬した場合TB)と、さらに黒鉛iを硝酸
′電解液中に完全に浸漬した場合(C’lの条件として
、鳩温側のセルC1のジャケット5には80”0までの
温度に加熱された温水を循環させる。′またセルC1の
ジャケット5′には10゛0の冷水をそれぞれ循環させ
て、上記条件(A)、 fBlおよび(C)において、
白金磁極”+ + ”*との間に電圧計を接続すると第
3図に示す開路電圧が得られた。
Cell C3 has either a platinum electrode alone or a graphite intercalation compound of carbon fiber and nitric acid attached to the platinum electrode. High-temperature water such as factory waste water is circulated through the jacket 5 of the cell C1 to form a high-temperature side electrode section. Cell C again! jacket 5
′ circulates low-temperature water. 6 is a graphite rod. This graphite rod is made of polyacrylonitrile carbon fiber at 3000℃.
Carbon fibers with a diameter of about 8 to 12 microns and a length of 5 to 10 cIrL obtained by treatment at a temperature close to
.. Weighed 25g and attached it to the platinum magnetic pole E1. Then, when the graphite rod is entirely exposed to the gas phase of nitric acid gas (TB, when half of the graphite rod is exposed to the gas phase of nitric acid gas and the other half is immersed in the nitric acid electrolyte), completely immersed in a nitric acid electrolyte (as a condition of C'l, warm water heated to a temperature of up to 80'0 is circulated in the jacket 5 of cell C1 on the pigeon temperature side.' Under the above conditions (A), fBl and (C), 10゛0 cold water was circulated through the jacket 5' of
When a voltmeter was connected between the platinum magnetic pole "+ + "*, the open circuit voltage shown in FIG. 3 was obtained.

上記実施例において、各条件(AI 、 (Blおよび
(CI)で硝酸電解液の濃度1r、30重量%、また冷
m full電極部のセルC2の温度を10°0でそれ
ぞルー老とし、高温側電極部のセルC1を20′0〜8
0°Oに変化さすた時のそれぞれの開路電圧を測定した
値を示したものである。
In the above example, under each condition (AI, (Bl) and (CI), the concentration of the nitric acid electrolyte is 1r, 30% by weight, and the temperature of the cell C2 of the cold m full electrode part is set to 10°0, respectively. Cell C1 of the high temperature side electrode part is 20'0~8
The figure shows the measured values of the respective open circuit voltages when the temperature was changed to 0°O.

この実施例では気相中に黒鉛棒を完全に曝したものが各
温度Kj?いて高い値を示した。またこの実施例で試験
された硝酸電解液の濃度を、30重薇係の場合を示した
が、気相中に黒鉛棒を曝した条件(Alで温度条件は前
述の通りとし硝酸濃度を10゜30および60重を係と
段階的に変化させた場合の開路電圧を測定した値t−第
4図に示した。
In this example, the graphite rod is completely exposed to the gas phase at each temperature Kj? It showed a high value. In addition, the concentration of the nitric acid electrolyte tested in this example is shown in the case of 30 times the concentration of nitric acid. The open circuit voltage was measured when the load was changed stepwise between 30° and 60°, and the measured value t is shown in FIG.

これらの測定結果から気相、半気相および液相のいずれ
の場合でも硝酸濃度が30重量%の場合開路電圧が高く
、また黒鉛棒の位置が気相中に曝された時に高い開路電
圧を示す。しかしいずれの条件でも濃淡電池として利用
できることがわかる。
These measurement results show that the open circuit voltage is high when the nitric acid concentration is 30% by weight in any of the gas phase, semi-gas phase, and liquid phase, and that the open circuit voltage is high when the graphite rod is exposed to the gas phase. show. However, it can be seen that it can be used as a concentration battery under any conditions.

また30重量%の硝酸電解液は比伝導度で最大7.8O
−11(18℃)であるが、10および60重量%では
半分の約4.90−’ cIIL(I B℃)に低下す
るためであるが第3図および第4図から明らかなように
温度が上昇するにつれいずれの濃度でも100mVの開
路電圧が生じる濃淡電池が得られた。
Furthermore, the specific conductivity of 30% by weight nitric acid electrolyte is 7.8O at maximum.
-11 (18°C), but at 10 and 60% by weight it decreases by half to about 4.90-' cIIL (I B°C), but as is clear from Figures 3 and 4, the temperature A concentration cell was obtained in which an open circuit voltage of 100 mV was generated as the concentration increased.

上記実施例において黒鉛電極にベンゼン等の気相熱分解
によって得られた気相成長層lA繊維を更[3000°
0近い温度に加熱して得た黒鉛lllm11r:用いる
ことも可能である。
In the above example, the graphite electrode was coated with a vapor-grown layer IA fiber obtained by vapor-phase pyrolysis of benzene, etc.
It is also possible to use graphite lllm11r obtained by heating to a temperature close to zero.

実施例(2) この実施例においては黒鉛層間化合物として粒度lOO
メツシュの天然黒鉛粉床を30重量%の硝酸に2時間浸
漬後、取出して長さ30mtx、径511IJIIの棒
状にプレス加工した黒鉛棒を実施例r1〕に記載したセ
ルの白金電極E、に取付け、30重it%の硝酸′電解
液および黒鉛棒の位置を実施例1】〕と同様に気相(扇
、半気相+niおよび液相(旨における温度別の開路電
圧を測定し、その結果を第5図に示した。
Example (2) In this example, the graphite intercalation compound has a particle size of lOO
After immersing the mesh's natural graphite powder bed in 30% by weight nitric acid for 2 hours, it was taken out and pressed into a rod shape with a length of 30mtx and a diameter of 511IJII.The graphite rod was then attached to the platinum electrode E of the cell described in Example r1]. , the positions of the 30 weight it% nitric acid electrolyte and the graphite rod were measured in the same manner as in Example 1], and the open circuit voltages at different temperatures in the gas phase (fan, semi-vapor phase + ni and liquid phase) were measured, and the results were is shown in Figure 5.

〔1) この実施例でも実施耐同様な値が得られた。(黒鉛粉末
でも実施例〔1〕と同様な開路電圧を示すが、電解液中
への黒鉛粉末の混入を避けるため電解液と黒鉛棒の間に
フィルターを置くことが必要となった。フィルターを必
要としない黒鉛棒を用いることが望ましい。なお上記実
施例において人工的に結晶化して黒鉛質とした人造黒鉛
を用いることも可能である。
[1] Similar values were obtained in this example as well. (Although graphite powder showed the same open circuit voltage as Example [1], it was necessary to place a filter between the electrolyte and the graphite rod to avoid mixing the graphite powder into the electrolyte. It is desirable to use a graphite rod that is not required. In the above embodiments, it is also possible to use artificial graphite that has been artificially crystallized to form graphite.

実施例〔因 この実施例にお1ハでは、セルCI +C2内の硝酸蒸
気圧全高めるため、硝酸塩例えば硝酸マグネシウム、硝
酸匪鉛、硝酸カルシウムから1種選択して30重鍵係の
硝酸電解液に添加した。この実施例では硝酸塩のうち硝
酸亜鉛(Zn (NOx)y・61(,0)金用い、硝
酸租鉛を前記30*[−’fiの硝酸電解液に硝酸亜鉛
を飽和の状態まで溶解したものを電解液としたほかは、
前記実施例〔1〕と同じセルを用い炭素繊維0.25 
gを白金゛電極E2に取付け、高温側電極温度をlO〜
80″0に変化させ、黒鉛極の位置は気相(A1として
開路電圧を測定した結果を第6図に示した。・なお図中
IAIは実施例[1〕における気相中に黒鉛極を位置さ
せた場合の測定値を比較のため図示したものである。
Example [In this example, in order to increase the total nitric acid vapor pressure in the cell CI + C2, one type of nitrate such as magnesium nitrate, lead nitrate, and calcium nitrate was selected and a 30-layer nitric acid electrolyte was added. added to. In this example, among the nitrates, zinc nitrate (Zn (NOx)y・61(,0) gold was used, and lead nitrate was dissolved in the 30*[-'fi nitric acid electrolyte to a saturated state). In addition to using as the electrolyte,
Carbon fiber 0.25 using the same cell as in Example [1]
Attach g to the platinum electrode E2, and set the high temperature side electrode temperature to lO~
80"0, and the position of the graphite electrode is in the gas phase (A1). The results of measuring the open circuit voltage are shown in Figure 6. In the figure, IAI indicates the position of the graphite electrode in the gas phase in Example [1]. The figure shows the measured values when positioned for comparison.

この実施例によると高温側の温度が低い領域においては
硝#岨鉛を加えない時の開路電圧の値より高り値であっ
たが高い温度領域でけあ−まり変らない。低い温度領域
では硝酸蒸気圧が高まることによって硝酸のイオン化が
活発になり開路電圧が高−まるが、高い温度領域では飽
和水蒸気との関係でイオン化が低下し開路電圧が低下す
るのではないかと思われる。しかし硝酸蒸気圧を高めた
場合、起′屯力全増加する効果は光分に認められる。
According to this example, in the region where the temperature on the high temperature side is low, the open circuit voltage was higher than the value when no nitric acid was added, but it did not change much in the high temperature region. In a low temperature range, the ionization of nitric acid becomes active due to the increase in nitric acid vapor pressure, increasing the open circuit voltage, but in a high temperature range, ionization decreases in relation to saturated water vapor, leading to a decrease in the open circuit voltage. It will be done. However, when the nitric acid vapor pressure is increased, the effect of increasing the total tensile force can be seen in the optical fraction.

以上、各実施例に述べたように、硝酸と黒鉛との層間化
合物は黒鉛を硝酸中に浸した場合、通常第2ステージの
層間化合物が生成し、その組成はC14+NO3″′、
HNo、カ生成し、黒鉛層間に入ッf2−硝酸の半分は
イオン化してbると考えられるため、従来例に示したハ
ロゲンとして13j−黒鉛層間化合物(C@ Br )
の場合のイオン化率が約10%以下と(八われるのに比
べると、極めて高いイオン化率であり、しかもBr、よ
りも携り扱いが容易である硝酸を本発明では利用できる
利点があり、工業的に価値ある温度差を利用した濃淡電
池を提供できるものである。
As described above in each example, when graphite is immersed in nitric acid, a second stage interlayer compound is usually formed, and its composition is C14+NO3''',
Half of the f2-nitric acid is thought to be ionized and become b, so 13j-graphite intercalation compound (C@Br) is used as the halogen shown in the conventional example.
The present invention has the advantage of being able to use nitric acid, which has an extremely high ionization rate of about 10% or less (compared to 10%) and is easier to carry and handle than Br. This makes it possible to provide a concentration battery that utilizes temperature differences, which is valuable in terms of energy efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例における濃淡゛電池の側面図を示す。第
2図は本発明の実施例〔1〕における濃淡゛電池の側面
図である。第3図は本発明実施例〔1〕における電池の
黒鉛極の位置における開路″磁圧の曲線図を示す。第4
図は本発明実施例〔1〕における硝酸一度と開路′4圧
との曲線図を示す。第5図は実施例〔3〕 (2)における開路磁圧の曲線図、巣6図は実施例伺に
おける開路磁圧の曲線図である。 I U字管      CI +C2セル2・・管  
      3 ・硝酸成解液4.4′  キャップ 
   kl 、 b2−・白金成極5.5′  ジャケ
ット   6 黒鉛極特許出願人の名称 疎 1 図 第  3  回 葵 牛 田
FIG. 1 shows a side view of a conventional density cell. FIG. 2 is a side view of the density battery in Example [1] of the present invention. FIG. 3 shows a curve diagram of open-circuit magnetic pressure at the position of the graphite pole of the battery in Example [1] of the present invention.
The figure shows a curve diagram of nitric acid 1 and open circuit '4 pressure in Example [1] of the present invention. FIG. 5 is a curve diagram of open circuit magnetic pressure in Example [3] (2), and Figure 6 is a curve diagram of open circuit magnetic pressure in Example 3. I U-shaped tube CI +C2 cell 2...tube
3 ・Nitric acid decomposition solution 4.4' Cap
kl, b2-・Platinum polarized 5.5' jacket 6 Graphite electrode Patent applicant's name: 1 Figure 3 Aoi Ushida

Claims (4)

【特許請求の範囲】[Claims] (1)黒鉛層間化合物を備え、低温側電極部と高温側電
極部ならびに電解液を用いた温度差を利用した濃淡電池
において、前記両電極部を黒鉛と硝酸との黒鉛層間化合
物と硝酸電解液により構成するか、あるいは低温側電極
部を黒鉛と硝酸との黒鉛層間化合物と硝酸′1解液によ
り構成し、高温側電極部に前記硝酸電解液を用いること
を特徴とする温度差を利用]−だ濃淡電池。
(1) In a concentration battery that is equipped with a graphite intercalation compound and utilizes a temperature difference using a low-temperature side electrode part, a high-temperature side electrode part, and an electrolyte, both electrode parts are made of a graphite intercalation compound of graphite and nitric acid and a nitric acid electrolyte. Alternatively, the low-temperature side electrode part is composed of a graphite intercalation compound of graphite and nitric acid and a nitric acid '1 solution, and the high-temperature side electrode part uses the nitric acid electrolyte] -da concentration battery.
(2)前記黒鉛層間化合物が炭素繊維あるいは黒鉛繊維
であることを特徴とする特許請求範囲第1項記載による
温度差を利用した濃淡電池。
(2) A concentration battery utilizing a temperature difference according to claim 1, wherein the graphite intercalation compound is carbon fiber or graphite fiber.
(3)前記黒鉛層間化合物が天然黒鉛粉末または人造黒
鉛粉末であることを特徴とする%ff請求範囲第1項記
載による温度差を利用した濃淡電池。
(3) A concentration battery using a temperature difference according to claim 1, wherein the graphite intercalation compound is natural graphite powder or artificial graphite powder.
(4)前記硝酸電解液が硝Mまたは硝酸に硝酸塩を添加
したものであることを特徴とする特!FFal!求範囲
第1項記載による温度差を利用した濃淡−池。
(4) A special feature characterized in that the nitric acid electrolyte is nitrate M or nitric acid with a nitrate added thereto! FFal! Dark and light pond using the temperature difference according to the desired range item 1.
JP2872282A 1982-02-24 1982-02-24 Concentration cell utilizing temperature difference Pending JPS58145072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2872282A JPS58145072A (en) 1982-02-24 1982-02-24 Concentration cell utilizing temperature difference

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2872282A JPS58145072A (en) 1982-02-24 1982-02-24 Concentration cell utilizing temperature difference

Publications (1)

Publication Number Publication Date
JPS58145072A true JPS58145072A (en) 1983-08-29

Family

ID=12256325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2872282A Pending JPS58145072A (en) 1982-02-24 1982-02-24 Concentration cell utilizing temperature difference

Country Status (1)

Country Link
JP (1) JPS58145072A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0595688A1 (en) * 1992-10-21 1994-05-04 Nippon Telegraph And Telephone Corporation Temperature difference storage battery
GR20120100473A (en) * 2012-09-18 2014-04-16 Παυλος Μανωλουδης Electrochemical thermoelectric cells, devices thereof and applications thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0595688A1 (en) * 1992-10-21 1994-05-04 Nippon Telegraph And Telephone Corporation Temperature difference storage battery
GR20120100473A (en) * 2012-09-18 2014-04-16 Παυλος Μανωλουδης Electrochemical thermoelectric cells, devices thereof and applications thereof

Similar Documents

Publication Publication Date Title
Yeo et al. Transport properties of Nafion membranes in electrochemically regenerative hydrogen/halogen cells
DE1596077B2 (en) GALVANIC ELEMENT CONSISTS OF AN ANODIC REACTION ZONE A CATHODIC REACTION ZONE AND A FIXED ELECTROLYTE ATTACHED IN BETWEEN
Kabanov et al. Formation of crystalline intermetallic compounds and solid solutions in electrochemical incorporation of metals into cathodes
Savinell et al. Discharge Characteristics of a Soluble Iron‐Titanium Battery System
CN108711633A (en) Electrolyte for zinc-bromine flow battery
Swinkels Lithium‐Chlorine Battery
Albery et al. Photogalvanic Cells: II. Current‐Voltage and Power Characteristics
DE1900406A1 (en) High temperature fuel element
Qingfeng et al. Electrochemical Deposition of Aluminum from NaCl‐AlCl3 Melts
JPS58145072A (en) Concentration cell utilizing temperature difference
Weininger et al. Lead‐Acid Batteries: Use of Carbon Fiber‐Lead Wire Grids at the Positive Electrode
Kavan et al. Electronic resistivity of carbon in the product of electrochemical reduction of poly (tetrafluoroethylene), I
Shindo et al. Effect of non-graphitized carbon electrodes on the electrochemical characteristics of a thermocell with a Br2/Br− redox couple
Shibata The Effect of Temperature on the Growth of the Multi-atomic Oxide Layer on a Smooth Platinum Anode in an Acid Solution
Schumacher et al. Some Physical and Metallurgical Properties of Lead‐Calcium Alloys for Storage Cell Grids and Plates
Aymé-Perrot et al. Evaluation of carbon cryogels used as cathodes for non-flowing zinc–bromine storage cells
CN110186968B (en) Ag/AgF reference electrode suitable for fluoride fused salt and preparation method thereof
Scrosati et al. Electrochemical Properties of RbAg4 I 5 Solid Electrolyte: II. Study of Silver Electrode Reversibility
Bullock The Effect of Phosphoric Acid on the Positive Electrode in the Lead‐Acid Battery: II. Constant Potential Corrosion Studies
Li et al. Electrochemical deposition of aluminum from NaCl-AlCl3 melts
JPS61119716A (en) Carbon fiber having large surface area, production thereof, and catalyst carrier made of said carbon fiber
Keddam Some comments on the calorimetric aspects of the electrochemical “cold fusion” by M. Fleischmann and S. Pons.
Kuwabara et al. Secondary solid-state cell: Copper/Prussian blue
Wallace et al. Fused‐Acetamide Thermal Cells
JPS6228549B2 (en)