JPS58144436A - Method and apparatus for recovering zinc from dust - Google Patents

Method and apparatus for recovering zinc from dust

Info

Publication number
JPS58144436A
JPS58144436A JP57028633A JP2863382A JPS58144436A JP S58144436 A JPS58144436 A JP S58144436A JP 57028633 A JP57028633 A JP 57028633A JP 2863382 A JP2863382 A JP 2863382A JP S58144436 A JPS58144436 A JP S58144436A
Authority
JP
Japan
Prior art keywords
kiln
temperature side
dust
low
pellets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57028633A
Other languages
Japanese (ja)
Inventor
Akio Nagai
永井 秋男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP57028633A priority Critical patent/JPS58144436A/en
Publication of JPS58144436A publication Critical patent/JPS58144436A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To make a Zn source having the high concentration of Zn, while separating and recovering pellets as an iron-making source having small Zn content from Zn-contg. dust, by baking the pellets of the Zn-contg. dust in a rotary kiln having specified two-stage constitution. CONSTITUTION:Zn-contg. dust formed in an ironworks is formed into green pellets and charged in a low temp.-side kiln 1 having two-stage constitution by a shoot 8. The green pellets 11 are dehydrated and preheated, iron dust formed on this occasion is sucked by a suction hood 6 at the inlet side of the kiln, and then the pellets 11 are transferred into a high temp.-side kiln 2. The remainder of the iron dust in the pellets 11 is attracted by a magnetic partition wall 3 provided at the boundary between the two kilns and discharged through porous brickes 2-4. A Zn part in the pellets 11 is reduced and evaporated in the high temp.- side kiln 2, and recovered as dust having high Zn content suited to Zn refining through a hood 7. On the other hand, the pellets are baked into a shape having low Zn content suitable as an iron-making raw material and recovered.

Description

【発明の詳細な説明】 この発明は、製鉄所において発生するダストを主原料と
する生ペレットをロータリーキルン本体入し、ダスト中
の亜鉛分を効率よく回収する方法とその装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for feeding raw pellets, the main raw material of which is dust generated in a steel mill, into a rotary kiln body and efficiently recovering the zinc content in the dust.

製鉄所において発生するダストは、多鰍の鉄分を含んで
いるため、鉄源として有効利用すべきであるが、このダ
ストは高炉に対して有害な亜鉛を数チ含有するため、高
炉原料として多臘に再使用する場合には、そのダスト中
亜鉛の脱亜鉛を行ない、高炉内における亜鉛の濃縮を防
止する必髪がある。この脱亜鉛方法としては、ロータリ
ーキルンを利用して固体燃料によりダスト中にZn0O
形で存在する亜鉛分を還元・蒸発させ、また金属亜鉛の
形で存在する亜鉛を蒸発させる方法が知らルでいる。こ
の方法では、あらかじめダストを主原料として固体燃料
を添加あるいは無添加で生ペレツト化し、この生ペレッ
トを固体燃料と共にロータリーキルンに装入し、キルン
出口部に設けられた加熱バーナにより固体燃料を燃焼さ
せて高温還元雰囲気をつくり、ペレット中のZnOを還
元・蒸発させ、また金属亜鉛を蒸発させるとともに、生
ペレットの焼成を行なう。
Dust generated in steel mills contains a large amount of iron, so it should be effectively used as a source of iron. However, this dust contains several zinc, which is harmful to blast furnaces, so it is not used as a raw material for blast furnaces. When reusing it for reuse, it is necessary to dezincify the zinc in the dust and prevent it from concentrating in the blast furnace. This dezincing method uses a rotary kiln to remove Zn0O from solid fuel in the dust.
There are known methods for reducing and evaporating zinc present in the form of metal zinc. In this method, dust is used as the main raw material in advance to form raw pellets with or without addition of solid fuel, the raw pellets are charged into a rotary kiln together with solid fuel, and the solid fuel is combusted by a heating burner installed at the exit of the kiln. A high-temperature reducing atmosphere is created to reduce and evaporate ZnO in the pellets, evaporate metallic zinc, and sinter the raw pellets.

しかし、このような方法では、当然のことながら、キル
ン内でペレットの転勤と摩擦によりダストが再発生する
。このダストはキルン入口側カラ排ガスと共に吸引回収
されているが、回収されたキルンダスト中にはキルン内
で蒸気化した酸化亜鉛が該ダスト中の鉄酸化物表面に蒸
着したまま存在し、その亜鉛含有社は約18〜22%で
あシ、亜鉛精錬原料とするには亜鉛含装置が少なすぎ、
また高炉原料としても再利用できず、その処理に苦慮し
ているのが実情である。
However, in such a method, dust is naturally generated again due to pellet transfer and friction within the kiln. This dust is suctioned and collected together with the exhaust gas at the inlet of the kiln, but in the collected kiln dust, the zinc oxide vaporized in the kiln remains vaporized on the surface of the iron oxide in the dust, and the zinc-containing The zinc content is about 18-22%, and there is too little zinc-containing equipment to be used as a raw material for zinc smelting.
Furthermore, it cannot be reused as a raw material for blast furnaces, and the reality is that it is difficult to dispose of it.

この発明はかかる実情に鑑みてなされたものであり、亜
鉛精錬原料に供し得る高濃度の亜鉛ダストを回収し得る
方法とその装置を提案するものである。
This invention has been made in view of the above circumstances, and proposes a method and an apparatus for recovering highly concentrated zinc dust that can be used as a raw material for zinc refining.

すなわち、この発明は、装入原料を入口側から出口側へ
向けて平行流動的に加熱する方式のロータリーキルンに
より脱亜鉛する方法において、ロータリーキルンを高温
側と低温側に分割し、高温側キルンを2重構造にして間
接加熱方式とし、かつキルンの傾きを低温側キルンより
大きくとるとともに、回転速度を低温側キルンより低速
とし、高温側キルンと低温側キルンの境界には磁性を有
する隔壁を設け、高温側キルン内と低温側キルン内のダ
ストをそれぞれ別々に吸引回収することを特徴とするも
のである。
That is, this invention is a method for dezincing using a rotary kiln that heats charged raw materials in parallel flow from the inlet side to the outlet side.The rotary kiln is divided into a high temperature side and a low temperature side, and the high temperature side kiln is divided into two. The kiln has a layered structure and uses an indirect heating method, and the inclination of the kiln is larger than that of the low-temperature side kiln, and the rotation speed is lower than that of the low-temperature side kiln, and a magnetic partition is provided at the boundary between the high-temperature side kiln and the low-temperature side kiln. This system is characterized in that the dust in the high-temperature side kiln and the dust in the low-temperature side kiln are separately suctioned and collected.

ロータリーキルンにおいては、キルン入口側の低温部で
ペレットの脱水と予熱が行なわれ、その温度は亜鉛の沸
点以下であるため、亜鉛の還元・蒸発は起こらない。従
って、低温部で発生するダストは鉄粉が大半である。低
温部を通過したペレットは、高温部において900”C
以上の温度に加熱され、まず鉄酸化物が還元されるとと
もに、酸化亜鉛が一酸化炭素により還元され金属亜鉛と
なって蒸気化する。従って、キルン出口側の高温部では
蒸気亜鉛が多社に発生する。ところが、従来は脱水、予
熱、還元、焼成完了までのダストを一体でキルン入口側
から吸引しているため、キルンの主として低温部で多く
発生する鉄粉に高温部で還元・蒸発した亜鉛が付着する
。そのため、回収したキルンダストは、鉄分が多く亜鉛
分が少ないのである。
In a rotary kiln, the pellets are dehydrated and preheated in a low-temperature section on the inlet side of the kiln, and since the temperature is below the boiling point of zinc, no reduction or evaporation of zinc occurs. Therefore, most of the dust generated in low-temperature areas is iron powder. The pellets passed through the low temperature section are heated to 900"C in the high temperature section.
When heated to the above temperature, iron oxide is first reduced, and zinc oxide is reduced by carbon monoxide to become metallic zinc and vaporize. Therefore, a large amount of vaporized zinc is generated in the high temperature section on the exit side of the kiln. However, in the past, the dust from dehydration, preheating, reduction, and completion of firing was all sucked in from the kiln inlet side, so the zinc that was reduced and evaporated in the high-temperature areas adhered to the iron powder, which was mainly generated in the low-temperature areas of the kiln. do. Therefore, the recovered kiln dust has a high iron content and a low zinc content.

そこでこの発明では、ロータリーキルンヲ高温側と低温
側に分離するとともに、高温側キルンと低温側キルンの
境界に磁性を有する隔壁を設け、高温側、低温何羽々に
ダストを吸引する方法をとったのである。このようにキ
ルンを2分割し、隔壁によって高温側と低温側を区分す
ることにより。
Therefore, in this invention, the rotary kiln is separated into a high temperature side and a low temperature side, and a magnetic partition is installed at the boundary between the high temperature side kiln and the low temperature side kiln, and a method is adopted in which the dust is attracted to the high temperature side and the low temperature side. be. By dividing the kiln into two in this way and separating the high-temperature side and the low-temperature side with partition walls.

低温部で発生する鉄粉と高温部で発生する蒸気亜鉛の混
入が大巾に防止されるとともに、鉄粉と蒸気亜鉛はそれ
ぞれ別々に吸引されるため、鉄粉と亜鉛蒸気の付着を著
しく少なくできる。
This greatly prevents the mixing of iron powder generated in low-temperature areas and vaporized zinc generated in high-temperature areas, and since iron powder and vaporized zinc are sucked separately, the adhesion of iron powder and zinc vapor is significantly reduced. can.

また1通常のロータリーキルンの加熱方式は。1. What is the heating method of a normal rotary kiln?

キルン出口側より加熱バーナをキルン内に装入しペレッ
トを直接加熱する方式であるため、高温部においても、
焼成中のペレットが加熱バーナの火炎にあおられて粉塵
が発生し亜鉛濃度低ドの原因となっている。そのため、
この発明では、ペレット加熱方式を従来の直接法から間
接法をとった。
Since the heating burner is inserted into the kiln from the kiln exit side and directly heats the pellets, even in high-temperature areas,
The pellets being fired are agitated by the flame of the heating burner and generate dust, which is the cause of the low zinc concentration. Therefore,
In this invention, the pellet heating method is changed from the conventional direct method to an indirect method.

この間接加熱方式は、高温側キルンを内筒と外筒で構成
し、内筒と外筒の間に加熱バ2−すを挿入して加熱する
もので、従来のようにキルン内のペレットがバーナ火炎
にあおられることがないため、高温側キルン内での粉塵
の発生は少なくなる。さらに、この発明では、高温側キ
ルンの回転速度を低温側キルンより低速とすることによ
り、ペレットの転勤による粉塵の発生を抑えるようにし
た。
In this indirect heating method, the high-temperature side kiln consists of an inner cylinder and an outer cylinder, and a heating bath is inserted between the inner cylinder and the outer cylinder to heat the pellets inside the kiln. Since the kiln is not fanned by the burner flame, less dust is generated inside the kiln on the high temperature side. Furthermore, in this invention, the rotational speed of the high-temperature side kiln is set lower than that of the low-temperature side kiln, thereby suppressing the generation of dust due to transfer of pellets.

すなわち、高温側キルン内では加熱湿度が高いため、必
ずしも低温側キルンと同様にペレットを転動させなくて
も、ZnOの還元・蒸発、また金属亜鉛の蒸発、および
ペレットの焼成は十分に行なわれる。しかしながら、高
温側キルンの回転速度を低下させた場合、この側におけ
るペレットの移動が遅くなり生産性に影響するため、こ
の発明では高温側キルンの傾きを低温側キルンよりも大
きくとることによって解決した。
In other words, since the heating humidity is high in the high-temperature side kiln, reduction and evaporation of ZnO, evaporation of metallic zinc, and firing of the pellets are sufficiently performed without necessarily rolling the pellets as in the low-temperature side kiln. . However, if the rotation speed of the high-temperature side kiln is lowered, the movement of pellets on this side will be slowed down, which will affect productivity.This problem was solved in this invention by making the high-temperature side kiln more inclined than the low-temperature side kiln. .

第3図は、キルンの回転速度と発生粉本との関係を示す
ものであり、横軸にキルン周速度(m/分)、縦軸に発
生粉率(−1111%)をとっている。この第3図より
、キルン周速度を8m1分以下にすると。
FIG. 3 shows the relationship between the rotational speed of the kiln and the amount of powder generated, with the horizontal axis representing the peripheral speed of the kiln (m/min) and the vertical axis representing the percentage of generated powder (-1111%). From this figure 3, if the kiln circumferential speed is set to 8 m1 min or less.

発生粉率が非常に少なくなることが明らかである。It is clear that the powder generation rate is very low.

また、第4図は、発生粉率(〜111M係)と粉塵中の
亜鉛濃度(%)との関係を示すものであり、この第4図
よシ、発生粉率が低下すると、その粉塵中に含有する亜
鉛濃度が向上することが明らかである。
In addition, Figure 4 shows the relationship between the generated powder rate (up to 111M) and the zinc concentration (%) in the dust.As shown in Figure 4, when the generated powder rate decreases, the It is clear that the concentration of zinc contained in

さらに、この発明では、キルン内ダストの吸引を従来の
キルン入口側からだけでなく、キルン出口側からも行な
うことを特徴とする。すなわち、低温側キルン内では前
記したとおり、はとんどが鉄粉塵であり、高温側キルン
内では亜鉛蒸気が多く発生するので、高濃度の亜鉛ダス
トを回収するためにはそれぞれ別々に吸引した方が有利
である。
Furthermore, the present invention is characterized in that dust in the kiln is suctioned not only from the conventional kiln inlet side but also from the kiln outlet side. In other words, as mentioned above, in the low-temperature side kiln, most of the dust is iron dust, and in the high-temperature side kiln, a lot of zinc vapor is generated, so in order to collect high-concentration zinc dust, each was suctioned separately. It is more advantageous.

そのため、この発明では低温側は従来どおシキルン入口
側から粉塵を吸引するとともに、高温側は亜鉛蒸気を可
及的に多く吸引回収するために該キルン内にフード等を
設けてダストを吸引回収する方法をとったのである。
Therefore, in this invention, dust is suctioned from the inlet side of the kiln on the low-temperature side as before, and a hood or the like is provided inside the kiln on the high-temperature side to suction and collect as much zinc vapor as possible. I took a method to do so.

従って、この発明法によれは、ロータリーキルンの主と
して低温側に多く発生する鉄粉塵は、磁性を有する隔壁
によって高温側への流入を妨けられるとともに、キルン
入口側からほとんど吸引回収される。また、高温側キル
ンにおいては1間接加熱力式であるとともに1回転速度
が低温側キルンよシも低速であるため、粉塵の発生縦が
少なく。
Therefore, according to the method of the present invention, iron dust, which is mainly generated in large quantities on the low temperature side of the rotary kiln, is prevented from flowing into the high temperature side by the magnetic partition wall, and most of the iron dust is sucked and collected from the kiln inlet side. In addition, since the high-temperature side kiln uses a single indirect heating power type and the rotational speed is lower than that of the low-temperature side kiln, there is less vertical generation of dust.

その−L隔壁によって低温側の鉄粉塵の混入もほとんど
なく、しかもキルン出口側より吸引する方式であるから
、亜鉛濃度の商いダストを回収することができる。
Due to the -L partition wall, there is almost no contamination of iron dust on the low temperature side, and since the suction is performed from the kiln outlet side, it is possible to collect iron dust with a zinc concentration.

次に、この発明の一実施例装置を図面に基づいて説明す
る。
Next, an embodiment of the present invention will be explained based on the drawings.

(1)は低温側キルン、(2)は高温側キルンであって
(1) is a low temperature side kiln, and (2) is a high temperature side kiln.

高温側キルン(2)は内局(2−1)と外筒(2−2)
で構成し、内筒と外筒は複@個のスペーサ板(2〜3)
を介して一体化しており、かつ低温側キルン(I)より
傾きを大きくして設置する。その偵き角度としては1〜
2度位が適当である。(3)は磁性を有する隔壁であっ
て、低温側キルン(1)の内壁に複数個のアーム(4)
を介して取付けられている。この隔壁(3)はこれに付
着した鉄粉およびキルン内底部にたまる鉄粉を高温側キ
ルン(2)の後部に設けた多数細孔部材としてのポーラ
ス煉瓦(2−4)によって外部に回収できるように、高
温側キルン(2)内に位置させる。前記ポーラス煉瓦(
2−4)は高温側キルン(2)の後部円周上に一体に取
付けられている。
The high temperature side kiln (2) has an inner part (2-1) and an outer cylinder (2-2).
The inner cylinder and outer cylinder are composed of multiple spacer plates (2 to 3).
The two kilns are integrated through the kiln (I), and are installed at a greater inclination than the low temperature side kiln (I). The reconnaissance angle is 1~
About 2 degrees is appropriate. (3) is a magnetic partition wall, which has a plurality of arms (4) on the inner wall of the low temperature side kiln (1).
It is installed through. Iron powder attached to this partition wall (3) and iron powder accumulated at the inner bottom of the kiln can be recovered to the outside by a porous brick (2-4) as a multi-pore member provided at the rear of the high-temperature side kiln (2). It is located in the high temperature side kiln (2). The porous brick (
2-4) is integrally attached on the rear circumference of the high temperature side kiln (2).

(5)は加熱バーナであって、高温側キルン(2)の内
#(2−1)と外筒(2−2>との間に挿入設置されて
いる。(6)は低温側キルン(1)内の鉄粉塵吸引フー
ド、(7)は高温側キルン(2)内の亜鉛蒸気吸引フー
ドである。(8)は生ペレツト供給シュート、C9)は
焼成ペレット排出シュート、Q□は被覆カバーである。
(5) is a heating burner, which is inserted between the inner cylinder (2-1) and the outer cylinder (2-2>) of the high temperature side kiln (2). (6) is the heating burner of the low temperature side kiln (2). 1) is the iron dust suction hood inside, (7) is the zinc vapor suction hood inside the high temperature side kiln (2). (8) is the raw pellet supply chute, C9) is the fired pellet discharge chute, and Q□ is the covering cover. It is.

上記装置において、生ペレツト供給シュート(8)より
供給された生ペレットα珍は、低温側キルン(1)の回
転により転動しながら移動し、脱水と予熱が行なわれる
。このとき発生する鉄粉塵は該キルン入口側の鉄粉塵吸
引フード(6)より吸引される。その後、生ペレットは
さらに移動し、低温側キルンより低速の高温側キルン(
2)内に進入する。高温側キルン(2)の回転速度とし
ては、通常1rpm以下(ギルン周速度8m/分以下)
である。高温側キルン(2)内に進入した生ペレットは
、隔壁(3)のところを通過し温度900°C以上の高
温域でZnOの還フc・蒸発、また金属亜鉛の蒸発が起
こり、かつ焼成される。この高温側キルン(2)内の亜
鉛蒸気は^湛の雰囲気ガスと共に亜鉛蒸気吸引フード(
7)より吸引されるが、高温側キルン(2)は低温側キ
ルン(1)よりも回転速度が遅く、しかも間接加熱であ
るだめ亜鉛蒸気以外の粉塵の発生は非常に少ない。゛ま
た、低湿側キルン(1)内の鉄粉塵は該キルン入口側よ
り吸引される上、隔壁(3)によって高温側キルン(2
)側への流入を阻止されるとともに該隔壁に吸着される
ため、高温側より吸引さnるダストは亜鉛濃度の非常に
商いものとなる。隔壁(3)に吸着された鉄粉塵および
キルン内底部にたまる鉄粉塵は高温側キルン(2)の入
口部に設けたポーラス煉瓦(2−4)から落下させて回
収容器α1に回収する。
In the above apparatus, the raw pellets α-chin supplied from the raw pellet supply chute (8) are moved while rolling due to the rotation of the low-temperature side kiln (1), and are dehydrated and preheated. The iron dust generated at this time is sucked through the iron dust suction hood (6) on the inlet side of the kiln. After that, the raw pellets move further to the hot side kiln (which has a lower speed than the low temperature side kiln).
2) Go inside. The rotational speed of the high-temperature side kiln (2) is usually 1 rpm or less (giln circumferential speed of 8 m/min or less)
It is. The raw pellets that have entered the high-temperature side kiln (2) pass through the partition wall (3), and in a high temperature range of 900°C or higher, ZnO reflux and evaporation, as well as metal zinc evaporation, occur and are fired. be done. The zinc vapor in this high-temperature side kiln (2) is sent to the zinc vapor suction hood (
7) However, the high-temperature side kiln (2) rotates at a slower speed than the low-temperature side kiln (1), and due to indirect heating, very little dust other than zinc vapor is generated.゛In addition, the iron dust in the low-humidity side kiln (1) is sucked in from the inlet side of the kiln, and is also drawn into the high-temperature side kiln (2) by the partition wall (3).
) side and is adsorbed by the partition wall, the dust drawn in from the high temperature side has a very high zinc concentration. The iron dust adsorbed on the partition wall (3) and the iron dust accumulated on the inner bottom of the kiln are dropped from the porous brick (2-4) provided at the entrance of the high temperature side kiln (2) and collected in the collection container α1.

このようにして、高温側キルン(2)の出口側から吸引
回収されるダストは、亜鉛濃度が高いため亜鉛精錬原料
として十分使用可能であり、また低温側キルン(1)の
入口側から吸引回収されるダストは、鉄分が多く亜鉛含
有社が非常に少ないため、高炉原料として再利用できる
In this way, the dust suctioned and collected from the outlet side of the high temperature side kiln (2) has a high zinc concentration and can be used as a raw material for zinc refining. The resulting dust has a high iron content and very little zinc content, so it can be reused as a raw material for blast furnaces.

以下、この発明の実施例について説明する。Examples of the present invention will be described below.

〔実施例〕〔Example〕

第1表に示す成分を有するダストをペレタイザーにて造
粒した平均粒径15111mの生ペレットを、図面に示
す構造のロータリーキルンにより脱亜鉛しかつ焼成し7
.その際に発生した高温側キルンからの回収ダスト成分
と、得られた還元ペレッ[の成分をそれぞれ第2表と第
3表に示す。なお、第2表と第3表には比較のため、同
一規模の従来のロータリーキルンにより還元した際に発
生したダストを回収して分析した結果、および得られた
還元ペレットの成分を併せて示した。
Raw pellets with an average particle size of 15,111 m are made by granulating the dust having the components shown in Table 1 using a pelletizer, and are dezinced and fired in a rotary kiln having the structure shown in the drawing.
.. The recovered dust components from the high-temperature side kiln generated at that time and the components of the obtained reduced pellets are shown in Tables 2 and 3, respectively. For comparison, Tables 2 and 3 also show the results of collecting and analyzing the dust generated during reduction using a conventional rotary kiln of the same scale, as well as the components of the obtained reduced pellets. .

本実施例における装置諸元並びに操業条件は下記に示す
とおりであった。
The device specifications and operating conditions in this example were as shown below.

(I)  装置諸元 低温側キルンの長さ、内径、傾き角度:長さ5m、内径
0.8m、傾き0.8度 高温側キルンの長さ、内径、mき角度:長さ4.5m、
内径7.0m、傾き2度 隔壁の直径:0.6m CII)  操業条件 生ペレット装入置:20kf/Hr 低温側キルンの周速度:0.8m/分 高蟲側キルンの周速度:  0.4m/分第1表 ダス
ト成分 (第11 頁) 第2表 回収キルンダスト成分(%) 第3表 還元ペレット成分(%) 第2表よ#)fJAらかなどとく、この発明法では亜鉛
濃度の高いキルンダストを回収することができた。また
、第3表より明らかなごとく1品質の良好な還元ペレッ
トが得られた。
(I) Equipment specifications Length, inner diameter, angle of inclination of low-temperature side kiln: Length 5 m, inner diameter 0.8 m, inclination 0.8 degrees Length, inner diameter, m angle of high-temperature side kiln: Length 4.5 m ,
Inner diameter 7.0 m, Diameter of partition wall with 2 degree inclination: 0.6 m CII) Operating conditions Green pellet loading device: 20 kf/Hr Circumferential speed of low temperature side kiln: 0.8 m/min Peripheral speed of high temperature side kiln: 0. 4m/min Table 1 Dust components (page 11) Table 2 Recovered kiln dust components (%) Table 3 Reduced pellet components (%) Table 2 I was able to collect expensive kiln dust. Further, as is clear from Table 3, good reduced pellets of 1 quality were obtained.

(第12頁)(Page 12)

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例装置を示す縦断正面図、第
2図は第1図■−■線上の縦断側面図、第3図はキルン
の回転速度と発生粉率の関係を示す図表、第4図は発生
粉本と粉層中の亜鉛濃度との関係を示す図表である。 図中、l・−・低温側キルン、2・・・高温側キルン。 2−1・・・内筒、2−2・・・外聞、2−3・・・ス
ペーサ板。 2−4・・・ポーラス煉瓦、3・・・隔壁、4・・・ア
ーム、5・・・加熱バーナ、6・・・低温側の鉄粉塵吸
引フード、7・・・高温側の亜鉛蒸気吸引フード、8・
・・生ペレツト供給シュート、9・・・焼成ペレット排
出シュート。 出願人  住友金属工業株式会社 1 代理人   押   1)  良   久 ゛第3図 〜ルン周珪度(m/m1n) 発生お1社−1mm(%) 193−
Fig. 1 is a longitudinal sectional front view showing an embodiment of the device of the present invention, Fig. 2 is a longitudinal sectional side view taken along the line ■-■ in Fig. 1, and Fig. 3 is a chart showing the relationship between the rotational speed of the kiln and the powder generation rate. , FIG. 4 is a chart showing the relationship between the amount of powder generated and the zinc concentration in the powder layer. In the figure, 1: low-temperature side kiln, 2: high-temperature side kiln. 2-1...Inner cylinder, 2-2...Outer cylinder, 2-3...Spacer plate. 2-4... Porous brick, 3... Partition wall, 4... Arm, 5... Heating burner, 6... Iron dust suction hood on the low temperature side, 7... Zinc vapor suction on the high temperature side Food, 8.
... Raw pellet supply chute, 9... Burnt pellet discharge chute. Applicant: Sumitomo Metal Industries, Ltd. 1 Agent: 1) Yoshihisa ゛Figure 3 - Circumferential silica (m/m1n) 1 company - 1mm (%) 193-

Claims (1)

【特許請求の範囲】 l ロータリーキルンを高温側と低温側に分割し、高温
側キルンは2重構造にして間接加熱方式とし、かつキル
ンの傾きを低温側キルンより大きくとるとともに1回転
速度を低温側キルンより低速とし、高温側キルンと低温
側キルンの境界には磁性を有する隔壁を設け、高温側キ
ルン内および低温側キルン内のダストをそれぞれ別々に
吸引回収することを特徴とするダスト中の亜鉛回収方法
。 2 ロータリーキルン本体を高温側キルンと低温側キル
ンに2分割し、それぞれ別個に回転駆動する機構とし、
高温側キルンと低温側キルンの境界には磁性を有する隔
壁を設置し、高温側キルンは内筒と外筒の2重構造とす
るとともに、内筒と外筒の間に加熱バーナを設け、前記
隔壁と相対する円筒上には鉄粉回収用の多数細孔部材を
設け、高温側キルンおよび低温側キルンにそれぞれダス
ト吸引用フードを設けてなるダスト中の亜鉛回収装置。
[Claims] l The rotary kiln is divided into a high-temperature side and a low-temperature side, and the high-temperature side kiln has a double structure and uses an indirect heating method, and the inclination of the kiln is set larger than that of the low-temperature side kiln, and the one rotation speed is set to the low-temperature side. Zinc in dust is characterized in that the speed is lower than that of the kiln, a magnetic partition is provided at the boundary between the high-temperature side kiln and the low-temperature side kiln, and the dust in the high-temperature side kiln and the low-temperature side kiln are respectively suctioned and collected. Collection method. 2 The main body of the rotary kiln is divided into two parts, a high-temperature side kiln and a low-temperature side kiln, each of which is driven to rotate independently.
A magnetic partition wall is installed at the boundary between the high-temperature side kiln and the low-temperature side kiln, and the high-temperature side kiln has a double structure of an inner cylinder and an outer cylinder, and a heating burner is installed between the inner cylinder and the outer cylinder. A device for recovering zinc in dust, which includes a multi-pore member for recovering iron powder on a cylinder facing a partition wall, and hoods for suction of dust in a high-temperature side kiln and a low-temperature side kiln, respectively.
JP57028633A 1982-02-23 1982-02-23 Method and apparatus for recovering zinc from dust Pending JPS58144436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57028633A JPS58144436A (en) 1982-02-23 1982-02-23 Method and apparatus for recovering zinc from dust

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57028633A JPS58144436A (en) 1982-02-23 1982-02-23 Method and apparatus for recovering zinc from dust

Publications (1)

Publication Number Publication Date
JPS58144436A true JPS58144436A (en) 1983-08-27

Family

ID=12253942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57028633A Pending JPS58144436A (en) 1982-02-23 1982-02-23 Method and apparatus for recovering zinc from dust

Country Status (1)

Country Link
JP (1) JPS58144436A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10858252B2 (en) 2015-11-02 2020-12-08 Sumitomo Electric Industries, Ltd. Complex carbonitride powder and method for producing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10858252B2 (en) 2015-11-02 2020-12-08 Sumitomo Electric Industries, Ltd. Complex carbonitride powder and method for producing same

Similar Documents

Publication Publication Date Title
EP0947586B1 (en) Method and apparatus for rapid reduction of iron oxide in a rotary hearth furnace
CN108796217B (en) Device and method for recycling zinc-containing and iron-containing dust mud
US5454715A (en) Method for improved manufacture of cement in long kilns
US3836353A (en) Pellet reclamation process
US5885521A (en) Apparatus for rapid reduction of iron oxide in a rotary hearth furnace
US4396424A (en) Method for recovering useful metals from dust discharged from metal refining metallurgical furnace
CN109097588A (en) A kind of device and method that iron content solid wastes recycling containing zinc utilizes
CN209039549U (en) A kind of device that iron content solid wastes recycling containing zinc utilizes
US3497190A (en) System for hot de-oiling and hot briquetting
JP3043325B2 (en) Method for producing reduced iron pellets and reduced iron pellets produced by this method
JP3304872B2 (en) Method and apparatus for rapid reduction of iron oxide in rotary hearth heating furnace
JPS58144436A (en) Method and apparatus for recovering zinc from dust
JP2002241850A (en) Method for removing zinc in zinc-containing iron oxide using rotary kiln
US6602322B2 (en) High temperature metal recovery process
CN104846194B (en) Cooling method of chloridized roasted pellets
US3564699A (en) Method and system for hot de-oiling and hot briquetting
JP7174653B2 (en) Equipment for recovering copper from copper-containing waste
JPS6154094B2 (en)
JPS6119694B2 (en)
US3611542A (en) System for hot de-oiling and hot briquetting
CN117928234A (en) Direct reduction treatment device and treatment method for cone rotating furnace
JP3844028B2 (en) Method for recovering valuable metal components from metallurgical dusts
USRE28787E (en) Method and system for hot de-oiling and hot briquetting
JPH1160297A (en) Flue gas treatment from cement kiln
CN206015044U (en) A kind of device for improving the utilization rate of hazardous waste containing zinc by rotary kiln