JPS58143263A - Gas sensor - Google Patents

Gas sensor

Info

Publication number
JPS58143263A
JPS58143263A JP57026119A JP2611982A JPS58143263A JP S58143263 A JPS58143263 A JP S58143263A JP 57026119 A JP57026119 A JP 57026119A JP 2611982 A JP2611982 A JP 2611982A JP S58143263 A JPS58143263 A JP S58143263A
Authority
JP
Japan
Prior art keywords
electrolyte
working electrode
electrode
resistance
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57026119A
Other languages
Japanese (ja)
Inventor
Tadahiko Mitsuyoshi
忠彦 三吉
Masanori Yoshikawa
正則 吉川
Mitsuo Taguchi
田口 三夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57026119A priority Critical patent/JPS58143263A/en
Publication of JPS58143263A publication Critical patent/JPS58143263A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/404Cells with anode, cathode and cell electrolyte on the same side of a permeable membrane which separates them from the sample fluid, e.g. Clark-type oxygen sensors

Abstract

PURPOSE:To compensate deterioration of the catalytic action of a controlled potential electrolysis cell, by correcting a current value flowing between a working electrode and an opposite electrode in accordance with measured values of working electrode resistance, electrolyte resistance, and interface impedance between the working electrode and the electrolyte, etc. CONSTITUTION:Each resistance of the working electrode 40 and the electrolyte 2 of a controlled potential electrolysis cell 1, and impedance due to electrostatic capacity formed by the working electrode 40 and electrolyte 2 are periodically measured. These measured values are compared with the corresponding initial values stored in calculator at the time of drive of controlled potential, and the drive voltage between the electrode 40 and a reference electrode 42 is controlled. As a result, a current flowing between the electrodes 40, 41 through the cell is made proportional to gas concn. by this control, therefore, the aging deterioration of the controlled potential electrolysis cell is securely corrected and gas concn. is exactly measured unaffected by deterioration with age.

Description

【発明の詳細な説明】 本発明はガス検知器に係り、特に大気中のガス濃度を電
気化学的に検出するに適した定電位電解式のカスセンサ
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gas detector, and more particularly to a potentiostatic electrolytic gas sensor suitable for electrochemically detecting gas concentration in the atmosphere.

定電位電解法を用いて大気中の一酸化炭素、水素、窒素
酸化物、二酸化イオウなどのカス濃度を検出するカスセ
ンサは公知である。このセンサにおいては電層電流がガ
ス濃度に比例するためにガスの定量性がすぐ扛でいる利
点のある反面、センサの寿命が短く、長期間にわたって
高信頼性を保つことはできなかった。例えばこのセンサ
を家庭用のカスセンサとして用いる場合約3年以上の寿
命が要求さ扛るが、既存の定電位電解式ガスセンサの寿
命は3量6ケ月程度と短く、家庭用ガスセンサとしての
仕1fを満たすことはでさなかった。
BACKGROUND ART A scum sensor that detects the concentration of scum such as carbon monoxide, hydrogen, nitrogen oxide, and sulfur dioxide in the atmosphere using a constant potential electrolysis method is known. In this sensor, the electrode current is proportional to the gas concentration, so it has the advantage of being able to quickly quantify the gas, but on the other hand, the sensor has a short lifespan and cannot maintain high reliability over a long period of time. For example, when using this sensor as a gas sensor for household use, a lifespan of about 3 years or more is required, but the lifespan of existing constant potential electrolytic gas sensors is as short as 6 months for 3 hours, and the service life as a household gas sensor is limited to 1f. I couldn't fulfill it.

本発明の目的は、上述した従来のガスセンサの欠点を除
き、長寿命、かつ、都信頼性の定電位電解式ガスセンサ
を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a constant-potential electrolytic gas sensor that eliminates the drawbacks of the conventional gas sensors described above, has a long life, and is highly reliable.

本発明のガスセンサは、イオン伝導性電解質、片面を」
−配電解質に、他面を気体に接するカス透過性の作用極
、および対極を備えたカス用定電位電解セルと、上記作
用極に一定の測定電圧全印加する手段と、上記作用極と
上記対極間を流扛る電流全測定する手段と、上記作用極
の抵抗、上記電解質の抵抗、−!たは】および上記作用
極と上記電解質との界面のインピータンスを測定する手
段、および、上記抵抗値lたは1および上記インピーダ
ンスを用いて上記作用極と上記対極間分流れる上記電流
値を較正する手段、會有することを特徴としている。
The gas sensor of the present invention has an ionically conductive electrolyte on one side.
- a potentiostatic electrolytic cell for sludge comprising a sludge-permeable working electrode whose other surface is in contact with gas and a counter electrode in a distributing electrolyte; means for applying a constant full measuring voltage to the working electrode; Means for measuring the total current flowing between the counter electrodes, the resistance of the working electrode, the resistance of the electrolyte, -! or] and a means for measuring the impedance of the interface between the working electrode and the electrolyte, and calibrating the current value flowing between the working electrode and the counter electrode using the resistance value l or 1 and the impedance. It is characterized by having a means to do things and having meetings.

本発明名達が種々検討した精米、従来の定電位電解セル
分用いたガスセンサの特性が経時変化する主原内は、 (1)電極、符に作用極の抵抗変化(作用極として金属
黒伊用いる時には金楓黒間の接触抵抗が経時変化しやす
く、特に問題となる)に基つく電気分解効率の変化、 (2)電極、特に作用極と電解質との接触面積の経時変
化(電極として金属熱、電解質として電解質溶液音用い
る場合には両者のヌレの変化が、電解質として固体電解
質を用いる場合には電極との機械的接触面積の変化が問
題となる)、 (3)電解質の変質(電解質溶液を用いる場合、濃度変
化が特に問題となる)にある、ことが判明した。また、
これに対して、それぞれ、(1)電極の抵抗、(2)電
極と電解質との界面のインピーダンス、特に電気′6i
、(3)電解質の抵抗、を測定し、これら倉用いて補正
することにより、上述の経時変化の影響を無くせること
がわかった。
The inventors of the present invention have variously investigated the characteristics of gas sensors using milled rice and conventional constant-potential electrolytic cells that change over time. (2) Changes in electrolysis efficiency based on the contact resistance between gold, maple, and black that tends to change over time, which is a particular problem when using the metal. (3) Alteration of the electrolyte (when a solid electrolyte is used as an electrolyte, a change in the mechanical contact area with the electrode becomes a problem); It has been found that when using solutions, concentration changes are particularly problematic. Also,
On the other hand, (1) the resistance of the electrode, (2) the impedance of the interface between the electrode and the electrolyte, especially the electric '6i
, (3) resistance of the electrolyte, and by correcting them using these values, it was found that the effects of the above-mentioned changes over time can be eliminated.

以下、本発明を図面を用いて説明する。第1図第2図お
よび第3図−′本発明のガスセンサにおいて用いられる
庫電位電解セルの構造図である。このセルにおいては、
絶縁筒1の内部に′vIL解’J[2が収納きれ、その
両側に、ガス透過性のフッ化炭素樹脂30の表面に設け
ら扛た作用極40.同じくガス透過性のフッ化炭素樹脂
31の表面に設けられた対極41および参照極42、が
配置されている。
Hereinafter, the present invention will be explained using the drawings. FIG. 1, FIG. 2, and FIG. 3-' are structural diagrams of a storage potential electrolytic cell used in the gas sensor of the present invention. In this cell,
A ``vIL solution'' J[2 can be housed inside the insulating cylinder 1, and on both sides there are working electrodes 40. A counter electrode 41 and a reference electrode 42, which are also provided on the surface of a gas-permeable fluorocarbon resin 31, are arranged.

作用極40の両端はリード線によって端子501および
502に接続されており、端子501−502間の抵抗
全モニタすることにより、作用430の抵抗経時変化が
測定できる。′−!た、を極41は端子51に、電極4
2は端子52にそれぞれリード線で結ばれている。第1
図の構造では、作用極−電51J11.質間のインピー
ダンス変化は例えば端子501と端子51間のインピー
ダンスの測定により、また、を解質2の抵抗変化は例え
は端子51−52間の抵抗測定によりモニタすることが
できる。また、第2図や第3図のように、インピーダン
スや抵抗の測定のために粕たな電極43や電極44を設
σることもできる。第2図の電解セルでは作用極と電解
液との界面のインピーダンスは例えば端子501と端子
53(リード線により電&43と接続)を用いて、また
、%解質の抵抗は例えば端子51と端子53を用いて測
定できる。第3図の電解セルでは電解質の抵抗は例えば
端子53と端子54(リード線ケ用いてt極44と接続
)音用いて測定できる。
Both ends of the working electrode 40 are connected to terminals 501 and 502 by lead wires, and by monitoring the total resistance between the terminals 501 and 502, the change in resistance over time of the working electrode 430 can be measured. ′-! In addition, the electrode 41 is connected to the terminal 51, and the electrode 41 is connected to the terminal 51.
2 are each connected to a terminal 52 with a lead wire. 1st
In the structure shown in the figure, the working electrode-electrode 51J11. Changes in impedance between the cells can be monitored, for example, by measuring impedance between terminals 501 and 51, and changes in resistance of the cell 2 can be monitored, for example, by measuring resistance between terminals 51 and 52. Furthermore, as shown in FIGS. 2 and 3, rough electrodes 43 and 44 can be provided for measuring impedance and resistance. In the electrolytic cell shown in Fig. 2, the impedance at the interface between the working electrode and the electrolyte can be determined using, for example, terminals 501 and 53 (connected to electrode &43 by lead wires), and the resistance of the % electrolyte can be determined, for example, by using terminals 501 and 53 (connected to electrodes &43 by lead wires). It can be measured using 53. In the electrolytic cell shown in FIG. 3, the resistance of the electrolyte can be measured using, for example, the terminals 53 and 54 (connected to the T-pole 44 using lead wires) using sound.

また、第47は第3図のセルヶ使用した時に用いる回路
の一例である。端子501はアースに接続さjLる。一
方、端子52(d演算増幅器60を通じてバッテリ70
と接続さ才しており、バッテリの電圧で足筐る一犀軍位
に珠たnる。筐た、端子501−¥7i子51間會流扛
る電流は演算増嘱器61を用いて増幅さ扛、この出力は
計算器65に入力さ扛る。端子501一端子502間に
はバッテリ71がtluitさn、CCD間を流fLる
゛電流([11!I!、40の抵抗と1対1に対応)は
増幅器62ケ通して、計算器65に入力式tしる。また
、端子501−53間には交fi’1itk72が設置
され、この間のインピーダンス、例えば電気′6−xが
父流フリッジ63によって測犀さγL1酎1耐、機65
に人力される。さらに、端子53−54闇には交流電源
73が設置さrシ、この間の抵抗が増幅器64により測
定され、耐昇僚65に入力さrしる。なお、電極43.
44として例えばAM電極のような分極しにくい電極を
用いる場合には、交流電源73の代りに直流電源を用い
て、電解質2の抵抗を皿流迎j定することも可能である
。またバッテリ71.交流電源72゜73にスイッチを
付けで、必要に応してこ扛らを切離すことにより、作用
極、電解質の抵抗と両者の界面インピーダンスの測にの
時間と、センサ出力の測定時間とケすらして、センサ出
力測定への誤差(ノイズ)を防ぐこともできる。
47 is an example of a circuit used when the cells shown in FIG. 3 are used. Terminal 501 is connected to ground. On the other hand, the terminal 52 (d) connects the battery 70 through the operational amplifier 60.
It is connected to the battery voltage, and the battery voltage is enough to make it stand out. The current flowing between the terminals 501 and 71 of the housing is amplified using an operational amplifier 61, and the output thereof is input to a calculator 65. A battery 71 is connected between the terminals 501 and 502, and the current fL flowing between the CCDs ([11!I!, corresponding to a 1:1 resistor of 40) is passed through 62 amplifiers and is then output to the calculator 65. Enter the input formula. Further, an alternating current fi'1itk72 is installed between the terminals 501-53, and the impedance therebetween, for example, electricity '6-x, is measured by the father-flow fringe 63.
is man-powered. Furthermore, an AC power source 73 is installed between the terminals 53 and 54, and the resistance therebetween is measured by an amplifier 64 and inputted to a riser 65. Note that the electrode 43.
When an electrode that is difficult to polarize, such as an AM electrode, is used as the electrolyte 44, it is also possible to use a DC power source instead of the AC power source 73 to determine the resistance of the electrolyte 2 according to the countercurrent flow. Also, the battery 71. By attaching a switch to the AC power supply 72 and 73 and disconnecting these as necessary, the time required to measure the resistance of the working electrode and electrolyte and the interfacial impedance between the two, and the time required to measure the sensor output can be reduced. It is also possible to prevent errors (noise) in sensor output measurements.

このように、検知ガスIM度に比例した端子501−5
1間の11f流、作用極の抵抗、作用極−電解質界面の
インピーダンスおよび電解質の抵抗ケ計算機65に入力
し、あらかじめ測定したガス感度と作用極、電解質の抵
抗、および作用極−電解質界面ノインピーダンスとの関
係を用いて補正計算することにより、定電位電解セルの
に時変化の影響金魚くすことができる。
In this way, the terminal 501-5 is proportional to the detected gas IM degree.
The 11f flow between 1, the resistance of the working electrode, the impedance of the working electrode-electrolyte interface, and the resistance of the electrolyte are input into the calculator 65 and the previously measured gas sensitivity, working electrode, electrolyte resistance, and working electrode-electrolyte interface no impedance are input into the calculator 65. By performing correction calculations using the relationship between the two values, it is possible to eliminate the effects of time changes on the constant potential electrolysis cell.

なお、作用極の抵抗、作用極−電解質界面のインピーダ
ンス、および電解質の抵抗のすべてを測定して補正d1
°算する必要は必すしもなく、場合によってはその一部
を省略できな。例えば、wL′IN質として固体電解質
を用いる場合や、電解質水溶液をその飽和水蒸気圧に等
しい一冗湿度中で用いる場合には、電解質の抵抗測定は
ほぼ不要である。
Note that the resistance of the working electrode, the impedance of the working electrode-electrolyte interface, and the resistance of the electrolyte are all measured and corrected d1.
It is not always necessary to calculate, and in some cases, some of it cannot be omitted. For example, when a solid electrolyte is used as the wL'IN material, or when an electrolyte aqueous solution is used at a humidity equal to its saturated water vapor pressure, it is almost unnecessary to measure the resistance of the electrolyte.

また、固体電解質2用いてこrしに作用極をバネなどに
よって一定の力で押付けた構造では、電解質作用他界面
のインピーダンス変化は無視できる。
Further, in a structure in which the solid electrolyte 2 is used and the working electrode is pressed with a constant force by a spring or the like, changes in impedance at the interface other than the action of the electrolyte can be ignored.

さらに、作用極として例えは責金輌の金網を用いた場合
や、金属黒を厚い金網で裏打ちした電極を用いた場合に
は、を極の抵抗変化はelとんとおこらない。
Furthermore, when a wire mesh from a metal tank is used as the working electrode, or when an electrode made of black metal lined with a thick wire mesh is used, the resistance change of the electrode does not occur at all.

電極40としては触媒活性な金属、金属化置物が望まし
く、具体的には白金黒、パラジウム黒、ニッケル黒、金
魚などのような金属微粒子分用いることができる。また
、電解質としては硫酸、リン酸などの酸、 Na OH
,K OHなとのアルカリの水溶液、南+3&溶媒液、
および溶融塩、固体m;解質などを用いることができる
。特に、敵、アルカリなどの水溶液分用いrしばセ□ル
が室温で用いら扛ること、抵抗が比較的低いことの利点
がある。
The electrode 40 is preferably a catalytically active metal or a metallized object, and specifically, metal fine particles such as platinum black, palladium black, nickel black, goldfish, etc. can be used. In addition, as an electrolyte, acids such as sulfuric acid and phosphoric acid, NaOH
, K OH aqueous solution of alkali, south +3 & solvent solution,
and molten salts, solid m; solutes, etc. can be used. In particular, it has the advantage that if an aqueous solution containing an alkali or the like is used, the cell cannot be used at room temperature, and that the resistance is relatively low.

また、作用極、対極としては第1図のようなガス極(金
属/空気)を用いても良いし、Ag/AgC/!。
Further, as the working electrode and the counter electrode, a gas electrode (metal/air) as shown in Fig. 1 may be used, or Ag/AgC/! .

電極、カンコラ電極などの工うな金輌/金属塩電&を用
いても良い。また、第9図のように、作用極、対極を1
とめて1つの電極としても良い。第9図において、第1
図と同符号のものは同一内容を示す。″また、容器3の
中には例えばに、C1水溶液などのような電解質4と例
えばAg/’AgCt電極などのような標準電極45が
収納さ扛ており、電解質2と4とは塩漬5で結ばれてい
る。第9図のセルにおいてはt極45と接続さrした端
子55と端子501の間に一定電圧をかけ、両端子間を
流扛る電流全測定することにより、検知ガスの濃度が検
知できる。また、電解質の抵抗変化は例えば端子53−
55間の抵抗によシモニタできる。
Electrodes, such as Kankora electrodes, etc., may also be used. Also, as shown in Figure 9, the working electrode and counter electrode are
It may also be used as one electrode. In Figure 9, the first
Items with the same reference numerals as those in the figure indicate the same content. Furthermore, an electrolyte 4 such as a C1 aqueous solution and a standard electrode 45 such as an Ag/'AgCt electrode are housed in the container 3, and the electrolytes 2 and 4 are In the cell shown in Fig. 9, a constant voltage is applied between the terminal 55 connected to the t-pole 45 and the terminal 501, and the total current flowing between both terminals is measured to detect the detected gas. The concentration of the electrolyte can be detected.Also, changes in the resistance of the electrolyte can be detected, for example, at the terminal 53-
It can be monitored by the resistance between 55 and 55.

以下、本発明を実施例により説明する。The present invention will be explained below using examples.

第3図に児らγしるように、ホリカーボネート製容器1
の中に硫酸水浴′f&、2が入扛らfしてあ一部、溶液
2と大気とは作用極40を設けた多孔質テフロン(米デ
ュポン社の商品名)膜30および対極41゜参照極42
ケ設けた多孔質テフロン膜31でさえ(9) ぎら扛でいる。作用極40としては白金黒に10〜30
車匍゛チのテフロン粉末を混合して練・B−わせたペー
スト(i7多孔負テフロン膜30に10〜30”−Ig
/Cm2の厚さに塗布した後、20〜200kg/m2
の圧力で加圧成形し、200〜300Cで熱処理したも
のを用いた。対&41.参照極42も同様な方法で炸裂
した。また、′a極43,44としては0.3φの白金
線を用いた。
As shown in Figure 3, polycarbonate container 1
A sulfuric acid water bath 'f&, 2 is entered in the opening part, and the relationship between the solution 2 and the atmosphere is a porous Teflon (trade name of DuPont, USA) membrane 30 provided with a working electrode 40 and a counter electrode 41°. pole 42
Even the porous Teflon membrane 31 provided (9) is glaring. The working electrode 40 is made of platinum black with a thickness of 10 to 30.
A paste made by mixing and kneading Teflon powder in a vehicle (10 to 30"-Ig on the i7 porous negative Teflon membrane 30)
20~200kg/m2 after coating to a thickness of /Cm2
The material was pressure-molded at a pressure of 200 to 300C and heat-treated at 200 to 300C. vs &41. Reference pole 42 also exploded in a similar manner. Further, as the 'a electrodes 43 and 44, platinum wires of 0.3φ were used.

次に、この定電位電解セルを第4図に示した回路に接続
し、作用極−参照極間に0.1Vの一定電圧を印加した
。この状!法で大気中に例えばCOが混入すると、作用
極では CD 十Hz O→Cot↑+21−1” −1−26
一対極では 02 +4H”+ 45− + 2)120の反応かぁ
・こり、COガス濃度に比例した出力が増幅器61ケ逃
して計算機65に入力さrしる。また、作用極−参照極
間の電圧?変えることにより、アルコール、水素、S(
J、、、NOxなどのガス濃度が測建できる。
Next, this constant potential electrolysis cell was connected to the circuit shown in FIG. 4, and a constant voltage of 0.1 V was applied between the working electrode and the reference electrode. This situation! If, for example, CO is mixed into the atmosphere by a method, at the working electrode CD 10Hz O→Cot↑+21-1" -1-26
At one counter electrode, the reaction of 02 + 4H" + 45- + 2) 120, the output proportional to the CO gas concentration is missed by the amplifier 61 and input to the computer 65. Also, the output between the working electrode and the reference electrode is By changing the voltage, alcohol, hydrogen, S(
The concentration of gases such as J, NOx, etc. can be measured.

(10) 第5図〜第8図は本実施例の実験結果である。(10) FIGS. 5 to 8 show the experimental results of this example.

第5図においては出力の硫酸Is#依存性を調べた。In FIG. 5, the dependence of the output on sulfate Is# was investigated.

第5図のAはCO3001)I)IIIに対する増幅器
61の出力、Bは硫酸水溶液の抵抗である。図のように
、硫酸濃度7〜20規定の軛曲では出力A、抵抗B共に
@t 酸濃度の増加と共に低下し、両省の間に1対1の
関係のあることがわかる。
A in FIG. 5 is the output of the amplifier 61 for CO3001)I)III, and B is the resistance of the sulfuric acid aqueous solution. As shown in the figure, in the yoke with a sulfuric acid concentration of 7 to 20 normal, both the output A and the resistance B decrease as the @t acid concentration increases, indicating that there is a one-to-one relationship between the two.

′また、第6図、第7図においては硫酸濃度ケ8規足−
建に保−′)だ(一定温度中で実験)時の出力のれ時変
化ケ調べた。第6図、第7図においてCはCO300p
prrlに対する出力の経時変化、Dは作用極と硫酸水
浴液界面の靜電谷量の経時変化、Eは作用極の抵抗の経
時変化である。作用極におけるCOの酸化反応はガスー
電惚−儒、酸水浴液の3相界■でおこるため、を物と餉
、噴水浴液のヌレが進んで界面の酌1電容童が増加する
につfて出力のイ戊下することがわかる。また、Fは出
力がほぼ1 作用極の抵抗と界面の靜暇容量に反比例すると仮定して
、Cの出カケ補正した結果である。このよつな補正によ
り、出力の経時変化の影響がはとん(11) ど無くなることがわかる。
'Also, in Figures 6 and 7, the sulfuric acid concentration is
We investigated the change in output slippage over time when the output voltage was maintained (experimented at a constant temperature). In Figures 6 and 7, C is CO300p
D is the time-dependent change in the output with respect to prrl, D is the time-dependent change in the amount of electric current at the interface between the working electrode and the sulfuric acid water bath, and E is the time-dependent change in the resistance of the working electrode. The oxidation reaction of CO at the working electrode occurs in the three-phase interface of gas, electricity, and acid water bath liquid. It can be seen that the output is reduced by f. Further, F is the result of correcting the output of C on the assumption that the output is approximately 1 and inversely proportional to the resistance of the working electrode and the idle capacity of the interface. It can be seen that by such a thorough correction, the effects of changes in output over time are greatly eliminated (11).

さらに、第8図は大気中でCO30旧)pnlに対する
出力の経時変化を調べたものである。、、Gは補正前の
出力であり、大気中の湿度変化に従って硫酸水溶液の濃
度が変化するため(作用極などを通して水蒸気は出入り
可能)、第6図のCに較べて複雑な形で経時変化してい
る。″また、Hは第5図。
Furthermore, FIG. 8 shows a study of the change in output over time for CO30 (old) pnl in the atmosphere. ,,G is the output before correction, and because the concentration of the sulfuric acid aqueous solution changes according to changes in atmospheric humidity (water vapor can enter and exit through the working electrode, etc.), it changes over time in a more complicated manner than C in Figure 6. are doing. ``Also, H is in Figure 5.

第6図、第7図、第8図の関係音用いて訂算愼65によ
り出力Gを補正した結果である。
This is the result of correcting the output G using the related sounds in FIGS. 6, 7, and 8 using the correction method 65.

このように出力を作用極、′電解質の抵抗、界面の電気
谷童金用いて補正することにエリ、出刃の経時変化を±
5%以−ドとして、実用上充分な精度r保つことができ
る。
In this way, it is possible to correct the output using the working electrode, the resistance of the electrolyte, and the electrical contact metal at the interface, and to correct the change in the cutting edge over time.
By setting the accuracy to 5% or more, a practically sufficient accuracy can be maintained.

以上説明してきたように、本発明によれは定電位11L
解式カスセンサの経時変化會除き、経時変化の少い、長
寿命、高精度、旨伯頼性のガスセンサが実現できる。
As explained above, according to the present invention, the constant potential is 11L.
Except for the change over time of the disassembled gas sensor, a gas sensor with little change over time, long life, high precision, and reliability can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1凶、第2図、第3図および第9図は本発明のガスセ
ンサに用いる定電位′a解ナセル構造ケ示(12) す図、第4図は本発明の一実施例に用いた電気回路會示
す図、第5図、第6図9m7図および第8図は本発明の
実施例で得らγしたガスセンサの特性ケ示す特性曲線図
である。 2・・・電解質、40・・・作用極、41.45・・・
対極、(13) め1囚 時閉(幸) $10 絣rr(牢)
Figure 1, Figure 2, Figure 3 and Figure 9 show the structure of a constant potential solution nacelle used in the gas sensor of the present invention (12). The electric circuit diagrams, FIG. 5, FIG. 6, FIG. 9m7, and FIG. 8 are characteristic curve diagrams showing the characteristics of the gas sensor obtained in the embodiment of the present invention. 2... Electrolyte, 40... Working electrode, 41.45...
Opposite, (13) Me 1 prisoner closed (happy) $10 Kasuri rr (prison)

Claims (1)

【特許請求の範囲】 1、 イオン伝導性電解質、片面を上記電解質に、他面
を気体に接するガス透過性の作用極、および対極分備え
たガス用定電位電解セルと、上記作用極に一定の測定電
圧を印加する手段と、上記作用体と上記対極間電流れる
電流を測定する手段とを備えたガスセンサにおいて、上
記作用極の抵抗、上記電解質の抵抗、または1および上
記作用極と上記電解質との界面のインピーダンスを測定
する手段、および、上記抵抗値または1および上記イン
ピーダンスを用いて上記作用極と上記対極間を流れる上
記電流値全較正する手段分有することを特徴とするガス
センサ。 2、特許請求の範囲1において、上記インピータンスが
靜[8量であることを特徴とするガスセンサ。 3、特許請求の範囲1または2において、上記電解質と
して水素イオンまたは水酸イオンを含む水溶液を用いる
ことを特徴とするガスセンサ。 4、特許請求の範囲1.2または3において、上記作用
極として金蝿黒とフッ化炭素樹脂との混合物から成る1
1極を用いることf特徴とするガスセンサ。
[Claims] 1. A constant potential electrolytic cell for gas comprising an ion-conducting electrolyte, a gas-permeable working electrode having one side in contact with the electrolyte and the other side in contact with gas, and a counter electrode; and a means for measuring a current flowing between the working body and the counter electrode, the resistance of the working electrode, the resistance of the electrolyte, or 1 and the working electrode and the electrolyte. and means for calibrating all of the current values flowing between the working electrode and the counter electrode using the resistance value or 1 and the impedance. 2. The gas sensor according to claim 1, wherein the impedance is a quiet amount. 3. The gas sensor according to claim 1 or 2, characterized in that an aqueous solution containing hydrogen ions or hydroxide ions is used as the electrolyte. 4. Claim 1.2 or 3, wherein the working electrode is made of a mixture of goldfish black and fluorocarbon resin.
A gas sensor characterized by using one pole.
JP57026119A 1982-02-22 1982-02-22 Gas sensor Pending JPS58143263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57026119A JPS58143263A (en) 1982-02-22 1982-02-22 Gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57026119A JPS58143263A (en) 1982-02-22 1982-02-22 Gas sensor

Publications (1)

Publication Number Publication Date
JPS58143263A true JPS58143263A (en) 1983-08-25

Family

ID=12184681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57026119A Pending JPS58143263A (en) 1982-02-22 1982-02-22 Gas sensor

Country Status (1)

Country Link
JP (1) JPS58143263A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60178346A (en) * 1984-02-24 1985-09-12 Terumo Corp Electrode body for measuring concentration of gas and measuring apparatus using the same
JPH0534315A (en) * 1991-07-31 1993-02-09 Matsushita Electric Works Ltd Electrochemical type gas sensor
JP2002071621A (en) * 2000-08-25 2002-03-12 New Cosmos Electric Corp Constant potential electrolytic gas sensor
JP2017062195A (en) * 2015-09-25 2017-03-30 パナソニックIpマネジメント株式会社 Gas concentration measuring device and gas concentration measuring method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60178346A (en) * 1984-02-24 1985-09-12 Terumo Corp Electrode body for measuring concentration of gas and measuring apparatus using the same
JPH0422221B2 (en) * 1984-02-24 1992-04-16 Terumo Corp
JPH0534315A (en) * 1991-07-31 1993-02-09 Matsushita Electric Works Ltd Electrochemical type gas sensor
JP2002071621A (en) * 2000-08-25 2002-03-12 New Cosmos Electric Corp Constant potential electrolytic gas sensor
JP4516195B2 (en) * 2000-08-25 2010-08-04 新コスモス電機株式会社 Constant potential electrolytic gas sensor
JP2017062195A (en) * 2015-09-25 2017-03-30 パナソニックIpマネジメント株式会社 Gas concentration measuring device and gas concentration measuring method

Similar Documents

Publication Publication Date Title
JP2000146908A (en) Gas sensor with electrically conductive, hydrophobic membrane
US4227984A (en) Potentiostated, three-electrode, solid polymer electrolyte (SPE) gas sensor having highly invariant background current characteristics with temperature during zero-air operation
EP0974834A3 (en) Gas sensor with solid and liquid electrolytes connected in series between first and second electrodes
JP2001505316A (en) Gas sensor
US5133857A (en) Solid-state sensor for the determination of concentration of gases which can react with hydrogen
US5624538A (en) Measuring device for determining the concentration of alcohols
JPH0640092B2 (en) Humidity measurement method
JPS58143263A (en) Gas sensor
JPH10123093A (en) Solid electrolytic hydrogen sensor
Yasuda et al. Electrochemical characteristics of the planar electrochemical carbon monoxide sensor with a perfluorosulfonate ionomer film
JP3106247B2 (en) Electrolytic cell
Hibino et al. Improvement of CAPCIUS Cell Using SrCe0. 95Yb0. 05O3-. ALPHA. as a Solid Electrolyte.
JPS607358A (en) Room temperature operating type gas sensor
JP4465677B2 (en) Hydrogen gas detector
JPH0239740B2 (en)
Siebert et al. Mixed potential type hydrogen sensor
RU2196322C1 (en) Sensor for analysis of oxidizing gas and process of its manufacture
JPS58103660A (en) Gas sensor for carbon monoxide
CA1114021A (en) Potentiostated, three-electrode, solid polymer electrolyte (spe) gas sensor having highly invariant background current characteristics with temperature during zero-air operation
JPS58143262A (en) Gas sensor
JP2014049266A (en) Method and device for measuring electrolyte membrane of fuel cell
JPS5937455A (en) Gas sensor
RU2053506C1 (en) Solid electrolyte sensor for gas analysis
JP2021131304A (en) Hydrogen sensor and hydrogen utilization device
JPH0769302B2 (en) Galvanic battery type flammable gas sensor