JPS58143517A - Method of compounding tantalum sintered electrode - Google Patents

Method of compounding tantalum sintered electrode

Info

Publication number
JPS58143517A
JPS58143517A JP2627882A JP2627882A JPS58143517A JP S58143517 A JPS58143517 A JP S58143517A JP 2627882 A JP2627882 A JP 2627882A JP 2627882 A JP2627882 A JP 2627882A JP S58143517 A JPS58143517 A JP S58143517A
Authority
JP
Japan
Prior art keywords
tantalum
electrode
lead wire
molten salt
tantalum sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2627882A
Other languages
Japanese (ja)
Other versions
JPS636136B2 (en
Inventor
中田 維明
上野 二良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2627882A priority Critical patent/JPS58143517A/en
Publication of JPS58143517A publication Critical patent/JPS58143517A/en
Publication of JPS636136B2 publication Critical patent/JPS636136B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Powder Metallurgy (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はタンタルコンデンサに用いられるタンタル焼結
電極の化成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming tantalum sintered electrodes used in tantalum capacitors.

り/タルコンデンサにおいて、タンタル焼結電極に誘電
体皮膜を形成させるための化成は、一般に水溶液系電解
液を用いて行なわれている。発明者らは先に、上記の化
成において、タンタル焼結体に誘電体皮膜を形成させた
のち硝酸塩系の溶融塩浴中で電極に適当な正電圧を印加
して再化成処理をする工程を加えることにiシ、誘電体
皮膜の絶縁耐圧が向上することを見い出した。
In tantalum/tal capacitors, chemical formation for forming a dielectric film on tantalum sintered electrodes is generally performed using an aqueous electrolyte. In the above chemical formation process, the inventors first performed a process in which a dielectric film was formed on the tantalum sintered body, and then an appropriate positive voltage was applied to the electrodes in a nitrate-based molten salt bath for reconversion treatment. In addition, it has been found that the dielectric breakdown voltage of the dielectric film is improved.

一方、タンタルコンデンサの量産工程においては、第1
図に示すように、タンタル焼結電極1は多孔性のタンタ
ル焼結体2とこの焼結体2に埋設されたタンタルリード
線3から構成され、リード線3の端部が給電と支持のた
めの金属でできた給電板4にリード線の埋設面が平面上
になるように整列して取り付けられている。このような
工程を経てタンタルコンデンサを製造する場合、化成に
よって形成される誘電体皮膜はリード線部にも必要であ
る0これは、硝酸マンガン水溶液を焼結体の多孔部へ含
浸させる際と、熱分解によって誘電体皮膜上に二酸化マ
ンガン層を設ける際に、二酸いリード線部分に接触する
とコンデンサは短絡状態となる。従って、通常は二酸化
マンガンの這い出しを軽減するために、フッ素樹脂板6
が電極に装着されている。
On the other hand, in the mass production process of tantalum capacitors,
As shown in the figure, the tantalum sintered electrode 1 is composed of a porous tantalum sintered body 2 and a tantalum lead wire 3 embedded in this sintered body 2, and the end of the lead wire 3 is used for power supply and support. The lead wires are aligned and attached to a power supply plate 4 made of metal so that the embedded surface thereof is on a flat surface. When manufacturing tantalum capacitors through such a process, a dielectric film formed by chemical conversion is also necessary for the lead wires. When a manganese dioxide layer is formed on the dielectric film by thermal decomposition, if the manganese dioxide layer comes into contact with the lead wire, the capacitor will be short-circuited. Therefore, in order to reduce the leakage of manganese dioxide, the fluororesin plate 6
is attached to the electrode.

リード線部に誘電体皮膜を形成させるためには、膜形成
を必要とする部分まで電極を化成液に浸漬する必要があ
る。ところが、化成液の表面張力が高くて化成液の電極
面へのぬれ性が悪い場合、円柱状焼結体をもつ電極の底
部から液面に浸漬していくと、第2図(−)に示すよう
に電極のエッヂ部で液面が彎曲するため、必要以上に電
極を降下させることにより初めてリード線部分が液中に
浸漬される。硝酸塩系の溶融塩の表面張力は水溶液系の
化成液より高いだめに、この現象は特に著しい。
In order to form a dielectric film on the lead wire portion, it is necessary to immerse the electrode in a chemical solution up to the portion where film formation is required. However, if the surface tension of the chemical liquid is high and the wettability of the chemical liquid to the electrode surface is poor, if the electrode having a cylindrical sintered body is immersed into the liquid surface from the bottom, the result will be as shown in Figure 2 (-). As shown, since the liquid level curves at the edge of the electrode, the lead wire portion is immersed in the liquid only by lowering the electrode more than necessary. This phenomenon is particularly remarkable because the surface tension of a nitrate-based molten salt is higher than that of an aqueous chemical solution.

しかし、溶融塩中での再化成においてもリード線の必要
部分は再化成の必要があるので、タンタルリード線の節
約の、ためにリード線を短かくすると、タンタルリード
線の必要部分まで溶融塩中に浸漬するには、化成液面の
彎曲のために給電板に化成液が接するまで電極を降下す
る必要がある。その結果、第2図Φ)に示すように給電
板まで化成液に浸漬されることになる。このため、給電
板から通電を開始する前に第2図(C)に示すように電
極を引き上げて給電板が化成液に接触しないようにする
操作が必要となる。また、先にのべたように二酸化マン
ガンの這い出し軽減のため、電極には第1図に示すよう
にフッ素樹脂板が一般に装着されている。しかしながら
、このフッ素樹脂板は撥水性であシ、硝酸塩の溶融塩を
も撥く性質があるため、第2図<c)のようにリード線
部まで溶融塩に浸漬しておいても、通電中に液面の変動
等があると再び第2図(−)に示されるようなリード線
部の液中からの露出が生ずる。その場合には通電を停止
し、上記のようにリード部を浸漬して通電を再開しなけ
ればならない。露出を避けるためにリード線を深く浸漬
すると、液面が給電板に接近し、化成中わずかな液面の
変動によっても、給電板が液面に接触し短絡するおそれ
がある。
However, even when reconforming in molten salt, the necessary parts of the lead wire need to be reconstituted, so if you shorten the lead wire in order to save on the tantalum lead wire, you can use the molten salt to reach the necessary part of the tantalum lead wire. To immerse the electrode in the chemical liquid, it is necessary to lower the electrode until the chemical liquid contacts the power supply plate due to the curvature of the chemical liquid surface. As a result, as shown in FIG. 2 Φ), even the power supply plate is immersed in the chemical solution. Therefore, before starting electricity supply from the power supply plate, it is necessary to pull up the electrode as shown in FIG. 2(C) to prevent the power supply plate from coming into contact with the chemical solution. Furthermore, as mentioned above, in order to reduce the leakage of manganese dioxide, a fluororesin plate is generally attached to the electrode as shown in FIG. However, since this fluororesin board is not water-repellent and also has the property of repelling molten salt of nitrate, even if it is immersed up to the lead wire in molten salt as shown in Figure 2 <c), it will not be energized. If there is a change in the liquid level in the liquid, the lead wire portion will be exposed from the liquid again as shown in FIG. 2 (-). In that case, the energization must be stopped, the lead portion immersed as described above, and the energization restarted. If the lead wire is immersed deeply to avoid exposure, the liquid level will approach the power supply plate, and even slight fluctuations in the liquid level during chemical formation may cause the power supply plate to come into contact with the liquid surface and cause a short circuit.

本発明はこのような点に鑑みて成されたものであシ、短
かいタンタルリード線を用いた場合でも、上記のような
化成操作上の欠点を回避して、リード線部を溶融塩に安
定に浸漬して化成することのできる方法を提供するもの
である。すなわち本発明は、タンタル焼結体を水溶液系
電解液で化成したのち、炭化弗素鎖を有する耐熱性の界
面活性剤を添加した硝酸塩系溶融塩中で再度化成するこ
とを特徴としている。
The present invention has been made in view of these points, and even when short tantalum lead wires are used, it is possible to avoid the drawbacks in chemical conversion operations as described above, and to make it possible to immerse the lead wire portion in molten salt. The present invention provides a method that allows stable immersion and chemical conversion. That is, the present invention is characterized in that after a tantalum sintered body is chemically formed in an aqueous electrolyte, it is chemically formed again in a nitrate-based molten salt to which a heat-resistant surfactant having a fluorine carbide chain is added.

次に、本発明の方法を実施例とともに具体的に説明する
Next, the method of the present invention will be specifically explained along with examples.

硝酸塩系溶融塩化成液の一例として、等重量比の硝酸カ
リウムと硝酸ナトリウムの混合塩を用いた場合、300
℃における溶融塩の表面張力は約113dyne/cr
rLであった。これは常温の水の表面張力、約72 d
yne /c@よシかなり高い。この混合塩の溶融塩に
炭化弗素鎖を有する耐熱性の界面活性剤として、例えば
住友スリーエム社のFC−96(商品名)を60ppm
添加した場合、表面張力はf5s dyne 7cmに
低下した。
As an example of a nitrate-based molten salt chemical solution, when a mixed salt of potassium nitrate and sodium nitrate in an equal weight ratio is used, 300
The surface tension of molten salt at °C is approximately 113 dyne/cr
It was rL. This is the surface tension of water at room temperature, approximately 72 d.
yne /c@yosi is quite expensive. For example, 60 ppm of Sumitomo 3M's FC-96 (trade name) was added to the molten salt of the mixed salt as a heat-resistant surfactant having a fluorine carbide chain.
When added, the surface tension decreased to f5s dyne 7 cm.

水溶液系化成液で予じめ化成して誘電体皮膜を形成させ
、フッ素樹脂板が装着された2、8酎径で2.8 rt
rm長の円柱状タンタル電極を溶融塩に浸漬していった
とき、界面活性剤の有無によって次のような結果が得ら
れた。すなわち、界面活性剤を添加しない場合、フッ素
樹脂板の上面を溶融塩の水平向より2.5 mの位置ま
で電極を降下させないとリード線を液中に浸漬すること
ができないのに対し、界面活性剤を添加した場合には、
フッ素樹脂板より1111m弱の電極降下によりリード
線を液中に浸漬することができた。
A dielectric film is formed by pre-forming with an aqueous chemical solution, and a fluororesin plate is attached to the 2.8 rt.
When a cylindrical tantalum electrode with a length of rm was immersed in molten salt, the following results were obtained depending on the presence or absence of a surfactant. In other words, when no surfactant is added, the lead wire cannot be immersed in the liquid unless the electrode is lowered to a position 2.5 m above the horizontal direction of the molten salt on the upper surface of the fluororesin plate. If an activator is added,
The lead wire could be immersed in the liquid by lowering the electrode a little less than 1111 m from the fluororesin plate.

電極をリード線部まで浸漬したのち、給電板に給電して
化成を行なった。化成期間中、界面活性剤を添加しない
溶融塩ではリード線部分の露出が見られたが、界面活性
剤を添加した場合にはリード線の露出は見られなかった
。したがって上記本発明の化成液を用いることにより、
タンタルリード線の長さを従来より短かくすることがで
きる。
After the electrode was immersed up to the lead wire portion, power was supplied to the power supply plate to perform chemical conversion. During the formation period, exposure of the lead wire was observed in the molten salt without the addition of a surfactant, but no exposure of the lead wire was observed in the case of the addition of a surfactant. Therefore, by using the chemical liquid of the present invention,
The length of the tantalum lead wire can be made shorter than before.

なお、上記実施例において、界面活性剤に炭化弗素鎖を
有するものを用いるのは、硝酸塩の溶融塩が高温で酸化
性に冨むため、通常の炭化水素系のものでは分解してし
まうためである。同様の理由により、炭化弗素鎖を有す
る界面活性剤は、スルホン酸基などの耐熱性の末端基を
有することが必要である。
In the above examples, a surfactant with a fluorine carbide chain is used because the molten salt of nitrate becomes oxidizing at high temperatures, and ordinary hydrocarbon-based surfactants will decompose. be. For similar reasons, surfactants having fluorine carbide chains need to have heat-resistant end groups such as sulfonic acid groups.

以上の説明から明らかなように、本発明の方法によれば
高価なタンタルリード線を節約することができるため、
その実用上の価値は犬なるものがある。
As is clear from the above explanation, according to the method of the present invention, expensive tantalum lead wires can be saved.
Its practical value lies in the fact that it is a dog.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はタンタル焼結電極を化成するために、タンタル
電極を給電板に取りつけた状態を示す断面図、第2図(
−) 、 (b) 、 (C)はタンタル焼結電極の化
成液への浸漬工程における各状態を示す断面図である。 1・・・・・・タンタル焼結電極、2・・・・・・タン
タル焼結体、3・・・・・タンタルリード線、4・・・
・・・給電板、6・・・・・・化成板、6・・・・・・
フッ素樹脂。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 −(
Figure 1 is a cross-sectional view showing the state in which the tantalum electrode is attached to the power supply plate in order to chemically convert the tantalum sintered electrode, and Figure 2 (
-), (b), and (C) are cross-sectional views showing each state in the process of dipping the tantalum sintered electrode in the chemical liquid. 1...Tantalum sintered electrode, 2...Tantalum sintered body, 3...Tantalum lead wire, 4...
...Power supply plate, 6...Chemical plate, 6...
Fluororesin. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 - (

Claims (1)

【特許請求の範囲】[Claims] タンタル焼結体を水溶液系電解液で化成したのち、炭化
弗素鎖を有する耐熱性の界面活性剤を添加した硝酸塩系
の溶融塩中で再度化成することを特徴とするタンタル焼
結電極の化成方法。
A method for chemically forming a tantalum sintered electrode, which comprises chemically forming a tantalum sintered body in an aqueous electrolyte, and then chemically forming it again in a nitrate-based molten salt to which a heat-resistant surfactant having a fluorine carbide chain is added. .
JP2627882A 1982-02-19 1982-02-19 Method of compounding tantalum sintered electrode Granted JPS58143517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2627882A JPS58143517A (en) 1982-02-19 1982-02-19 Method of compounding tantalum sintered electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2627882A JPS58143517A (en) 1982-02-19 1982-02-19 Method of compounding tantalum sintered electrode

Publications (2)

Publication Number Publication Date
JPS58143517A true JPS58143517A (en) 1983-08-26
JPS636136B2 JPS636136B2 (en) 1988-02-08

Family

ID=12188811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2627882A Granted JPS58143517A (en) 1982-02-19 1982-02-19 Method of compounding tantalum sintered electrode

Country Status (1)

Country Link
JP (1) JPS58143517A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63192885A (en) * 1987-02-04 1988-08-10 Shinku Yakin Kk Tantalum wire
JP4719823B2 (en) * 2008-07-29 2011-07-06 昭和電工株式会社 Manufacturing method of niobium solid electrolytic capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63192885A (en) * 1987-02-04 1988-08-10 Shinku Yakin Kk Tantalum wire
JP4719823B2 (en) * 2008-07-29 2011-07-06 昭和電工株式会社 Manufacturing method of niobium solid electrolytic capacitor

Also Published As

Publication number Publication date
JPS636136B2 (en) 1988-02-08

Similar Documents

Publication Publication Date Title
NO842156L (en) ELECTRODE FOR ELECTROCHEMICAL CELLS AND PROCEDURE FOR PRODUCING THEREOF
JPS58143517A (en) Method of compounding tantalum sintered electrode
US3393091A (en) Method of producing semiconductor assemblies
BR8403008A (en) PROCESS OF MANUFACTURING AN ELECTRODE BY ELECTROCHEMICAL PROCESSES AND CATHODS FOR ELECTRIC HYDROGEN PRODUCTION
JPH0423000B2 (en)
JPH0122330B2 (en)
JPS60169131A (en) Method of producing electrode foil for aluminum electrolytic condenser
JPH0570907B2 (en)
US3751349A (en) Method for electrolytically forming a coating of titanium-alkaline earth metal compound oxide
US3531377A (en) Process for the oxidation of gallium-arsenide
JP3198749B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0777180B2 (en) Method for manufacturing solid electrolytic capacitor
JP3182232B2 (en) Organic semiconductor solid electrolytic capacitors
JP2639916B2 (en) Method for producing sintered nickel electrode for alkaline storage battery
JPS62185307A (en) Solid electrolytic capacitor
JP3326196B2 (en) Method for manufacturing solid electrolytic capacitor
US3531378A (en) Process for oxidizing tellurium
JPS5882525A (en) Formation of insulating film on semiconductor substrate
JPS6323309A (en) Manufacture of winding type solid electrolytic capacitor
JPH09306790A (en) Manufacture of solid electrolytic capacitor
JPS599639B2 (en) Oxidation treatment method for copper or copper alloy
JPS58102513A (en) Method of compounding tantalum sintered electrode
JPH01321622A (en) Manufacture of electrode foil for aluminum electrolytic capacitor
JPS63146424A (en) Manufacture of electrode foil for aluminum electrolytic capacitor
JPH0120526B2 (en)