JPS58142738A - Ion beam generator - Google Patents

Ion beam generator

Info

Publication number
JPS58142738A
JPS58142738A JP57025488A JP2548882A JPS58142738A JP S58142738 A JPS58142738 A JP S58142738A JP 57025488 A JP57025488 A JP 57025488A JP 2548882 A JP2548882 A JP 2548882A JP S58142738 A JPS58142738 A JP S58142738A
Authority
JP
Japan
Prior art keywords
ion
electric field
gas
top edge
ion beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57025488A
Other languages
Japanese (ja)
Inventor
Masahiko Okunuki
昌彦 奥貫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd, Nihon Denshi KK filed Critical Jeol Ltd
Priority to JP57025488A priority Critical patent/JPS58142738A/en
Publication of JPS58142738A publication Critical patent/JPS58142738A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/26Ion sources; Ion guns using surface ionisation, e.g. field effect ion sources, thermionic ion sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/08Ion sources
    • H01J2237/0802Field ionization sources
    • H01J2237/0807Gas field ion sources [GFIS]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

PURPOSE:To provide an ion beam generator with which both of gas ion beam and metal or alloy ion beam can be converged sufficiently finely and the brightness of the beam can be increased. CONSTITUTION:When an electric voltage is applied between a needle member 14 and a taking-out electrode 5, an electric field is concentrated at the top edge part of said needle member 4. The eutectic alloy Pt-B3 in the liquid form due to the heating in the inside of a crystal reservoir is taken-out to the top edge part of the needle member 4, passing through the fine hole 2 formed on the bottom part, by the intense electric field described in the above. A conical projection 16 called Taylor cone is formed at the top edge part of the needle member 4 by the intense electric field. As the top edge of this conical projection 16 is markedly sharp, electric field is concentrated more. Therefore, Pt-B at the top edge is electric-field-evaporated and ionized, and taken-out in the form of platinum ion and boron ion, which are accelerated by a cathode 15. Further, Ar gas is introduced into an ion chamber 7 through a valve 13 from a gas cylinder 14. Said gas is electric-field-ionized by the intense electric field in the vicinity of the conical projection which is formed of the liquid alloy at the top edge part of the needle member 4.

Description

【発明の詳細な説明】 不発明は液体物質をイオン化すると共に、ガスをイオン
化するイオンピー11発生装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The invention relates to an IonP 11 generator for ionizing liquid substances as well as gases.

ガリウム等の金属イオンによるイオンビーム露光がレジ
スト内でのイオンの拡散か電子ビーム(こよる露光に比
較して小さいことから、サブミクロンパターン製作用の
露光として注目されており、その為各方面において金属
あるいは合金をイオン化するための金属イオン源の研究
が進められている。このイオン源は針状部材の針状先端
部にガリ・“ツムあるいは共晶合金等の液状物質を供給
し、史に該先端部近傍に“強電界を形成し、該先1端部
/)11ら金属あるいは合金を構成りる物71のイオン
を”jl 11ざゼるようにしている。又半導体デバイ
スの製)ろ過程においでは刀スイオン源にJ、っ()′
ルrン¥tの不活性力゛スをイオン化し、該rオン(4
〕よ−)【ウ−[ハ等の表面に1ツザング等の微細加1
をりることも行なわれ゛(いる。このガスrオン源は別
状部(Aの別状先端部近傍に強電Wを形成するどJしに
イオン化カスを供給し、該強電界によってカスをイオン
化ηるJ、うにしている。
Ion beam exposure using metal ions such as gallium is attracting attention as an exposure method for producing submicron patterns because it is smaller than exposure using an electron beam (e.g., due to ion diffusion within the resist), and is therefore attracting attention as an exposure method for producing submicron patterns. Research is progressing on metal ion sources for ionizing metals or alloys.This ion source supplies a liquid substance such as gully or eutectic alloy to the tip of a needle-like member, and A strong electric field is formed near the tip so that ions of a substance 71 constituting a metal or an alloy are drawn from the tip (11). In the filtration process, the ion source is heated ()'
The inert force of the run \t is ionized, and the rion (4
]Yo-)
This gas r-on source forms a strong electric current W near the tip of the separate part (A) and supplies ionized scum with the strong electric field to ionize the scum. J, I'm making sea urchins.

さて超1sI等の半導体デバイスの製造過程で、イオン
ビーム露光、イオン21人、イオンIツーFング等を行
う場合には、使用号−る高輝度のイオンビームを極めて
細く収束し、微細なイオンビーl\によってそれらの処
理を行い得ることが、デバイスの集積度を高める十で重
要である。イオンビームの輝度を高め、それを細く収束
づるI、:めにはl= id:(L l::金属イΔン
源においては帽状先端部表面の液状物質が形成Jる円錐
突起部の径を小さくすること、叉カスイオン1lllj
においてiJ、釦状部祠の別状先端部の径を小さく(j
ることが必要であろ1、しかしイ1がら該釧状部+4の
Ill’l王粕lσには限界がありその先端部の径1ま
約G、”111m稈庶C゛あり、それ以十小さくJるこ
とは1本1 ff1ll Tある。したか−)で、たと
λば従来のガスイオン源においては高h111αのイオ
ンビーlいを発く1−さtiろ(ことは困輔で゛あり、
又イのビームを一1分に細く収東−りることはできない
Now, in the process of manufacturing semiconductor devices such as ultra-1sI, when performing ion beam exposure, ion 21 exposure, ion I2F, etc., a high-intensity ion beam is focused extremely narrowly, and a fine ion beam is used. It is important to be able to perform these processes using l\\ for increasing the degree of device integration. In order to increase the brightness of the ion beam and narrow it down, the liquid substance on the surface of the cap-shaped tip of the metal ion source forms a conical protrusion. To reduce the diameter, the fork ion 1lllj
In iJ, the diameter of the separate tip of the button-shaped part shrine is reduced (j
However, there is a limit to the diameter of the tip of the cylindrical part +4, and the diameter of the tip is 1 to 1 G, and the culm C is 111 m. For example, in a conventional gas ion source, a conventional gas ion source emits an ion beam with a high h111α, which is very difficult. ,
Also, it is not possible to converge the beam to a narrow 11 minutes.

更に、例えばガスイオン源を使用し、半導体つ7[ハの
特定の表面部分に)フルイン等のイオンを衝撃して該表
面部分を王ツチングすることにJ、って微細加工したり
、清浄41面を形成し、その後該つ−1ハを金属イオン
源に導入して該清浄41而に金属あるいは合金を構成i
Jる物質イオンを注入Jる場合、つ」ニハをガスイオン
源から金属イオン源に移〈J際(に清浄な面が汚染され
る恐れがあると1(にその3,1−ろなつTハの移動作
業(,1児だ面倒である。
Furthermore, for example, microfabrication may be carried out by using a gas ion source to bombard a specific surface portion of a semiconductor with ions such as Fluin, thereby cleaning the surface portion. form a surface, and then introduce the metal ion source into a metal ion source to form a metal or alloy i.
When implanting ions of a certain substance, transfer the ions from the gas ion source to the metal ion source. Ha's moving work (I have only one child, so it's a hassle.

本発明の第1のfil的は十分に細く収中げることが(
パぎる高輝度イ′Aンビームを発生することが可能なイ
オンビーム発11装置を提供することである。
The first objective of the present invention is that it can be made sufficiently thin (
It is an object of the present invention to provide an ion beam generator 11 capable of generating an extremely bright ion beam.

本発明の第2の目的は金属9合金及びガスの両イΔンを
発生さけることが(きるイオンビー11光i1駅i賀を
1是供りる(二とで゛ある。
The second object of the present invention is to avoid the generation of both metal and gas ion beams.

不発1り目J73つくイΔンビーム発生駅h゛はイオン
化1Jへさ物質を貯蔵刀るリリ゛−ハ部ど、該リリ゛−
バ部から液状物a[が供給される別状先端部をhした釧
状部祠ど、鵬釧状先端部に強電界を形成りるだ砧の手段
と、護釦状先端部近傍に(−Aン化す−ベぎガスを供給
づ−るための手段どより成る1、以F本発明の一実施例
を添イ4図面に基づき詳)4(りる1゜ 第1図は本発明に塁づく−イオンビー18発11装首を
示しCa5す、1は底部に細孔2が設i−Jられlこタ
ンタル等の金属で形成されたリリ゛−バC′dリリ、該
リリ“−バ1内部にはit(g 1/?金属9例λば白
金とfill索どから成る共晶合金(1〕t−1(>3
が入れらtl(いる。該リザーバ底部の細孔2を貫通し
−Cタンクステン製の釘状部+A4が配置されでいるが
、該別状部祠4の一端は該リザーバ1の内面に例えばス
ボッj−溶接に五っC固着されでおり、電’iff r
JI磨(J3− 1)、λて11状にされた他端は引ぎ出し電極5に夕・
1面して配置される。該リリ゛−バ1の周囲には加熱ヒ
ータ6が巻回されでおり、該加熱ヒータ6にはイオン化
室7外部の加熱電源(図示せず)から加熱電流が供給さ
れ11する1、該リザーバ1はリザ−バ底部!A8にネ
ジ」1めされで固定され、叉該支持部+AE’は導電t
l支(1≦)にネジ止めされている。該支社9はイオン
化室7の1部に配置された絶縁碍子10に固着されてい
る。該イメン化室7内には更にはガス導入管12が配置
されており、該カス導入管12は絶縁碍子′10内を川
通し、弁13を介し一〇例えばアルゴンガスが1入され
たガスボンベ1/Iに接続されている。該イメン化室7
内のガス導入管12は例えばステンレス等の尋常性物質
で形成され、他の部分にお【フる導入管は例えばテノ[
1ンによって形成。ト41(いる。尚リザーバ1.釧払
部祠1.ヒータ6、イオン化室内のガス導入管12等に
(J接地電位の陰極15に対し、20KV乃至100 
K Vの高X’ti FTが外部電源(図示l↓す′)
から印加され、又リザーバ1.11状部材4等と引4− き出し電極5どの間には5 K V 71J〒10 K
 Vの引さ出し電)1が印加(きねる3゜ 十)7I(シた如き構成の装置におい(、il状部祠1
と引き出し電極!′)どの間に電11:4印加1Jると
、該針状部材4の別状先端部には電界が集中11−る3
、ぞの結果り]f−バ1内部の加熱され−(液状どなっ
ている共晶合金Pt−F33は該強電界によって底部の
細孔2を通り、↓11部祠4先々i:部に31.で゛引
出される。第2図はぐ1状部祠4の先olli部を示し
ており、該先端部の1)1−133は強電Wにj、つC
テーラ−の円錐(丁aylor C0IIO>と称され
る円III突起16を形成りる3、この円錐突起16先
端の径は該♀11部材4の先端部の径が約1μmである
のに対し0.034zm稈1抹と極めて尖鋭とな−)て
いるため、この先端にtJL更に電界が集中する。従−
)で先端部のPt1i’3は電界蒸発し、イオン化され
白金(1つ1)イオンと槽1累(B)イオンとなつ(引
出され、陰極15に」、−)で1ノ11速される1、こ
のJ、うにし−(光9−されたイオンビー八は非常に輝
度がi!1いが1−)劃−[3の温石がある渇pに保1
.′1されでいないと安定なイオンビームの5F 4が
回動どなる、181−なわI)、PI−Bの温石が低い
ど、11状部材40表面を先11η:部に向【ノて移送
される通路の移送抵抗が高<4tす、先端部より電9I
魚介に供されるpc −[3の流れが不安定、不連続と
/iす、結果としてイオンビームの不安定性を1t(<
ことになる。史に温麻が合金の翔(点jメ下となるど、
合金は固化し、ビームの介/1は停什りる。、二のため
本実施例においては、リリ゛−ハ1周囲に巻回されたl
=−夕6を加熱し、輻射熱によっ−C間接的にリザーバ
1、帽状部材4、ガリウム3を加熱し、安定に連続しC
す(アーバ内のP 11− Bが針状部材の先端部に移
送されるようにしCいる。
The unexploded first station, J73, is the ion beam generating station h.
In the case of a hook-shaped part where a separate tip is supplied with a liquid material a from a part, a strong electric field is formed in the tip of the hook, 1. An embodiment of the present invention is attached hereunder in detail based on the drawings. 4. Base - Shows 18 ion beams and 11 heads, Ca5, 1 has pores 2 at the bottom, I-J, and a reliever C'd made of metal such as tantalum. Inside the bar 1, it (g 1/? Metal 9 example λ is a eutectic alloy (1) made of platinum and fill wire) t-1 (>3
A nail-shaped part + A4 made of -C tank stainless steel is placed through the hole 2 at the bottom of the reservoir, and one end of the separate part 4 is inserted into the inner surface of the reservoir 1 by, for example, a slot. j - 5C is fixed to the weld, and the electric 'if r
JI polishing (J3-1), the other end of the
It is placed facing one side. A heater 6 is wound around the reservoir 1, and a heating current is supplied to the heater 6 from a heating power source (not shown) outside the ionization chamber 7. 1 is the bottom of the reservoir! It is fixed to A8 with one screw, and the support part +AE' is conductive.
It is screwed to the l support (1≦). The branch 9 is fixed to an insulator 10 placed in a part of the ionization chamber 7. A gas introduction pipe 12 is further arranged in the oxidation chamber 7, and the waste introduction pipe 12 passes through the insulator 10 and is connected to a gas cylinder containing, for example, argon gas through a valve 13. Connected to 1/I. The image conversion room 7
The gas inlet pipe 12 inside is made of common material such as stainless steel, and the inlet pipes in other parts are made of a common material such as stainless steel.
Formed by 1. In addition, the reservoir 1.
K V high X'ti FT is external power supply (Illustrated below)
5 K V 71J 〒10 K
V voltage drawn) 1 is applied (Kinel 3゜0) 7I (In a device with a structure like a
And the extraction electrode! ') When 1J of electric current 11:4 is applied between 11 and 3, the electric field is concentrated at the separate tip of the needle member 4.
, the result] The eutectic alloy Pt-F33, which is heated inside the f-bar 1 and is in a liquid state, passes through the pore 2 at the bottom due to the strong electric field, 31. It is pulled out at 31. Fig. 2 shows the tip part of the hog-shaped part shrine 4, and 1) 1-133 of the tip part is connected to the strong electric current W with j and C.
A circular III protrusion 16 called a Taylor's cone (C0IIO) is formed 3, and the diameter of the tip of this conical protrusion 16 is 0, whereas the diameter of the tip of the ♀11 member 4 is about 1 μm. Since the culm is extremely sharp (.034zm), the electric field is further concentrated at this tip. subordinate
), the Pt1i'3 at the tip is evaporated in an electric field, ionized, and combined into platinum (one by one) ions and one by one (B) ions (pulled out and sent to the cathode 15, -) at a speed of 1 to 11. 1, this J, sea urchin (light 9- the ion bee eight is very bright!
.. If not, the stable ion beam 5F4 will rotate, 181-rope I), the warm stone of PI-B will be low, etc., and the surface of the 11-shaped member 40 will be transferred towards the 11η: part. The transfer resistance of the passage is high < 4t, and the electric current is 9I from the tip.
The flow of pc-[3 used for seafood is unstable and discontinuous, and as a result, the instability of the ion beam is reduced to 1t (<
It turns out. In history, Atsuma is the alloy sho (the point is below, etc.)
The alloy solidifies and the beam stops. , two, in this embodiment, the lubricant wound around the reliever 1 is
= heating 6 and indirectly heating reservoir 1, cap member 4, and gallium 3 by radiant heat, stably and continuously heating C
(P11-B in the arbor is transferred to the tip of the needle-like member.)

更に本実施例においては、ガスボンベ14からi′ルゴ
ンガスが弁13を介してイオン化室7内に導入される。
Furthermore, in this embodiment, i' irgon gas is introduced into the ionization chamber 7 from the gas cylinder 14 via the valve 13.

該ガスは1目λ部+A7′Iの先端部の液状合金か形成
ηる円鉗突起近傍の強電界によって電界電離し、イオン
化さ1する。
The gas is ionized by a strong electric field in the vicinity of the circular protrusion formed by the liquid alloy at the tip of the first eye λ part +A7'I, and becomes ionized.

このように」一連しlこ実施例では液状合金か形成りる
微小径の先端部から合金を構成づる物質イオンとカスイ
オンとを光4トさゼることが(・き、いり′れのイオン
ビームち輝度が高く、又細く収束−づることができる1
、第3図は第1図に示したイオンビーム発生源を使用し
たイオンビーム装置を示している。20はり11図に示
したイオンじ−ム発’I: iD:+であり、該発生源
20かIう発1した合金イオンどカスイオンは第1の静
゛1hレンス21によ・〕−(収東され、大剣スリブ1
〜22を通ってウィーン型の質が分離器23に入用する
。該ウィーン型の買昂分−(器23は一対の電(Φ2/
Iど一対の磁極25どより成り、該電極2/lによる電
場と該vA極25による磁場が直交する。」、うに配置
されてa5す、該電場の強さと磁場の強さとを適宜選択
りることによパ)で、任怠の質Φのイオンを出印1スリ
ット26.J、り取り出Jことがで・さる。部分tll
ll c5れた1、+1定のイ、Iンは第2の静電レン
ズ27によって半iN fA祠fil ;)81−に細
く収束さ1′1、るど几に、静電偏向板29によって偏
向され、月利281−の1[意の領1或に照D=1され
る。
In this way, in this series of embodiments, it is possible to irradiate the material ions and gas ions constituting the alloy from the tiny tip of the liquid alloy. The beam has high brightness and can be narrowly converged1
, FIG. 3 shows an ion beam apparatus using the ion beam generation source shown in FIG. The ion beams shown in Fig. 11 are generated from the ion source 20, and the alloy ions generated by the generation source 20 and the gas ions are generated by the first static 1 hour period 21. Contained East, Great Sword Slyb 1
The Wien-type quality passes through .about.22 and enters the separator 23. The Vienna type purchase part - (the vessel 23 is a pair of electric wires (Φ2/
It consists of a pair of magnetic poles 25, and the electric field due to the electrode 2/l and the magnetic field due to the vA pole 25 are orthogonal to each other. '', and by appropriately selecting the strength of the electric field and the strength of the magnetic field, the ions of the quality Φ can be drawn through one slit 26. J, it is possible to take out J. partial tll
ll c5 is 1, +1 constant A, I is narrowly converged to half iN fA filter by the second electrostatic lens 27; It is deflected, and the monthly interest rate is 281-1 [the area of interest 1 or the light D=1.

に述しIこイオンビーム装置(こおいて、 +4¥z1
287− 表面の]ツfングをi−jう場合、質量分離器23にお
()る電場の強さと磁場の強さはアルゴンカスイオンの
みが出射スリブ1〜26を通過覆るように設定される。
The ion beam device described above (+4¥¥1
287- When extracting the surface], the strength of the electric field and the strength of the magnetic field in the mass separator 23 are set so that only the argon gas ions pass through and cover the exit sleeves 1 to 26. Ru.

部分1111+され細く収束されたガスイオンは月利2
8十の特定領域においC偏向板29に印加される走査信
号(3一応じで走査され、該領域はエツチングされ、清
浄な表面が1!7られる。次いで質量分離器23におl
−Jる電場と磁場の強さは例えば硼素(B)イオンが分
離されて出射スリブl〜26を通過するように変えられ
、細く収束されたBイオンは偏向板29に印加される信
号に応じ、月利28十の清浄な面内の選(Rされた微細
領域に照射され、マスクレスのイオンと1人が行われる
The gas ions narrowly focused by the part 1111+ have a monthly rate of 2
A scanning signal (31) is applied to the C deflection plate 29 in a specific area of 80, which area is etched and a clean surface is etched.
The strength of the electric field and magnetic field is changed so that, for example, boron (B) ions are separated and pass through the exit sleeve l~26, and the narrowly focused B ions respond to the signal applied to the deflection plate 29. , a clean in-plane selection (R) micro area with a monthly rate of 280 yen is irradiated, and maskless ion and one person are performed.

このように上述したイオンビーム装置においては、祠お
128を真空側に取出Jことなく、ガスイオンビームに
よるエツチング及び金属あるいは合金を構成する物質イ
オンビームによるイAンン1人を行うことができ、材1
1の汚染は防lトでき、又作業を簡略化づ”ることがで
きる、。
In this way, in the above-described ion beam apparatus, etching with a gas ion beam and etching of a material constituting a metal or alloy with an ion beam can be performed without taking out the etching chamber 128 to the vacuum side. Material 1
1. Contamination can be prevented and the work can be simplified.

以十詳述した如く本発明はガスイオンビーム。As described in detail above, the present invention relates to a gas ion beam.

8− 金属あるい【よ合金イオンじ−ムどちに1−分に細く収
束づることができると」ζに、でれらのじ−71の輝度
も高くすることができ、史には金属あるいは合金及びガ
スの両イオンを同1、旨こ発L1−さ口ることができる
。尚、本発明は上述した実施例に限定されず幾多の疫形
がnJ能である。例えば、イオン(・Fどして白金と硼
素どの共晶合金とアルゴンを用いICが、ヒシウム、ガ
リウム等の仝属ル)るいは金属化合物、他の合金および
窒素あるいは酸素等のガスを用いても良い3.又液状の
物質を加熱するようにしたが、この加熱は本発明にとっ
て必須の要件Cはない。更にリリ9−バどしで容器状の
ものを用いず、例えば、11状部材の一部をコイル状に
巻回し、該−]イル部分をり+1−バ部として金属等を
保持Jるようにしても良い。
8- If metal or alloy ion beams can be narrowly converged to 1-minute, the brightness of the metal or alloy can be increased. Alternatively, both the ions of the alloy and the gas can be emitted at the same time. It should be noted that the present invention is not limited to the above-mentioned embodiments, and many epilepsy forms are possible. For example, an IC using ions (F, eutectic alloys such as platinum and boron, and argon), metal compounds such as hiscium, gallium, etc., or metal compounds, other alloys, and gases such as nitrogen or oxygen is used. Good 3. Furthermore, although the liquid substance is heated, this heating is not essential requirement C for the present invention. Furthermore, instead of using a container-like object, for example, a part of the 11-shaped member is wound into a coil shape using a lily bar, and the metal part is used as a lily bar part to hold metal, etc. You can also do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例Cあるイオンじ一部、発牛装
買を示J図、第2図し1第1図の装置醒に用いたiI針
状部材ん端部を示φ図、第3図1.1第1図のイオンビ
発生発生装買を使用しlこイAンピ−1X8ξ胃を示す
図である。 1:す1f−ハ、2:■l孔、3:l−r’、、/′l
:1:1状部祠、1):引き出し電極、6 : 111
1熱ヒータ、7:−イΔンメン、8:支持部4A、9:
支(1,10:冷JJ1層、11:冷媒、12:万ス導
入管、13:弁、14:万スボンl\、1jう:陰極。 特許出願人 1]木電子株式会ト1 代表省 加勢 忠月1 11− 芝      同 186− ワ
Fig. 1 shows a part of an ion part and a feeding device according to an embodiment of the present invention. FIG. 3 is a diagram illustrating a 1.times.8.times.8 stomach using the ion beam generator device of FIG. 1. 1: 1f-c, 2: ■l hole, 3: l-r', /'l
: 1: 1-shaped part shrine, 1): Extraction electrode, 6: 111
1 Heater, 7: -∆Amen, 8: Support part 4A, 9:
Support (1, 10: cold JJ 1 layer, 11: refrigerant, 12: 10,000 s introductory tube, 13: valve, 14: 1,000 sq. Kase Tadatsuki 1 11- Shiba Same 186- Wa

Claims (1)

【特許請求の範囲】[Claims] イオン化すべき物質を貯蔵するリザーバ部と、該リザー
バ部から液状物質が供給される針状先端部を有した針状
部材と、該針状先端部に強電界を形成するだめの手段と
、該針状先端部近傍にイ2ン化すべきガスを供給するた
めの1手段とより成るイオンビーム発生装置。
a reservoir portion for storing a substance to be ionized; a needle-like member having a needle-like tip portion to which the liquid substance is supplied from the reservoir portion; a means for forming a strong electric field in the needle-like tip portion; An ion beam generator comprising a means for supplying a gas to be ionized to the vicinity of a needle tip.
JP57025488A 1982-02-19 1982-02-19 Ion beam generator Pending JPS58142738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57025488A JPS58142738A (en) 1982-02-19 1982-02-19 Ion beam generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57025488A JPS58142738A (en) 1982-02-19 1982-02-19 Ion beam generator

Publications (1)

Publication Number Publication Date
JPS58142738A true JPS58142738A (en) 1983-08-24

Family

ID=12167437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57025488A Pending JPS58142738A (en) 1982-02-19 1982-02-19 Ion beam generator

Country Status (1)

Country Link
JP (1) JPS58142738A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5034612A (en) * 1989-05-26 1991-07-23 Micrion Corporation Ion source method and apparatus
WO2013043794A3 (en) * 2011-09-22 2013-08-01 Carl Zeiss Nts, Llc Liquid metal ion source, system and method
US9218935B2 (en) 2013-07-08 2015-12-22 Carl Zeiss Microscopy, Llc Charged particle beam system and method of operating a charged particle beam system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5034612A (en) * 1989-05-26 1991-07-23 Micrion Corporation Ion source method and apparatus
WO2013043794A3 (en) * 2011-09-22 2013-08-01 Carl Zeiss Nts, Llc Liquid metal ion source, system and method
US9218935B2 (en) 2013-07-08 2015-12-22 Carl Zeiss Microscopy, Llc Charged particle beam system and method of operating a charged particle beam system
US9218934B2 (en) 2013-07-08 2015-12-22 Carl Zeiss Microscopy, Llc Charged particle beam system and method of operating a charged particle beam system
US9530612B2 (en) 2013-07-08 2016-12-27 Carl Zeiss Microscopy, Llc Charged particle beam system and method of operating a charged particle beam system
US9530611B2 (en) 2013-07-08 2016-12-27 Carl Zeiss Microscopy, Llc Charged particle beam system and method of operating a charged particle beam system
US9536699B2 (en) 2013-07-08 2017-01-03 Carl Zeiss Microscopy, Llc Charged particle beam system and method of operating a charged particle beam system
US9627172B2 (en) 2013-07-08 2017-04-18 Carl Zeiss Microscopy, Llc Charged particle beam system and method of operating a charged particle beam system
US9640364B2 (en) 2013-07-08 2017-05-02 Carl Zeiss Microscopy, Llc Charged particle beam system and method of operating a charged particle beam system

Similar Documents

Publication Publication Date Title
US20080210883A1 (en) Liquid metal ion gun
JP5636053B2 (en) Gas field ion source, method of using the same, and ion beam apparatus
DE102013102777B4 (en) Method of making an emitter
US20140077684A1 (en) Particle sources and methods for manufacturing the same
DE102012109961B4 (en) Focused ion beam device
US20070256927A1 (en) Coating Apparatus for the Coating of a Substrate and also Method for Coating
JP6112930B2 (en) Gas ion source and focused ion beam apparatus
JPS58142738A (en) Ion beam generator
JP2011238480A (en) Emitter of field ionization type gas ion source and focused ion beam device and method of manufacturing emitter of field ionization type gas ion source
JPS58135557A (en) Ion beam generating method and its device
JP2020161262A (en) Emitter fabrication method, emitter, and focused ion beam device
WO2021130837A1 (en) Electron source, electron beam device, and method for manufacturing electron source
JPS5968143A (en) Emitter chip for field ionization gas ion source
JPS6316537A (en) Ion beam generator
RU2368977C2 (en) Method of generating stream of negative ions
JPS6340013B2 (en)
JP2005268235A (en) Ion beam irradiation device and ion bean irradiation method
JPS58137943A (en) Ion source
JPH1064438A (en) Liquid metallic ion source
JPS59130056A (en) Proton beam illuminating source
JP2004014309A (en) Aperture and focused ion beam device
JP6236480B2 (en) Emitter fabrication method
JPH01289057A (en) Charged particle beam generation device
JPS593815B2 (en) ion source
JP2003123659A (en) Liquid metal ion source