JPS58141320A - Metal refining agent - Google Patents

Metal refining agent

Info

Publication number
JPS58141320A
JPS58141320A JP1969782A JP1969782A JPS58141320A JP S58141320 A JPS58141320 A JP S58141320A JP 1969782 A JP1969782 A JP 1969782A JP 1969782 A JP1969782 A JP 1969782A JP S58141320 A JPS58141320 A JP S58141320A
Authority
JP
Japan
Prior art keywords
alloy
refining agent
phase
molten steel
flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1969782A
Other languages
Japanese (ja)
Other versions
JPH0125368B2 (en
Inventor
Norio Hirokawa
裕川 典雄
Ryoichi Yoshimura
吉村 亮一
Hiroshi Saito
弘 斉藤
Tsuneo Kawachi
河内 恒夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP1969782A priority Critical patent/JPS58141320A/en
Priority to GB08303495A priority patent/GB2118209B/en
Priority to FR8302447A priority patent/FR2521593B1/en
Priority to SE8300707A priority patent/SE459339B/en
Priority to CA000421358A priority patent/CA1204596A/en
Priority to DE19833304762 priority patent/DE3304762A1/en
Priority to US06/466,188 priority patent/US4435210A/en
Publication of JPS58141320A publication Critical patent/JPS58141320A/en
Publication of JPH0125368B2 publication Critical patent/JPH0125368B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To prevent the evaporation of Ca in molten steel and to increase the deoxidizing and desulfurizing effects by using a Ca-Al alloy, CaO and Al2O3 as principal components in a prescribed ratio and uniting CaF2 with them. CONSTITUTION:This metal refining agent consists of 20-50% Ca-Al alloy and 80-50% CaO+Al2O3 as principal components and of 0-30% CaF2. When the refining agent is added to molten steel, the sudden contact of the alloy phase with the molten steel is prevented, and the melting proceeds slowly. As a result, the evaporation of Ca is reduced, and the deoxidizing and desulfurizing effects on the molten metal are increased.

Description

【発明の詳細な説明】 本発明は溶鋼などの溶融金属の脱酸、脱硫、脱燐などに
用いる精錬剤に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a refining agent used for deoxidizing, desulfurizing, dephosphorizing, etc. molten metal such as molten steel.

近年、極めて苛酷な環境条件において高度の信頼性を有
するいわゆる高清浄鋼に対する需要は一段と増大しつつ
ある。
In recent years, the demand for so-called high-cleanliness steel, which has a high degree of reliability under extremely harsh environmental conditions, has been increasing further.

これら高清浄鋼は一般に溶銑段階で脱硫、脱燐精錬し、
さらに溶鋼を炉外精錬することによシ製造される。溶鋼
炉外精錬の目的とするところは高度な脱硫と主としてA
J2O,系介在物の除去による゛脱酸や介在物の形態i
j御などにあり、さらに脱燐を目的に加える場合もある
These highly clean steels are generally refined by desulfurization and dephosphorization at the hot metal stage.
Furthermore, it is manufactured by refining molten steel outside the furnace. The purpose of refining outside the melting furnace is advanced desulfurization and mainly A.
``Deoxidation and formation of inclusions by removing J2O and system inclusions''
In some cases, it is added for the purpose of dephosphorization.

このような炉外精錬に使用される精錬剤はその目的によ
って細部は異なるが、CaOを主体とするいわゆるフラ
ックスとCa系金属添加剤の併用が一般的である。特に
介在物の形態制御には金属Caあるいはその合金の使用
が必須と云われている。
Although the details of the refining agent used in such out-of-furnace refining differ depending on the purpose, it is common to use a combination of a so-called flux mainly composed of CaO and a Ca-based metal additive. In particular, it is said that the use of metallic Ca or its alloy is essential for controlling the form of inclusions.

金属Caあるいはその合金添加剤はCaS i合金と、
Ca又はCa−t4/の鉄又はアルミのクラッドワイヤ
ーが一般に用いられている。前者は比較的安価であるが
Caの添加効率が悪く特に5i−1essA7キルド鋼
には使えない欠点がある。一方クラッドワイヤーは添加
効率は優れているが、高価なため使用に限界がある。
Metallic Ca or its alloy additive is a CaSi alloy,
Ca or Ca-t4/ iron or aluminum clad wires are commonly used. Although the former is relatively inexpensive, it has the disadvantage that it has poor Ca addition efficiency and cannot be used particularly for 5i-1ess A7 killed steel. On the other hand, clad wire has excellent dosing efficiency, but its use is limited because it is expensive.

CaOを主体とするフラックスはCaOにAA’20s
、CaF、01種又は2種を混合したものが一般的であ
る。ただし、フラックスのみでは介在物形態制御ができ
ないので、前記金属系添加剤と併用して使用される。
The flux mainly composed of CaO is AA'20s to CaO.
, CaF, type 01, or a mixture of the two types is generally used. However, since flux alone cannot control the morphology of inclusions, it is used in combination with the metal additives mentioned above.

本発明は溶鋼中で高い蒸気圧を有するCaの蒸発損失を
できるだけ抑えることによシ、効率よく溶鋼へ作用させ
脱酸、脱硫、脱燐および介在物の形態制御効果を高める
ことを目的とした金属精錬剤を提供するものである。
The purpose of the present invention is to suppress the evaporation loss of Ca, which has a high vapor pressure in molten steel, to efficiently act on the molten steel and enhance the effects of deoxidation, desulfurization, dephosphorization, and control of the form of inclusions. It provides metal refining agents.

溶鋼へのCa添加の各種の実験の、中でCa系合金とC
aOを含むフラッフを一体に結合させて精錬剤を構成し
、これを溶鋼に添加した場合にはCaの蒸発損失を極端
に低く抑えることができ、しかもCa系合金と7ラツク
スとの混合度を増せば増す程その効果が上ることを知見
し、本発明に至った。
In various experiments on Ca addition to molten steel, Ca-based alloys and C
When fluff containing aO is combined together to form a refining agent and added to molten steel, the evaporation loss of Ca can be suppressed to an extremely low level. It was discovered that the more the amount is increased, the better the effect becomes, and this led to the present invention.

即ち、本発明はCa−)J合金、Cab、 A40sを
主成分とし、これらが一体に結合した粉・粒状ないしは
塊状物から成る金属精錬剤である。
That is, the present invention is a metal refining agent that has Ca-)J alloy, Cab, and A40s as main components and is composed of powder, granules, or lumps in which these are combined together.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の精錬剤はCa−A1合金、CaO1A/!Aを
主成分とする。そしてこれらが70%(重量係、以下同
じ)以上含有していることが好ましい。前記三成分以外
に好ましい成分として含有させることができる代表的な
ものは、 CaF、であp、30q6以下の範囲で用い
るのがよい。CaF、#iミツラックス中では独立して
存在するが、Ca9M2O3が大きくなるに従がい、そ
の含有量を増すのが効果的である。CaF、は溶鋼への
添加時、フラックス相の滓化促進に有効に作用する。し
かし30チを越えて添加しても効果が飽和してしまうた
め30係以下で使用するのがよい。
The refining agent of the present invention is Ca-A1 alloy, CaO1A/! The main component is A. It is preferable that these components contain 70% or more (by weight, the same applies hereinafter). In addition to the three components mentioned above, typical components that can be preferably contained include CaF, which is preferably used in a p range of 30q6 or less. CaF exists independently in #i Mithrax, but it is effective to increase its content as Ca9M2O3 increases. CaF, when added to molten steel, effectively acts to promote slag formation of the flux phase. However, even if it is added in excess of 30 parts, the effect will be saturated, so it is better to use it in amounts below 30 parts.

以上望ましい成分範囲を示せばCa−AJ合金20〜5
0チ、CaO1A/!A、80〜50 %、CaF!9
〜30%である。
If the desirable component range is shown above, Ca-AJ alloy 20-5
0chi, CaO1A/! A, 80-50%, CaF! 9
~30%.

そしてCa−A1合金中のCa含有量は20〜50チ、
フラックス相中のCaO/A403重量比は0.9〜5
.00間とするのが最も適する。Ca−A1合金が20
%未満ではこの合金による精錬効果が下がり、精錬剤の
使用量が増える。また50%を越えるとフラックスの量
が相対的に減ることによるCaの蒸発抑制作用が低下す
る。
And the Ca content in the Ca-A1 alloy is 20 to 50 chi,
CaO/A403 weight ratio in flux phase is 0.9-5
.. The most suitable value is between 00 and 00. Ca-A1 alloy is 20
If it is less than %, the refining effect of this alloy will decrease and the amount of refining agent used will increase. Moreover, when it exceeds 50%, the effect of inhibiting Ca evaporation due to a relative decrease in the amount of flux decreases.

Ca合金中のCa含有量が20〜50チが特に適する理
由はCaが204よシ低くなると付随して入るAl量が
多くなり、鋼中にMが残留したり、またCaの精錬効果
が下る等の理由で好ましくなく、また50%を越えると
Caの蒸気圧が高くなるからである。またCa合金を後
述するCaOのM還元法で製造する場合はCaを50%
以上とすることは困難である。
The reason why a Ca content of 20 to 50 in the Ca alloy is particularly suitable is that when the Ca content is lower than 204, the amount of Al accompanying it increases, causing M to remain in the steel and reducing the refining effect of Ca. This is not preferable for the following reasons, and if it exceeds 50%, the vapor pressure of Ca increases. In addition, when producing Ca alloy by the CaO M reduction method described later, Ca is 50%
It is difficult to do more than that.

CaO1A/!A 0g重量比が0.9〜5.0が特に
適する理由は0.9未満だと脱硫に効(Ca0g分が少
なくなシ、脱硫能が下が9、また5を越えると融点が高
過ぎて滓化が阻害される。
CaO1A/! A: The reason why a 0g weight ratio of 0.9 to 5.0 is particularly suitable is that when it is less than 0.9, it is effective for desulfurization (the Ca0g content is low, and the desulfurization ability is lower than 9, and when it exceeds 5, the melting point is too high). This prevents slag formation.

なお、上記成分の外、精錬剤の各成分の結合促進あるい
は精錬効果を向上させるなどの目的でCaC&などの塩
化物、Na2O,などの酸化物、Si。
In addition to the above-mentioned components, chlorides such as CaC&, oxides such as Na2O, and Si are added for the purpose of promoting the bonding of each component of the refining agent or improving the refining effect.

Mg、Ba%Ni1  希土類元素あるいはその酸化物
などの含量で10チ以下の範囲で含有させてもよい。こ
れらは金属は主として合金相を、酸化物はフラックス相
を形成する。
Mg, Ba%Ni1 Rare earth elements or their oxides may be contained in an amount of 10 or less. These metals mainly form an alloy phase, and the oxides form a flux phase.

本発明においてフラックス相の重要な役割は精錬剤を溶
鋼に添加した場合Ca−)4合金相の溶鋼への溶解を適
度に制御することである。即ち、スラックス相はCa−
AJI合金が添加された際瞬時に溶鋼へ作用するととK
よる急激な蒸発揮散を起させることなく、徐々に溶鋼へ
溶解せしめることKよシ充分効率よ(Caを作用させる
役割を持つものである。またフラックス相は脱硫及び溶
鋼中に介在しているM2O,等の脱酸生成物を効果的に
捕捉し、除去するものである。
In the present invention, the important role of the flux phase is to appropriately control the dissolution of the Ca-)4 alloy phase into the molten steel when a refining agent is added to the molten steel. That is, the slack phase is Ca-
When AJI alloy is added, it instantly acts on molten steel.
The flux phase has the role of allowing Ca to act on the molten steel gradually without causing rapid evaporation or evaporation. It effectively captures and removes deoxidized products such as .

この役割を果すため本発明の精錬剤は合金相とフラック
ス相とを一体に結合させた構造とした。
In order to fulfill this role, the refining agent of the present invention has a structure in which an alloy phase and a flux phase are combined together.

即ち精錬剤を構成する各々の粒子或いはブリケットのよ
うな塊状物がそれ自体合金相とフラックス相が一体に結
合していることを意味する。
That is, each particle or agglomerate such as a briquette constituting the refining agent itself has an alloy phase and a flux phase combined together.

このように精錬剤を構成することにより、溶鋼に添加さ
れた際、各粒子或いは塊状物はその合金相の表面あるい
は周辺に7ラツクス相が介在しているので、合金相が急
激に溶鋼と接触するのが妨げられ、合金相の溶解が徐々
に進行する。従って、精錬剤は少なくとも溶鋼に添加さ
れるまで合金相とフラックス相とが一体に結合している
ことが必要である。この精錬剤には合金からなる粒子と
フラックスからなる粒子とが1次結合剤等により結合さ
れたものも含む。塊状物についても同様である。1凍結
合剤は精錬剤が溶鋼に添加された際、直ちに分解し、粒
子は合金相とフラックス相に分離するが、合金相の周辺
にはスラックス相が存在し、合金相がフラックス粒希釈
されたような状態となるので、合金粒子単独で添加した
場合に比べCaの蒸発揮散が少なくなる。
By configuring the refining agent in this way, when added to molten steel, each particle or agglomerate has a 7 lux phase intervening on or around the alloy phase, so the alloy phase rapidly contacts the molten steel. The dissolution of the alloy phase gradually progresses. Therefore, it is necessary that the alloy phase and flux phase of the refining agent are integrally combined at least until the refining agent is added to molten steel. This refining agent also includes particles made of an alloy and particles made of a flux bound together by a primary binder or the like. The same applies to lumps. 1 When the refining agent is added to molten steel, the frozen mixture decomposes immediately and the particles separate into an alloy phase and a flux phase, but a slack phase exists around the alloy phase, and the alloy phase is diluted with flux particles. As a result, the evaporation and transpiration of Ca is reduced compared to when alloy particles are added alone.

精錬剤の添加時における合金相のフラックス相による希
釈化については合金粒子とフラックス粒子を単に混合し
て使用することも考えられるが、取扱い中あるいは添加
時に偏析を起し易く、各粒子が均一混合した状態で使用
することはむづかしく、合金相の局所的な蒸発揮散が避
けられない。
Regarding the dilution of the alloy phase by the flux phase when adding a refining agent, it is possible to simply mix the alloy particles and flux particles, but this tends to cause segregation during handling or addition, making it difficult for each particle to be uniformly mixed. It is difficult to use the alloy under such conditions, and local evaporation and transpiration of the alloy phase cannot be avoided.

本発明の精錬剤は前記のように少なくとも溶鋼に入る直
前まで1体に合金相と7ラツクス相が結合して健ること
か必要であるが、望ましくはこれらが焼結、固溶、拡散
等のような形で結合していることである。さらに望まし
くは合金相とフラックス相がどちらか一方或いは双方が
互いにマトリックス相を形成し、これらが複雑に絡み合
って1体に前記した焼結等により結合していることであ
る。また合金相とフラックス相はできるだけ均一に混合
分散していることが望ましい。特に精錬剤がある程度以
上大きい場合、この均一分散性が重要になる。ブリケッ
トやある程度大きな粒の場合、この分散性はこれらを粉
砕して調べることができる。例えば1閣を越える精錬剤
について、それを粉砕して0.5〜1.0真のものを取
り出して調べると、均一分散性のよい精錬剤はその70
%以上が合金相と72ツクス相が結合したものからなっ
ている。
As mentioned above, it is necessary for the refining agent of the present invention that the alloy phase and the 7 lux phase are combined into one body at least immediately before entering the molten steel, but it is preferable that these phases are combined by sintering, solid solution, diffusion, etc. They are connected in the following way. More preferably, one or both of the alloy phase and the flux phase mutually form a matrix phase, and these are intricately intertwined and bonded together by the above-mentioned sintering or the like. Further, it is desirable that the alloy phase and the flux phase are mixed and dispersed as uniformly as possible. Particularly when the refining agent is larger than a certain level, this uniform dispersibility becomes important. In the case of briquettes or rather large particles, the dispersibility can be examined by crushing them. For example, if you take a refining agent that has more than 1 kaku, and examine it by crushing it and taking out the 0.5 to 1.0 particles, you will find that the refining agent with good uniform dispersibility is 70.
More than % is composed of a combination of an alloy phase and a 72Tx phase.

精錬剤が1m+より小さいものについては上記した均一
分散性は大きな問題にはならず、合金相と7ラツクス相
が結合していればよい。結合は一次結合よシ前記した焼
結、固溶等によるものが望ましい。
When the refining agent is smaller than 1 m+, the uniform dispersibility described above is not a big problem, and it is sufficient that the alloy phase and the 7 lux phase are combined. The bonding is preferably by primary bonding or by sintering, solid solution, etc. as described above.

本発明の精錬剤のサイズは1fi以下のような粒子(粉
末)からブリケット、塊体のものまで含む。
The size of the refining agent of the present invention ranges from particles (powder) of 1 fi or less to briquettes and lumps.

粉末は通常インジエク□レヨン法で添加される場合に使
用されるものである。ブリケ゛ット、塊体の大きさは特
に制限なく、取扱い上等よフ適宜定める。
The powder is normally used when added by the Injiek □ Rayon method. The size of the briquettes and lumps is not particularly limited and is determined as appropriate based on handling considerations.

次に本発明の精錬剤の製造法について説明する。Next, a method for producing the refining agent of the present invention will be explained.

精錬剤が合金相と7ラツクス相の一次結合よりなるもの
は、両者の粉末を混合し、有機質結合剤を使用してブリ
ケットマシン等によって成形する方法や、小さい精錬剤
の場合では合金粒子の表面に7ラツクス粉末をまぶし、
造粒する方法でつくることができる。
If the refining agent consists of a primary combination of an alloy phase and a 7 lux phase, there is a method in which the powders of both are mixed and molded using an organic binder using a briquetting machine, or in the case of a small refining agent, the surface of the alloy particles is mixed. Sprinkle 7 lux powder on the
It can be made by granulation.

次に本発明の望ましい精錬剤である合金相と7ラツクス
相が焼結等により結合しているものについて、その製造
法の1例について説明する。
Next, an example of a manufacturing method for a desirable refining agent of the present invention in which an alloy phase and a 7 lux phase are combined by sintering or the like will be described.

原料はCaOを主体とする酸化物とMを主体とする金属
還元剤である。前者はCaO単独又はこれに後述する酸
化物、塩化物、弗化物等を混合したもの、後者はM単独
又は後述するSi2等をMに混合、又はAIと合金にし
て用いる。これらを粉末にし、ブリケットにして反応さ
せるが、反応はAlが溶融し一酸化物に浸透するので、
両原料とも粒度はあま9重要でないが、1m以下程度が
好ましい。ブリケットにするKはブリケットマシン等で
圧縮成形してもよく、マた澱粉、CMC等の1凍結合剤
を加えて造粒してもよい。従って、本発明におけるブリ
ケット成形にはこれら粒状、塊状等すべての成形体を含
む。ブリケットの大きさは特に制限ないが、5〜50m
+の範囲が適当である。
The raw materials are an oxide mainly composed of CaO and a metal reducing agent mainly composed of M. The former uses CaO alone or a mixture of oxides, chlorides, fluorides, etc., which will be described later, and the latter uses M alone, or M is mixed with Si2, etc., which will be described later, or alloyed with AI. These are powdered, made into briquettes, and reacted, but the reaction involves melting Al and penetrating the monoxide.
The particle size of both raw materials is not critical, but is preferably about 1 m or less. K to be made into briquettes may be compression-molded using a briquette machine or the like, or may be granulated by adding a frozen mixture of mata starch, CMC, etc. Therefore, briquette molding in the present invention includes all of these granular, block-like, and other molded products. There is no particular limit to the size of the briquettes, but 5 to 50 m.
A range of + is appropriate.

酸化物と還元剤の配合は前記した精錬剤の組成つパ に応じ、次の反応式に基すいて定める。The composition of the oxide and reducing agent depends on the composition and performance of the refining agent described above. It is determined based on the following reaction formula.

3CaO+2AA’ →aca + AJ20B  +
+++++ (1)生成したCaは原料Mと合金に、A
JtOs FiCaOと結合してフラックスになる。C
aをAlと合金化することによりCaの蒸発逸散が抑制
される。
3CaO+2AA' → aca + AJ20B +
++++++ (1) The generated Ca is mixed with raw material M and alloyed with A
JtOs combines with FiCaO to become a flux. C
By alloying a with Al, evaporation and loss of Ca is suppressed.

これよりCaF、を除ぐ前記した望ましい組成であるC
a−k1合金(Ca 20〜50重量q6)20〜50
チ、caO+Affl、Os (Cab/A40a  
0.9〜5.0重量比)80〜50%ではCaの蒸発も
考慮し、原料0CaOとMは重量比でCab/Alf:
 0.5〜4.0の範囲で選択すればよい。
From this, the above-mentioned desirable composition excluding CaF, C
a-k1 alloy (Ca 20-50 weight q6) 20-50
Chi, caO+Affl, Os (Cab/A40a
0.9 to 5.0 weight ratio) 80 to 50%, taking into account the evaporation of Ca, the raw materials 0CaO and M are Cab/Alf in weight ratio:
It may be selected within the range of 0.5 to 4.0.

また精錬剤にCaF2、CaCl2、Na、01Sin
、、S(M&Ba%Ni1希土類元素又はこの酸化物を
含有させる場合はこれらの元素あるいは化合物を原料に
配合すればよい。化合物の場合、加熱過程で1部M或い
はCaにより還元されるものがあっても、生成した金属
が目的とする精錬剤において有害でない限シ支障はない
。これらは金属の場合は主としてCa−)Jと合金に、
化合物ではフラックス成分となる。
In addition, CaF2, CaCl2, Na, 01Sin are used as refining agents.
,,S(M&Ba%Ni1) When containing rare earth elements or their oxides, these elements or compounds may be blended into the raw materials.In the case of compounds, some of them may be reduced by M or Ca during the heating process. However, there is no problem as long as the metal produced is not harmful to the target refining agent.
In compounds, it becomes a flux component.

焼成は850〜1350℃、好ましくは1000〜12
00℃でアルゴンなどの不活性雰囲気下がよい。
Firing at 850-1350℃, preferably 1000-12
Preferably, the temperature is 00°C and an inert atmosphere such as argon is used.

大気中や窒素雰囲気でも不可能ではないが窒化アルミ等
が生成したシして反応が抑制されるのでめまシ好ましく
ない。850℃未満では反応が起らず、1350℃を越
えても反応上の利点がないばかシかCaの蒸発が多くな
る。
Although it is possible to use air or nitrogen atmosphere, it is not preferable because aluminum nitride and the like will be generated and the reaction will be suppressed. If the temperature is lower than 850°C, no reaction will occur, and if the temperature exceeds 1350°C, there will be no reaction advantage, and a large amount of Ca will evaporate.

雰囲気の圧力は反応促進の面からある程度減圧したF)
、Caなどの蒸発を抑える目的で若干加圧することもで
きる。
The pressure of the atmosphere was reduced to some extent in order to promote the reactionF)
, Ca, etc. can be slightly pressurized for the purpose of suppressing evaporation.

焼成炉は雰囲気の実質的コントロールができれば、その
形式Fi%に制限されない。例えば横型台車炉、竪型シ
ャフト炉、レトルト炉などいずれでもよいし、反応促進
や連続操業などの目的のために転動などの手段で原料を
移動させることもできる。
The type of firing furnace is not limited to Fi% as long as the atmosphere can be substantially controlled. For example, a horizontal bogie furnace, a vertical shaft furnace, a retort furnace, etc. may be used, and the raw material may be moved by means such as rolling for the purpose of promoting the reaction or continuous operation.

焼成後のブリケットはそのままでも精錬剤として使用で
きるが、破砕して粒状とし、或いはさらに粉砕して粒子
粉末にして使用することができる。
The briquettes after firing can be used as they are as a refining agent, but they can also be crushed into granules or further crushed into granular powder.

粉砕しても各粒子は大部分合金相と7ラツクス相が一体
となって結合している。
Even after pulverization, most of each particle is made up of an alloy phase and a 7-lux phase combined together.

これを光学顕微鏡、X線マイクロアナライザーなどで調
査すると極めて微細なCaAl2やCa44などのCa
−)4合金相と12CaO・7M20.やCaOなどの
7ラツクス相が複雑に混ざシ合っているのが認められる
When this is investigated using an optical microscope or an X-ray microanalyzer, extremely fine CaAl2, Ca44, etc.
-) 4 alloy phases and 12CaO・7M20. A complex mixture of seven lattice phases such as and CaO is observed.

従来、上記した製造法に関連するものとしてCa−A1
合金の製造法はいくつか提案されているが、Mをブリケ
ットにL、1500〜1600℃の高温下で反応させ、
Ca−AJ金合金スラグを溶融分離する方法もあるが、
高温かつ大気中であるため、MやCa の蒸発、酸化、
窒化損失が大きく工業的規模での実用化は困難であった
Conventionally, Ca-A1 has been used as a material related to the above-mentioned production method.
Several methods have been proposed for producing the alloy, but one method involves reacting M with briquettes at a high temperature of 1500 to 1600°C.
There is also a method of melting and separating Ca-AJ gold alloy slag,
Because it is at high temperature and in the atmosphere, M and Ca evaporation, oxidation,
The nitriding loss was large, making it difficult to put it into practical use on an industrial scale.

これに対し本発明の方法におけるCaOのMによる還元
反応では合金相とフラックス(スラグ)相とを分離する
必要がなく、シかも生成するCa−Uの量は精錬剤とし
て有効な含有量とすればよいので、還元反応も比較的低
温で容易に進行させることができる。そして溶鋼中に介
在しているAJ20s等の捕捉能の大きいフラックスの
組成、即ちl 2cao @ 71’J*OsとCaO
ノ混合組成ノフラツクスをCa−)J合金と併せて一挙
に得ることができるのは本発明の製造法の大きな利点で
ある。
On the other hand, in the reduction reaction of CaO with M in the method of the present invention, there is no need to separate the alloy phase and the flux (slag) phase, and the amount of Ca-U produced is an effective content as a refining agent. Therefore, the reduction reaction can be easily carried out at a relatively low temperature. And the composition of the flux with high trapping ability, such as AJ20s, which is present in the molten steel, that is, l 2cao @ 71'J*Os and CaO.
It is a great advantage of the manufacturing method of the present invention that a mixed composition noflux can be obtained at once together with a Ca-)J alloy.

実施例 原料として1111I+以下に粉砕したCa097.5
 %を含有する生石灰670部、A190%を含有する
M合金のダライ粉330部を十分に混合しアーモンド状
ブリケットに成型した。このブリケットを密閉可能な内
熱式横形台車炉に装入しArl気圧に置換の後1100
℃迄昇温し3Hr保持し焼成した。炉冷後、炉より排出
したブリケットを化学分析にて態別定量を試みた結果、
重量でCa 16.7 % 、AA! 22.5q6 
CaO37,0%、Al2O321,5%から成ってい
た。X線回折によればCaA&、CaO112CaO・
7AJ20gの明確なピークが認められた。メタル相の
Ca含有量は40%程度と推定される。更にこのブリケ
ットをインジェクションで用いる60メツシュ全通迄微
粉砕した後、採取した粉末単一粒子を顕微鏡、X線マイ
クロアナライザーで調査した結果全てメタル相とフラッ
クス相が混合した組織が認められた。
Ca097.5 ground to 1111I+ or less as an example raw material
670 parts of quicklime containing 190% A and 330 parts of M alloy powder containing 190% A were thoroughly mixed and molded into almond-shaped briquettes. The briquettes were charged into a sealable internal heating type horizontal bogie furnace, and after being replaced with Arl pressure, the temperature was 1100.
The temperature was raised to ℃ and maintained for 3 hours for firing. After the furnace was cooled, we attempted to quantify the briquettes discharged from the furnace by chemical analysis.
Ca 16.7% by weight, AA! 22.5q6
It consisted of 7.0% CaO and 21.5% Al2O3. According to X-ray diffraction, CaA&, CaO112CaO・
A clear peak of 7AJ20g was observed. The Ca content of the metal phase is estimated to be about 40%. Furthermore, after this briquette was pulverized to 60 meshes for use in injection, the sampled powder single particles were examined using a microscope and an X-ray microanalyzer, and as a result, a mixed structure of a metal phase and a flux phase was observed in all of the briquettes.

次にこの微粉末粒子を溶鋼の精錬剤に使用した結果を示
す。
Next, we will show the results of using this fine powder particle as a refining agent for molten steel.

高周波誘導炉(電融マグネシャライニング)中で、30
に90kl −8iキルド鋼を溶製し、アルゴン雰囲気
下にて前記精錬剤及び比較例として表1に示す精錬剤を
溶鋼重量に対しO,SS添加し、15分後に溶鋼を金型
に鋳造した。
In a high frequency induction furnace (electrofused magnesia lining), 30
90kl -8i killed steel was melted, and the refining agent and the refining agent shown in Table 1 as a comparative example were added to the weight of the molten steel in O and SS in an argon atmosphere, and after 15 minutes, the molten steel was cast into a mold. .

鋳塊よりサンプυ・ングし、S含有量の分析及び介在物
の解析をした。得られた結果を表1に示す。
The ingot was sampled and the S content and inclusions were analyzed. The results obtained are shown in Table 1.

なお精錬剤の添加情況の観察で、本発明のものは添加後
ヒユームの突発的な発生が見られずCaの急激な蒸発が
抑えられていることが認められた。
In addition, by observing the addition of the refining agent, it was found that in the case of the present invention, no sudden generation of hume was observed after the addition of the refining agent, and rapid evaporation of Ca was suppressed.

表中、本発明のものと比較例はCa−Alの組成、Ca
 −8i 、CaO1A40sの含有量については同一
とした。また表中O印は微細なカルシウムアルミネート
系介在物又は微細な球状のCaO−AJ20s −Ca
S系介在物が認められたことを示し、X印はこれらの介
在物が認められずA420sクラスターとMnSが存在
していることを示す。
In the table, the composition of the present invention and the comparative example are Ca-Al composition, Ca
-8i and the content of CaO1A40s were the same. In addition, O in the table indicates fine calcium aluminate inclusions or fine spherical CaO-AJ20s-Ca
This indicates that S-based inclusions were observed, and the X mark indicates that these inclusions were not observed and A420s clusters and MnS were present.

手続補正書(自発) 昭和57年9月lk日 特許庁長官 若杉 和装置 1、事件の表示 昭和57年特許顧第19697号 2、発明の名称 金属精錦剤 3、補正をする者 事件との関係 特許用−人 住所 東京III区芝大門−丁目13書9号名称 10
0)  昭和電工株式会社 代表者 洋本 泰延 番1代理人 居所 東京都港区芝大門−丁目13番9号昭和電工株式
会社内 〒105  置 03−432−5111 (代表)6
、補正の内容 本■哨編書のV!電を以下のとおり補正します。
Procedural amendment (spontaneous) September 1980, Director General of the Patent Office Kazuki Wakasugi 1, Indication of the case 1982 Patent Review No. 19697 2, Name of the invention Metal fine brocade agent 3, Person making the amendment Related Patent-Person Address Tokyo III-ku Shiba Daimon-Chome 13-sho No. 9 Name 10
0) Showa Denko Co., Ltd. Representative: Yomoto Yasunobu No. 1 Agent Address: Showa Denko Co., Ltd., 13-9 Shiba Daimon-chome, Minato-ku, Tokyo 105 03-432-5111 (Representative) 6
, Correction contents book ■ Sho-edited book V! Correct the voltage as follows.

(1)餡71[15行、rlljを「い」と補正する。(1) Bean paste 71 [line 15, correct rllj to "ii".

(2)第71119行、rlJを「−」と補正する。(2) Line 71119, correct rlJ to "-".

(3)第111[1行、rlllJを「一部Jと補正す
る。
(3) Line 111 [1st line, rllllJ is corrected as “partly J”.

(4)第131[善行〜5行にかけてrCa−AIの量
」とあるのをrca−Al含金の量」と補正する。
(4) No. 131 [Amount of rCa-AI in lines 131 to 5] is corrected to "amount of rCa-Al metal content."

(5)Its頁表1の下2行目にあるrca−51jを
削除する。
(5) Delete RCA-51j in the second row at the bottom of Table 1 on its page.

−(−(

Claims (1)

【特許請求の範囲】[Claims] (1)  Ca−AJ金合金CaO1AJ20s を主
成分とし、これらが一体に結合してなる金属精錬剤(2
)  Ca−47合金20〜501、CaO+A& 0
a80〜50ts%CaFsO〜30qbからなる特許
請求の範囲第1項記載の金属精錬剤
(1) A metal refining agent (2
) Ca-47 alloy 20~501, CaO+A&0
The metal refining agent according to claim 1, consisting of a80-50ts% CaFsO-30qb
JP1969782A 1982-02-12 1982-02-12 Metal refining agent Granted JPS58141320A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP1969782A JPS58141320A (en) 1982-02-12 1982-02-12 Metal refining agent
GB08303495A GB2118209B (en) 1982-02-12 1983-02-08 Refining agent of molten metal and methods for producing the same
FR8302447A FR2521593B1 (en) 1982-02-12 1983-02-10 MOLTEN METAL REFINING AGENT AND PROCESS FOR PRODUCING THE AGENT
SE8300707A SE459339B (en) 1982-02-12 1983-02-10 REFINING MATERIAL FOR METAL AND PROCEDURES FOR ITS PREPARATION
CA000421358A CA1204596A (en) 1982-02-12 1983-02-10 Refining agent of molten metal and methods for producing the same
DE19833304762 DE3304762A1 (en) 1982-02-12 1983-02-11 FINISHING AGENT FOR METALS AND METHOD FOR THE PRODUCTION THEREOF
US06/466,188 US4435210A (en) 1982-02-12 1983-02-14 Refining agent of molten metal and methods for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1969782A JPS58141320A (en) 1982-02-12 1982-02-12 Metal refining agent

Publications (2)

Publication Number Publication Date
JPS58141320A true JPS58141320A (en) 1983-08-22
JPH0125368B2 JPH0125368B2 (en) 1989-05-17

Family

ID=12006449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1969782A Granted JPS58141320A (en) 1982-02-12 1982-02-12 Metal refining agent

Country Status (1)

Country Link
JP (1) JPS58141320A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6475622A (en) * 1987-09-17 1989-03-22 Sumitomo Metal Ind Desulfurizing method in molten steel
JPH0347910A (en) * 1989-07-14 1991-02-28 Nippon Steel Corp Method for deoxidizing molten steel
KR100368726B1 (en) * 1998-12-29 2003-05-09 주식회사 포스코 Molten steel desulfurization agent for powder blowing of aluminum deoxidized steel

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5719696A (en) * 1980-07-09 1982-02-01 Tokyo Shibaura Electric Co Lining plate for concrete structure containment vessel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5719696A (en) * 1980-07-09 1982-02-01 Tokyo Shibaura Electric Co Lining plate for concrete structure containment vessel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6475622A (en) * 1987-09-17 1989-03-22 Sumitomo Metal Ind Desulfurizing method in molten steel
JPH0347910A (en) * 1989-07-14 1991-02-28 Nippon Steel Corp Method for deoxidizing molten steel
KR100368726B1 (en) * 1998-12-29 2003-05-09 주식회사 포스코 Molten steel desulfurization agent for powder blowing of aluminum deoxidized steel

Also Published As

Publication number Publication date
JPH0125368B2 (en) 1989-05-17

Similar Documents

Publication Publication Date Title
US5397379A (en) Process and additive for the ladle refining of steel
US4435210A (en) Refining agent of molten metal and methods for producing the same
US4139369A (en) Desulphurization of an iron melt
US20200024145A1 (en) Method for resource recovery from silicon slag and deoxidizing agent for iron and steelmaking
US3591367A (en) Additive agent for ferrous alloys
JPH06145836A (en) Production of alloy utilizing aluminum slag
CN1327007C (en) Al-Mg-Ca-Fe alloy contg. micro-carbon, low silicon, low phosphorous, low-sulphur used for steelmaking
CN113122680A (en) Steel slag modifier and preparation and use methods thereof
JPS58141320A (en) Metal refining agent
US4361442A (en) Vanadium addition agent for iron-base alloys
US5002733A (en) Silicon alloys containing calcium and method of making same
EP0061816B1 (en) Addition agent for adding vanadium to iron base alloys
CN1064085C (en) Agent for refining and heat-insulating of molten steel surface and its preparation process
CN1186465C (en) Aluminium slag ball and its preparation method
KR102282018B1 (en) Composite deoxidizer for steel making and cast steel and manufacturing method
JPH0125367B2 (en)
RU2703060C1 (en) Charge for smelting silicocalcium
JPS645083B2 (en)
RU2298046C2 (en) Carbon ferromanganese melting process
JPS609816A (en) Production of metal refining agent
EP0891431A1 (en) Desulphurising calcium carbide blend
SU1560569A1 (en) Method of melting manganese-containing steel
JPS59159945A (en) Method for producing metallic magnesium and calcium ferrite from dolomite
KR100872906B1 (en) Deoxidation agent of slag having enhanced reactivity
SU1211299A1 (en) Method of producing aluminium cast iron with compact graphite