JPS58144340A - Production of acetaldehyde - Google Patents

Production of acetaldehyde

Info

Publication number
JPS58144340A
JPS58144340A JP57025435A JP2543582A JPS58144340A JP S58144340 A JPS58144340 A JP S58144340A JP 57025435 A JP57025435 A JP 57025435A JP 2543582 A JP2543582 A JP 2543582A JP S58144340 A JPS58144340 A JP S58144340A
Authority
JP
Japan
Prior art keywords
catalyst
rhodium
compound
palladium
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57025435A
Other languages
Japanese (ja)
Other versions
JPS6337092B2 (en
Inventor
Seishiro Nakamura
中村 征四郎
Katsutoshi Ogami
大神 勝利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP57025435A priority Critical patent/JPS58144340A/en
Publication of JPS58144340A publication Critical patent/JPS58144340A/en
Publication of JPS6337092B2 publication Critical patent/JPS6337092B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:When a reaction between methyl acetate, carbon monoxide and hydrogen gives the titled compound, it is carried out in gaseous phase in the presence of a catalyst of rhodium and palladium as well as of a halogen compound to increase its yield at low pressure without reduction in catalyst activity. CONSTITUTION:Using a catalyst of (a) rhodium or its compound and (b) palladium or its compound, both of which are supported on a carrier, the vapor phase reaction between methyl acetate, carbon monoxide and hydrogen is carried out in the presence of a halogen compound in a pressure range 10-100 atmospheric pressure at 100-300 deg.C, preferably 150-250 deg.C to give the titled compound. Examples of rhodium compounds and palladium compounds are rhodium chloride and palladium nitrate. Activated carbon is particularly preferred as the catalyst carrier. The ratio of metallic rhodium to palladium is preferably 0.001-10, particularly 0.1-1 in gram atom.

Description

【発明の詳細な説明】 本発明は酢酸メチル、−酸化炭素および水素を反応させ
ることによジアセトアルデヒドを製造する方法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a process for producing diacetaldehyde by reacting methyl acetate, carbon oxide and hydrogen.

酢酸メチル、−酸化炭素および水素を周期律表第4また
は第5周期の第1族金属の存在下液相で反応させること
によりアセトアルデヒドを製造することは公知である(
特公昭48−19286号公報)、。
It is known to produce acetaldehyde by reacting methyl acetate, carbon oxide and hydrogen in the liquid phase in the presence of a metal from group 1 of period 4 or 5 of the periodic table (
Special Publication No. 48-19286).

しかしながら、前記文献に記載の方法は、500気l−
4−以ヒの高い反応圧力を・込要吉し、また反応後の反
応混合液から生成物を蒸留分離する際に触媒が一部還元
されて活性が比較的短期間に低Fするなど、反応を工業
的に実施するうえで難点を有する。また最近、バッジラ
ム触媒およびヨウ素化合物を含む反応帯で、反応混合液
を沸騰状態に保つことによシ度応生成物を連続的に系外
に留去させながら反応を行なうことによりアセトアルデ
ヒドの収率を改善する方法が提案されている(特開昭5
5−92555号公報)が、この方法においても触媒の
活性が短期間に低下するという問題は依然として未解決
である。
However, the method described in the above literature requires 500 atm.
4-It requires a high reaction pressure, and when the product is distilled and separated from the reaction mixture after the reaction, the catalyst is partially reduced and the activity decreases to a low F in a relatively short period of time. There are difficulties in carrying out the reaction industrially. Recently, the yield of acetaldehyde has been increased by carrying out the reaction in a reaction zone containing Budgelam catalyst and an iodine compound, by keeping the reaction mixture at a boiling state and continuously distilling the reaction product out of the system. A method has been proposed to improve the
5-92555), but even in this method, the problem that the activity of the catalyst decreases in a short period of time remains unsolved.

本発明者らは、上記の従来法に比較してaC業的に有利
にアセトアルデヒドを製造する方法を開発すべく鋭意研
究した結果、本発明に至った。
The present inventors have conducted intensive research to develop a method for producing acetaldehyde that is more advantageous for the aC industry than the above-mentioned conventional methods, and as a result, they have arrived at the present invention.

すなわち、本発明によれば、酢酸メチル、−酸化炭素お
よび水素を(&)ロジウムまたはその化合物および(b
)パラジウムまたはその化合物が担体に担持された触媒
ならびにハロゲン化合物の存在ト架相で反応させること
により、アセトアルデヒドを高収率かつ高選択率で製造
することができる。この方法は1反応を比較的低圧で実
施してもアセトアルデヒドが高収率かつ高選択率で生成
すること、反応を気相で行なうため触媒の活性を低下さ
せないで触媒と生成物を分離することができること。
That is, according to the present invention, methyl acetate, carbon oxide and hydrogen (&) rhodium or its compound and (b
) Acetaldehyde can be produced in high yield and high selectivity by reacting palladium or a compound thereof in a cross-phase in the presence of a catalyst supported on a carrier and a halogen compound. This method produces acetaldehyde in high yield and high selectivity even if one reaction is carried out at relatively low pressure, and because the reaction is carried out in the gas phase, the catalyst and product can be separated without reducing the activity of the catalyst. What you can do.

液相反応の場合のように触媒成分が反応溶液中に溶出す
9ることかないので、触媒の活性を安定に維持すること
ができることなど、従来法には見られない利点を備えて
いる。本発明の方法においてはアセト7/L’デヒドの
ほかに酢酸が生成し、その生成量は用いる反応温度、圧
力等の反応条件によって若干変化するが、通常アセトア
ルデヒドに対し1.0〜2.0モルの量である。
This method has advantages not found in conventional methods, such as the ability to stably maintain the activity of the catalyst, since the catalyst components do not elute into the reaction solution, as is the case with liquid phase reactions. In the method of the present invention, acetic acid is produced in addition to aceto7/L'dehyde, and the amount of acetic acid produced varies slightly depending on the reaction conditions such as the reaction temperature and pressure used, but is usually 1.0 to 2.0% of acetaldehyde. It is the amount in moles.

本発明の方法においては、前述のように、担体にロジウ
ムまたはその化合物およびパラジウムまたはその化合物
が担持された触媒を使用する。ロジウム化合物ならびに
バッジラム化合物の具体例としては、塩化ロジウム、臭
化ロジウム、ヨウ化ロジウム、ロジウムカルボニル、酢
酸パラジウム、塩化バヲジウム、硝酸パフジウム、バッ
ジラムカルボニルなどを挙げることができる。担体とし
てr、i l’占性g、アルミナ、シリカ、シリカアル
ミナ、チタニア、ジルコニアなどを例示することができ
るが、高い触媒活性を得るためKは活性病の使用がとく
に好ましい。担体に対するロジウム化合物とバッジラム
化合物の濃度は臨界的ではないが、一般には金属として
それぞれ0.01〜5重量%、好ましくは0.1〜2重
量囁である。ロジウムまたはその化合物とパラジウムま
たはその化合物との割合ハ、ロジウム金属とバッジラム
金属とのグラム原子比で0.001〜10、とくに0.
1〜1の範囲内から選ぶのが好ましい。触媒の調製は公
知のノブ法によって行なうことができる。たとえば、ロ
ジウム塩およびバッジラム塩を含有する水溶液を担体罠
含浸させたのち、これを乾燥することにより目的とする
触媒を得ることができる。またロジウム塩とバッジラム
塩を担体に含浸させたのち、担体上の金属塩を還元剤で
還元することによシ担体にロジウムとパラジウムが担持
された触媒を得ることができる。なお上記触媒において
ロジウムまたはその化合物およびパラジウムまたはその
化a物のほかにさらにアルカリ金属塩、アルカリ土類金
属塩、マンガン塩、ランタン塩、セリウム塩、アルミニ
ウム塩、鉄塩、コバルト塩、ニッケル塩およびクロム塩
から選ばれる一種もしくはそれ以、Eを適当量担持させ
ることによりアセトアルデヒドの収率を一層向上させる
ことができる。
In the method of the present invention, as described above, a catalyst in which rhodium or a compound thereof and palladium or a compound thereof are supported on a carrier is used. Specific examples of the rhodium compound and badge rum compound include rhodium chloride, rhodium bromide, rhodium iodide, rhodium carbonyl, palladium acetate, baudium chloride, pafdium nitrate, badge rum carbonyl, and the like. Examples of the carrier include r, i, l'-occupied g, alumina, silica, silica alumina, titania, zirconia, etc., but it is particularly preferable to use active K in order to obtain high catalytic activity. The concentration of the rhodium and badgerum compounds relative to the support is not critical, but generally ranges from 0.01 to 5% by weight, preferably from 0.1 to 2% by weight of the metal. The ratio of rhodium or its compound to palladium or its compound is 0.001 to 10, especially 0.001 to 10, in terms of gram atomic ratio of rhodium metal to badge rum metal.
It is preferable to select from within the range of 1 to 1. The catalyst can be prepared by the known Knob method. For example, the target catalyst can be obtained by impregnating a carrier trap with an aqueous solution containing a rhodium salt and a baggage lamb salt, and then drying this. Further, a catalyst in which rhodium and palladium are supported on a carrier can be obtained by impregnating a carrier with a rhodium salt and a badge lamb salt and then reducing the metal salt on the carrier with a reducing agent. In addition to rhodium or its compound and palladium or its compound a, the above catalyst further contains alkali metal salts, alkaline earth metal salts, manganese salts, lanthanum salts, cerium salts, aluminum salts, iron salts, cobalt salts, nickel salts, and The yield of acetaldehyde can be further improved by supporting an appropriate amount of E, one selected from chromium salts or more.

本発明において前述の触媒とともに用いられるハロゲン
化合物としては塩化物、臭化物およびヨウ化物を例示す
ることができる。具体的にはヨウ化メチル、臭化メチル
などのハロゲン化アルキル、ヨウ化アセチル、臭化アセ
チルなどの酸ハロゲニドなどの有機ハロゲン化合物、な
らびにヨウ化水素、臭化水素などのハロゲン化水素など
を挙げることができる。これらのハロゲン化合物は単独
で用いることもできるし、また二種以上組合せて用いる
ζ、ともできる。
Examples of the halogen compound used together with the above-mentioned catalyst in the present invention include chloride, bromide, and iodide. Specific examples include organic halogen compounds such as alkyl halides such as methyl iodide and methyl bromide, acid halides such as acetyl iodide and acetyl bromide, and hydrogen halides such as hydrogen iodide and hydrogen bromide. be able to. These halogen compounds can be used alone or in combination of two or more.

本発明に従う反応は81]記触媒に耐酸メ4−ル、ハロ
ゲン化合物、水素、−酸化炭素トよび所望により窒!、
メタン、エタンなどの反応に不活性な希釈フj゛スケ含
む混合ガスを接触きせることに↓り行ffつtする。こ
の場合、混合ガスに含まれるハ(1ゲン化合物と酢酸メ
チルのモル比(〕\ロゲン化合物/酢酸メチル)が0.
001〜10、好ましくは0.005〜0.5であり、
−酸化択素と水素のモIし比(CO/Hz)が0.01
〜10.好ましくは0.1〜5であるのがよい。また前
記混合ガス中の水素と一酸化度素に対する酢酸メチルの
モル比(酢酸メチル10O+H2)は0,01〜2の範
囲に保たれるのが一般に好ましい。反応は加圧条件Fで
行なうの75′−好ましく、反応圧力は一般に10〜1
00気145 (絶対圧)の範囲内から選ばれる。反応
温度は一般に100〜300℃、とくに150〜250
 ”Cの範囲内から選ばれる。
The reaction according to the present invention is carried out using the catalyst described above with an acid-resistant methyl, a halogen compound, hydrogen, a carbon oxide, and optionally nitrogen! ,
The process is carried out by bringing into contact a mixed gas containing a diluent gas which is inert to the reaction of methane, ethane, etc. In this case, the molar ratio of 1 gen compound to methyl acetate (]\ rogen compound/methyl acetate) contained in the mixed gas is 0.
001 to 10, preferably 0.005 to 0.5,
- MoI ratio of oxidizing element and hydrogen (CO/Hz) is 0.01
~10. It is preferably 0.1 to 5. Further, it is generally preferable that the molar ratio of methyl acetate to hydrogen and hydrogen monoxide in the mixed gas (methyl acetate 10O+H2) is maintained in the range of 0.01 to 2. The reaction is preferably carried out under pressurized conditions F, and the reaction pressure is generally between 10 and 1
Selected from within the range of 00 qi 145 (absolute pressure). The reaction temperature is generally 100 to 300°C, particularly 150 to 250°C.
``Selected from within the range of C.

本発明の方法を実施するにあたり固定触媒床および流動
触媒床のいずれの反応形式を採用するこ  、ともでき
る。固定触媒床による反応は、反応力′スに空間ai 
(8,V、) 500〜10,0n(1<全if X 
e/触媒e・時間)で触媒上に通過させることによh実
施することができる、。
In carrying out the method of the present invention, either a fixed catalyst bed or a fluidized catalyst bed reaction format can be employed. Reactions using a fixed catalyst bed require a space ai in the reaction force.
(8,V,) 500~10,0n (1<all if X
h can be carried out by passing it over the catalyst at a time of 100 ms/catalyst 3 hours).

以F、実施例に1つて本発明をさらに詳細に、1砲明す
る。実施例中の部は重量部である。なお酢酸を除く各生
成物の選択率は次式にしたがって算出し友。
Hereinafter, the present invention will be explained in more detail with reference to Examples. Parts in the examples are parts by weight. The selectivity of each product except acetic acid was calculated according to the following formula.

実施例1 1Ji径4 m 、高さ4〜8#の円柱状の活性度(ク
ラレケミカル株式会社s 、商品名「クヲレコール4G
8J)50部を、40部の水に塩化パラジウムナトリウ
ム1.14部と塩化ロジウム・3水和物0.85部およ
び酢酸カリウム3o部を溶解した溶液に加え、蒸気浴上
で蒸発乾固した。このようにして得られ走触媒10cc
(約49)を内径16Hのハステロイ製反応管を備えた
加圧流通装置に充填した。これに窒素ガスを流通させな
がら反応管を200℃まで加熱し、ついで反応管内の圧
力を40気圧に保ちながら酢酸メチル、ヨウ化メチル、
−酸化戻素および水素からなる混合ガス(酢酸メチ/I
/:ヨウ化メチルニー酸化次ll:水素=20:1: 
50 : 49 (容1比) )を毎R501(大気圧
、0℃)の速度で導入することにより反応温度200℃
、40気圧で反応を行なった。その結果、アセトアルデ
ヒドが10(1/触媒l・時間の生rI(速度で生成し
、またアセトアルデヒドに対し約1.5倍モルの酢酸が
生成した。この池にメタン、酢酸エチル、アセトン、エ
タノール、エチリテンジアセテートなどが少量生成した
。各生成物の選択率は次のとおりであった。
Example 1 Cylindrical activity of 1Ji diameter 4 m, height 4-8# (Kuraray Chemical Co., Ltd., product name "Kworecol 4G")
8J) was added to a solution of 1.14 parts of sodium palladium chloride, 0.85 parts of rhodium chloride trihydrate and 30 parts of potassium acetate in 40 parts of water, and the mixture was evaporated to dryness on a steam bath. . 10 cc of propellant catalyst obtained in this way
(approximately 49) was filled into a pressurized flow device equipped with a Hastelloy reaction tube having an inner diameter of 16H. The reaction tube was heated to 200°C while nitrogen gas was passed through it, and then methyl acetate, methyl iodide, and
-Mixed gas consisting of backoxidizing element and hydrogen (methyl acetate/I
/: Methyl iodide, oxidation: hydrogen = 20:1:
50:49 (volume 1 ratio)) at a rate of R501 (atmospheric pressure, 0°C) per time, the reaction temperature was 200°C.
, the reaction was carried out at 40 atm. As a result, acetaldehyde was produced at a rate of 10 (1/l of catalyst/hour), and about 1.5 times the mole of acetic acid was produced relative to acetaldehyde.Methane, ethyl acetate, acetone, ethanol, A small amount of ethylene diacetate etc. was produced.The selectivity of each product was as follows.

アセトアルデヒド     88.4%メタン    
      6.2% 酢酸エチ/’         2.8%アセトン  
        1.6−エタノール        
 1.0%エチリデンジアセテート    x<am実
施例2 実施例1で用いたのと同じ活性度50部を、35部の酢
酸に酢酸パラジウム0.48部を溶解した溶液に加え、
蒸気浴上で蒸発乾固した。このものを塩化ロジウム・3
水和物0.33部および酢酸ナトリウム0.8部を溶解
した水溶液に加え、同様にして蒸気浴上で蒸発乾固した
。このようにして得られた触媒10cc(約49)を実
施例1において用いたのと同じ反応管に充填し、反応温
度′1に210゛Cに変えた以外Vi9j!施例1と同
一の反応条件rでIダ応を行なった。その結果、アセト
アルデヒドが609/触媒r・時間の生成速度で生成し
、オたアセトアルデヒドに列し416倍モルの酢酸が生
成したつこの池に寮1残例1と同様の生成物が生成]2
、それらの選択率は次のとおりであった。
Acetaldehyde 88.4% methane
6.2% ethyl acetate/' 2.8% acetone
1.6-ethanol
1.0% ethylidene diacetate x<am Example 2 50 parts of the same activity as used in Example 1 were added to a solution of 0.48 parts of palladium acetate in 35 parts of acetic acid,
Evaporate to dryness on a steam bath. This stuff is rhodium chloride 3
The mixture was added to an aqueous solution containing 0.33 parts of hydrate and 0.8 parts of sodium acetate, and evaporated to dryness on a steam bath in the same manner. 10 cc (approximately 49 kg) of the catalyst thus obtained was packed into the same reaction tube as used in Example 1, except that the reaction temperature '1 was changed to 210°C.Vi9j! The I-da reaction was carried out under the same reaction conditions as in Example 1. As a result, acetaldehyde was produced at a production rate of 609/catalyst r/hour, and a product similar to that of dormitory 1 residue Example 1 was produced in Tsukoike where 416 times the mole of acetic acid was produced compared to acetaldehyde]2
, their selectivity was as follows:

γセト7/l/デヒド     86,0チメタン  
         8.7%酢酸エチ〃3,0% 7セトン          1.5%エタノ−/l/
          0.8襲エチリデンジアセテート
    W<tt′97!施例3 直径4M、高さ3〜8Hの円柱状の活性伏(武田薬品工
業株式会社製、白鷺p<GC)に対して、塩化パッジラ
ムナトリウムと塩化ロジワムの担持量がそれぞれ1.0
重量囁と0.5Jifi%となるように、塩化パッジラ
ムナトリウムと塩化ロジウムとを溶解させた水溶液を該
活性度にき浸させ、100′Cで乾燥させた。このよう
にして得られた触媒10ccを実施例1において用IA
&のと同じ反応管に充填し、該反応管に酢酸メチル、ヨ
ウ化メチル、−酸化1ij2素、水素および窒素力・ら
なる混合カス(酢酸メチルニョウ化メ手/l/ニー酸化
広素:水素:窒素= 10 :0,1 :20 :40
 :29.?(容量比))を毎時204の速度で導入す
ることにより反応温+1i 220’C,60気圧で反
応を行なつfc′。その結果、ブナトアルテ゛ヒトが7
0g/触媒l・時間の生成株度で生成し、その選択率は
89%であった。酢酸はアセトアルデヒドに対し約1.
4倍モル生成した。
γset7/l/dehyde 86,0 thimethane
8.7% ethyl acetate 3.0% 7 setone 1.5% ethanol/l/
0.8 ethylidene diacetate W<tt'97! Example 3 The supported amounts of sodium padillam chloride and rhodiwam chloride were each 1.0 for a cylindrical active fiber (manufactured by Takeda Pharmaceutical Co., Ltd., Shirasagi p<GC) with a diameter of 4M and a height of 3 to 8H.
An aqueous solution in which Padillam sodium chloride and rhodium chloride were dissolved to a concentration of about 0.5% by weight was soaked in the activity and dried at 100'C. 10 cc of the catalyst thus obtained was used in Example 1 for IA.
The mixture of methyl acetate, methyl iodide, hydrogen oxide, hydrogen, and nitrogen gas (methyl acetate/l/nitrogen oxide: hydrogen) is charged into the same reaction tube as &. :Nitrogen=10:0,1:20:40
:29. ? The reaction is carried out at a reaction temperature of +1i 220'C and 60 atmospheres by introducing (volume ratio)) at a rate of 204 fc' per hour. As a result, BUNAT ARCHITECT was 7
It was produced at a production rate of 0 g/l of catalyst/hour, and its selectivity was 89%. The ratio of acetic acid to acetaldehyde is approximately 1.
4 times the molar amount was produced.

この池にメタン、酢酸エチル、アセトン、エタノール、
エチリデンジアセテー )などが少量生成した。
This pond contains methane, ethyl acetate, acetone, ethanol,
Ethylidene diacetate) etc. were formed in small amounts.

実施例4 実施例3で用いたのと同じ活性病に対して、塩化パラジ
ウムナトリウム、塩化ロジウムおよび臭化クロムの担持
量がそれぞれ0.8重量−10,3貫徹%、1.0重量
%となるように、塩化パラジウムナトリウム、塩化ロジ
ウムおよび臭化クロムを溶解させた水溶液を該活性病に
含浸させ、100°Cで乾燥させた。このようにして得
られた触媒10reを実施例1で用いたのと同じ反応管
に充填し、該反応管に酢酸メチル、ヨウ化メチル、−酸
化炭素および水素からなる混合ガス(酢酸メチ/L/:
ヨウ化メチルニー酸化炭素:水素=+5:0.5:39
.5:45(容量比))を毎時601の速度で導入する
ことにより反応温度200 ”C150電圧で反応をN
iつた。その結果、アセトアルデヒドが60f/触媒l
・時間の生成速度で生成し、その選択率は88襲であっ
た。酢酸はアセトアルデヒドに対し約1.5倍モル生成
した。この池にメタン、酢酸エチル、エチリデンジアセ
テート、アセトン、無水酢酸などが少量生成した。
Example 4 For the same active disease as used in Example 3, the supported amounts of sodium palladium chloride, rhodium chloride, and chromium bromide were 0.8% by weight - 10.3% by weight and 1.0% by weight, respectively. The active disease was impregnated with an aqueous solution in which sodium palladium chloride, rhodium chloride, and chromium bromide were dissolved, and dried at 100°C. The catalyst 10re obtained in this way was charged into the same reaction tube as used in Example 1, and the reaction tube was filled with a mixed gas (methyacetate/L /:
Methyl iodide carbon: hydrogen = +5:0.5:39
.. 5:45 (volume ratio)) at a rate of 601/hr to reduce the reaction temperature to 200"C at a voltage of 150 N
It was. As a result, acetaldehyde was 60f/l of catalyst.
・It was generated at the generation rate of time, and its selection rate was 88 times. Acetic acid was produced in a molar amount approximately 1.5 times that of acetaldehyde. Small amounts of methane, ethyl acetate, ethylidene diacetate, acetone, and acetic anhydride were produced in this pond.

実施例5 実施例1と同様の方法で11製した触媒10ccを実施
例1で用いたのと同じ反応管に充填し、この反応管に酢
酸メチル、ヨウ化メチル、−酸化炭素および水素からな
る混合ガス(酢酸メチル:ヨウ化メチルニー酸化炭素:
水素=20: 1 :49:30(容量比))を毎時6
01の速度で導入することにより反応温度190°C1
50気圧で反応を行なった。その結果、アセトアルデヒ
ドが68 g、/’触媒l・時間の生成速度で生成し、
その選択率は91.6 襲であった。酢酸はアセトアル
デヒドに対し1.2倍モル生成した。この池にメタン、
無水酢酸、酢酸エチル、アセトン、エタノール、エチリ
デンジアセテートなどが少量生成した。
Example 5 10 cc of a catalyst prepared in the same manner as in Example 1 was charged into the same reaction tube as used in Example 1, and a mixture of methyl acetate, methyl iodide, carbon oxide and hydrogen was added to the reaction tube. Mixed gas (methyl acetate: methyl iodide, carbon oxide:
Hydrogen = 20: 1:49:30 (capacity ratio)) at 6 per hour
The reaction temperature was 190°C by introducing at a rate of 0.01°C.
The reaction was carried out at 50 atmospheres. As a result, 68 g of acetaldehyde was produced at a production rate of 1/'catalyst/hour.
The selection rate was 91.6%. Acetic acid was produced in a molar amount 1.2 times that of acetaldehyde. Methane in this pond
Small amounts of acetic anhydride, ethyl acetate, acetone, ethanol, ethylidene diacetate, etc. were produced.

手続補正書(自発) 日−u57  イr  1(にi![l111,2 8
T’l許庁長官若杉和夫殿 1 事件の表示 特願昭57−25435号 2、発明の名称 アセトアルデヒドの製造方法 3、補正をする者  事件との関係 特許出願人行敷市
酒、↑1621番地 (108)株式会社り ラ し く冒ilt軸岡林次男 4、代 理 人 電話東京03 (27n 3182 5 補正の対象 明細書の発明の一詳細5峻轡噌欄 6、補正の内容 本願明細書簡12頁19行目の[生成した。−1Q)あ
とに次の事項を加入する。
Procedural amendment (voluntary) JP-U57 Ir 1 (nii! [l111, 2 8
Mr. Kazuo Wakasugi, Commissioner of the T'l License Agency 1 Indication of the case Japanese Patent Application No. 57-25435 2 Name of the invention Process for producing acetaldehyde 3 Person making the amendment Relationship to the case Patent applicant Yukishiki City Sake, ↑ 1621 ( 108) RiRa Co., Ltd. Tsuguo Hayashi 4, Agent Telephone: Tokyo 03 (27n 3182 5) Details of the invention in the specification subject to amendment 5 Incorrect column 6, Contents of amendment Letter of specification of the application 12 Page 19 Add the following item after [Generated.-1Q) on the line.

[実施例6 実施例1と同様の方法で調製した触媒+01・Cを実施
例1で用いたのと同じ反応管に充填した。これに窒素ガ
スを流通させながら反応管を+ 50 ”(:まで加熱
し、続いて水素:窒素−5:95(容量比)の混合ガス
を毎時51(大気圧0’C)の速度で200℃で2時間
、さらに400 ’Cで2時間流通させることによって
、触媒を還元した、ついで反応管内の圧力を40気圧に
保ちながら酢酸メ羊ル、ヨウ化メチル、−酸化炭素およ
び水素(25:1:30:44(容量比))を毎時30
7?(大気圧、0°C)の速度で導入することにより反
応温度180°C140気圧で反応を行なった。その結
果、アセトアルデヒドが869/触媒e・時間の生成速
度で生成し、その選択率は89襲であった、酢酸はアセ
トアルデヒドに対し1.3倍モル生成(また。この池に
メタン、エチリデンシア士テ 1゜無水酢酸などが少量
生成した。各生成物の選択率はつぎのとおりであった。
[Example 6 Catalyst +01.C prepared in the same manner as in Example 1 was charged into the same reaction tube used in Example 1. The reaction tube was heated to +50'' while nitrogen gas was passed through it, and then a mixed gas of hydrogen:nitrogen -5:95 (volume ratio) was heated at a rate of 200℃ per hour (atmospheric pressure 0'C). The catalyst was reduced by flowing at 400'C for 2 hours and then at 400'C for 2 hours, and then, while maintaining the pressure in the reaction tube at 40 atm, methyl acetate, methyl iodide, carbon oxide and hydrogen (25: 1:30:44 (capacity ratio)) to 30 per hour
7? The reaction was carried out at a reaction temperature of 180° C. and 140 atmospheric pressure by introducing the mixture at a rate of (atmospheric pressure, 0° C.). As a result, acetaldehyde was produced at a production rate of 869/catalyst e/hour, and the selectivity was 89%. Acetic acid was produced 1.3 times the mole of acetaldehyde (also, methane, ethylidene, etc. A small amount of acetic anhydride was produced.The selectivity of each product was as follows.

アセトアルデヒド       89%メタン    
         4%水 i酸            3% エキリデンジアセテート      2襲アセトン  
         〈1%酢酸エチル        
  〈1%実施例7 60%濃度の硝酸50部に水15部を加えて調製した水
溶液に硝酸ロジウムと硝酸パラジウムを夫々071部づ
つ溶解した。この溶液に実施例1E谷 で用いたのと同様の活性炭50部を加え、蒸気溶1−で
蒸発乾固した。このようにして得られた触媒+QCCを
実施例1で用いたのと同じ反応管に充填j12.実施例
6と同様に1〜で触媒を還元した。ついで反応管の圧力
を46気圧に保ちながら酢酸メチル、9つ化メチル、−
酸化炭素および水素(25:に25:49(容量(t)
)を毎時451!(大6;< ((二、D″C)の速度
で導入−することにより反応温度185°C146気圧
で反応をおこなった。その結果、アセトアルデヒドが1
059/触媒/・時間の生成速度で生成し、その選択率
は91%であった。この池ニメタンが5%、エチリデン
ジアセテートと無水酢酸が夫々2%生成した。酢酸工千
ルとアセトンの生成は極く微量であった。
Acetaldehyde 89% methane
4% hydric acid 3% echlidene diacetate 2-stroke acetone
<1% ethyl acetate
<1% Example 7 071 parts each of rhodium nitrate and palladium nitrate were dissolved in an aqueous solution prepared by adding 15 parts of water to 50 parts of 60% nitric acid. To this solution was added 50 parts of activated carbon similar to that used in Example 1E, and the mixture was evaporated to dryness using a steam solution. The catalyst + QCC thus obtained was packed into the same reaction tube as used in Example 1j12. The catalyst was reduced in the same manner as in Example 6. Then, while maintaining the pressure in the reaction tube at 46 atm, methyl acetate, methyl 9-methyl, -
Carbon oxide and hydrogen (25:49 (capacity (t))
) 451 per hour! The reaction was carried out at a reaction temperature of 185°C and 146 atmospheres by introducing at a rate of (6;
The catalyst was produced at a production rate of 0.059/catalyst/hour, and the selectivity was 91%. This yielded 5% dimethane and 2% each of ethylidene diacetate and acetic anhydride. The production of acetic acid and acetone was extremely small.

Claims (1)

【特許請求の範囲】[Claims] 酢酸メチル、−酸化炭素および水素を(a)ロジウトま
たはロジウム化合物および(1))パラジウムまたはパ
ラジウム化合物が担体に担持された触媒ならびにハロゲ
ン化合物の存在下気相で反応させることを%徴とするア
セトアルデヒドの製造方法。
Methyl acetate, - an acetaldehyde characterized by reacting carbon oxide and hydrogen in the gas phase in the presence of (a) a rhodium or a rhodium compound and (1) a catalyst in which palladium or a palladium compound is supported on a carrier and a halogen compound. manufacturing method.
JP57025435A 1982-02-18 1982-02-18 Production of acetaldehyde Granted JPS58144340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57025435A JPS58144340A (en) 1982-02-18 1982-02-18 Production of acetaldehyde

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57025435A JPS58144340A (en) 1982-02-18 1982-02-18 Production of acetaldehyde

Publications (2)

Publication Number Publication Date
JPS58144340A true JPS58144340A (en) 1983-08-27
JPS6337092B2 JPS6337092B2 (en) 1988-07-22

Family

ID=12165901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57025435A Granted JPS58144340A (en) 1982-02-18 1982-02-18 Production of acetaldehyde

Country Status (1)

Country Link
JP (1) JPS58144340A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4892976A (en) * 1987-07-16 1990-01-09 Sollac Process for the preparation of aldehydes

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51115409A (en) * 1975-03-10 1976-10-12 Halcon International Inc Method of producing ethyridene diacetate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51115409A (en) * 1975-03-10 1976-10-12 Halcon International Inc Method of producing ethyridene diacetate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4892976A (en) * 1987-07-16 1990-01-09 Sollac Process for the preparation of aldehydes

Also Published As

Publication number Publication date
JPS6337092B2 (en) 1988-07-22

Similar Documents

Publication Publication Date Title
JPS6155416B2 (en)
US4244889A (en) Production of acetamides with rhodium-manganese catalysts
ES2226406T3 (en) CATALYTIC SYSTEMS FOR PRODUCTION IN THE GASEOUS PHASE IN A SINGLE STAGE OF ACETIC ACID FROM ETHYLENE.
US4121039A (en) Process for producing an unsaturated glycol diester using a catalyst comprising palladium containing thorium as a promotor
JPS58144340A (en) Production of acetaldehyde
JPS6049617B2 (en) Method for producing oxygenated compounds such as ethanol
JPS6222976B2 (en)
EP0040414B1 (en) Process for producing acetaldehyde
JPS5980630A (en) Preparation of oxalic acid diester
JPS5926611B2 (en) Method for producing acetic anhydride
JPH05995A (en) Production of acetic acid
JPS5913745A (en) Preparation of acetaldehyde
JP3132532B2 (en) Lactone production method
WO2000006528A1 (en) Process for producing adipic acid
JPH04297445A (en) Production of carbonic acid diester
JPS6260376B2 (en)
JPS6036431A (en) Manufacture of ethanol and/or ethyl acetate
JPH0321012B2 (en)
JPH0489458A (en) Production of carbonic acid diester
JPS642091B2 (en)
JPS6056937A (en) Production of oxalic acid diester
JPS59172436A (en) Carbonylation of dimethyl ether
JPH05140009A (en) Production of 1,1,1,2,2,3,4,5,5,5-decafluoropentane
JPH06192181A (en) Production of carbonic diester
JPS63168404A (en) Selective oxidative carbonyzation of conjugated diene