JPS5814047A - Detection of cracks in test pieces - Google Patents

Detection of cracks in test pieces

Info

Publication number
JPS5814047A
JPS5814047A JP11312581A JP11312581A JPS5814047A JP S5814047 A JPS5814047 A JP S5814047A JP 11312581 A JP11312581 A JP 11312581A JP 11312581 A JP11312581 A JP 11312581A JP S5814047 A JPS5814047 A JP S5814047A
Authority
JP
Japan
Prior art keywords
test piece
crack
potential difference
distance
lead wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11312581A
Other languages
Japanese (ja)
Inventor
Takashi Oota
孝 太田
Tsutomu Fujii
勉 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Koki Seizosho KK
Original Assignee
Tokyo Koki Seizosho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Koki Seizosho KK filed Critical Tokyo Koki Seizosho KK
Priority to JP11312581A priority Critical patent/JPS5814047A/en
Publication of JPS5814047A publication Critical patent/JPS5814047A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/20Investigating the presence of flaws

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To enable direct reading of the length of cracks from detected values while eliminating the calibration of the quality and shape of a test piece or the atmospheric temperature by measuring the length from a linear division ratio based on a crack detection distance and an energization distance separately arranged. CONSTITUTION:An energization lead wire and a crack potential difference detection lead wire 7 are arranged above and below a test piece 4 through a notch 3 in such a manner a specified energization distance and a specified crack detection distance are separately provided therefor. A power source 6 is connected to the lead wire 5 and an amplifier 8 to the lead wire 7 separately. An amplifier 11 is connected to the lead wire 5 and outputs thereof are inputted into a divider 12 with outputs from the amplifier 8 to compute the ratio between both voltages, which is directly read with an indicator 9. In this case, the resistance due to cracks of the test piece 4 and changes in the resistance of the test piece with the development of cracks are expressed by a function only between the crack detection distance and the energization distance. The proper setting of these distances permits the linearization of the length of the cracks with respect to the resistance ratio within a specified range.

Description

【発明の詳細な説明】 本発明は材料試験における試験片の亀裂検出方法に係シ
、特に電気ポテンシャル法の改善に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for detecting cracks in specimens in materials testing, and more particularly to improvements in the electric potential method.

一般に金属材料等の強度を試験する材料試験において、
繰返し荷重等全試験片に加えて発生する亀裂の検出方法
の一つに電気ポテンシャル法力する0 第1図は従来の電気ポテンシャル法を示すもので、図示
しない材料試験機の上下プルロッド1゜2には、切欠き
3を有する試験片4が絶縁把持されておシ、この試験片
4には、リード#5,5を介して電源6が、また亀裂電
位差検出用リード線7,7を介して増幅器8がそれぞれ
接続されている。そして増幅器8の出力側には六示器9
が接続されている。
Generally, in material tests that test the strength of metal materials, etc.
One method for detecting cracks that occur in all test specimens due to repeated loading is the electric potential method. Figure 1 shows the conventional electric potential method. In this case, a test piece 4 having a notch 3 is held insulated, and a power source 6 is connected to this test piece 4 through leads #5, 5, and a power source 6 is connected to the test piece 4 through lead wires 7, 7 for detecting crack potential difference. Amplifiers 8 are connected to each. And on the output side of the amplifier 8 there is a six indicator 9.
is connected.

以上の構成において亀裂長さの検出に際しては、まずリ
ードa5を介して試験片4の軸方向に定電流(定電圧)
を印加するとともlこ、上下プルロッド1,2によp試
験片4に矢印方向の繰返し荷重を加える。そして切欠t
83に亀裂が発生すると。
In the above configuration, when detecting the crack length, first, a constant current (constant voltage) is applied to the axial direction of the test piece 4 via the lead a5.
At the same time, a repeated load is applied to the test piece 4 in the direction of the arrow by the upper and lower pull rods 1 and 2. and notch t
When a crack occurs in 83.

増幅器8にはこの亀裂電位差信号が入力され、さらに表
示器9の指示によj)82図に示す亀裂長さ対電位差出
力の特性曲線が得られる。
This crack potential difference signal is input to the amplifier 8, and further, according to instructions from the display 9, a characteristic curve of the crack length versus potential difference output shown in FIG. 82 is obtained.

ところで、第2図1こ示す特性曲線は一般に非線形をな
しておシ、また電位差出力は試験片の材質。
By the way, the characteristic curve shown in FIG. 2 is generally nonlinear, and the potential difference output depends on the material of the test piece.

形状、雰囲気温度および電源変動に影響される。Affected by shape, ambient temperature, and power supply fluctuations.

このため、従来の検出方法ではそれぞれの較正および定
電流(定電圧)化が必要で6つ友。
For this reason, conventional detection methods require calibration and constant current (constant voltage) for each.

本発明の目的は、試験片の材質、形状または算囲気温贋
の較正が不要で定電流(定電圧)化の必要もない試験片
の亀裂検出方法を提供するにある。
An object of the present invention is to provide a method for detecting cracks in a test piece that does not require calibration of the material, shape, or calculated ambient temperature of the test piece, and does not require constant current (constant voltage).

本発明の他の目的は、検出出力から亀裂長さを直読でき
る試験片の亀裂検出方法を提供するにある。
Another object of the present invention is to provide a method for detecting cracks in a test piece that allows the length of cracks to be directly read from the detection output.

以下、本発明の実施例を図面を参照して説明する。Embodiments of the present invention will be described below with reference to the drawings.

第3図−こおいて番号1.2は、図示しない材料試験機
の上下プルロッドであシ、このプルロッド1.2には、
切欠き3を有する試験片4がピン10を介して取付けら
れている。この試験片4の前記切欠き3を介してその上
下位置には、通電用のリード線5,5および亀裂電位差
検出用リードM7゜7が所要の通電距離および亀裂検出
距離をそれぞれ有して取付けられてお夛リードlI!1
5には電源6が、またリード線7には増幅器8がそれぞ
れ接続されている。前記リード線5にはまた、増幅器1
1が接続され、この増幅器11からの出力は前記増幅器
8からの出力とともに′a算器12に入力されて演算さ
れ、その結果が表示器9に入力されるよりになっている
Figure 3 - In this figure, number 1.2 is the upper and lower pull rods of the material testing machine (not shown), and this pull rod 1.2 has the following:
A test piece 4 having a notch 3 is attached via a pin 10. Lead wires 5, 5 for energization and leads M7゜7 for crack potential difference detection are attached to the upper and lower positions of the test piece 4 through the notch 3 with the required energization distance and crack detection distance, respectively. It’s time to lead! 1
5 is connected to a power source 6, and the lead wire 7 is connected to an amplifier 8. The lead wire 5 also includes an amplifier 1.
1 is connected, and the output from this amplifier 11 is input to the 'a calculator 12 together with the output from the amplifier 8 for calculation, and the result is input to the display 9.

ここで、試験片4においてリード線7.7間の切欠t!
、3における亀裂抵抗をr、’)−ド線5,5間の試験
片抵抗をRとすると。
Here, in the test piece 4, the notch t! between the lead wires 7 and 7!
, 3 is r, and the test piece resistance between the wires 5 and 5 is R.

但し、ρ:固有抵抗 i!1:リード線7.7間の距離 (亀裂検出距離) 12:リード線5.5間の距離 (通電距離) B:試験片4の断面積 となシ、両抵抗r、Rは距離および断面積lζ関連して
いる。そして試験片4に第3図に示す矢印方向の繰返し
荷重を加えると、切欠き3からの亀裂の発生進展に伴な
い、抵抗r、Rは第4図に示すように一方は大きく他方
は小さく変化する特性曲線となる。
However, ρ: specific resistance i! 1: Distance between lead wires 7.7 (crack detection distance) 12: Distance between lead wires 5.5 (current carrying distance) B: Cross-sectional area of test piece 4 and R, both resistances r and R The area lζ is related. When a repeated load is applied to the test piece 4 in the direction of the arrow shown in Fig. 3, as a crack develops from the notch 3, the resistances r and R become larger on one side and smaller on the other as shown in Fig. 4. This results in a changing characteristic curve.

また、増幅器8,11の増幅度をそれぞれ人、Bとする
と、各増幅器8.11の出力電圧は、計測電圧ArI・
・・増幅器8の出力電圧比較電圧BRI・・増幅器11
の出力電圧但し I:*源6から試験片4に印加 される電流 として表わすことができる。そしてこれらの出力電圧は
割算器12に入力されて(3)式の演算がなされ、両軍
圧の比が求められる。
Further, if the amplification degrees of the amplifiers 8 and 11 are expressed as B and B, respectively, the output voltage of each amplifier 8 and 11 is the measured voltage ArI.
...Output voltage comparison voltage BRI of amplifier 8...Amplifier 11
The output voltage of where I: *can be expressed as the current applied from the source 6 to the test piece 4. These output voltages are then input to the divider 12, where the calculation of equation (3) is performed, and the ratio between the two military pressures is determined.

、この(3)式において、試験片4の初期状態(亀裂長
さJ = 10 における抵抗R=R,)、r=r@ 
)の電圧比が1になるように増幅度A、Bをそれぞれ調
整すると。
, In this equation (3), the initial state of the test piece 4 (resistance R=R at crack length J = 10), r=r@
) by adjusting the amplification degrees A and B so that the voltage ratio becomes 1.

よシ。Yosi.

となる。この(6)式は試験片4に通電される電流Iに
依存しないのでこの電流■の変動に影響されず、したが
って電源6を定vt流(定電圧)源とする必要がない。
becomes. Since this equation (6) does not depend on the current I applied to the test piece 4, it is not affected by fluctuations in the current (2), and therefore there is no need to use the power source 6 as a constant VT current (constant voltage) source.

このため、試験片4への強度影響のない低電流等任意の
電流を与えることが可能となる。
Therefore, it is possible to apply any current such as a low current that does not affect the strength of the test piece 4.

また、計測電圧ArIおよび比較電圧BRIは、いずれ
も試験片4から検出されるので、 4゜、/R。
Furthermore, since both the measurement voltage ArI and the comparison voltage BRI are detected from the test piece 4, 4°,/R.

状あるいは雰囲気温度に影響されない。したがってこれ
らを較正することなく表示器9の表示値からそのまま亀
裂長さを求めることが可能となる。
unaffected by environmental conditions or ambient temperature. Therefore, it is possible to directly determine the crack length from the values displayed on the display 9 without calibrating them.

しかして、計測電圧と比較電圧との電圧比を用いること
によシ、試験片の材質、形状または雰囲気温度の較正が
不要とな夛、また定電流(定電圧)化の必要もない。
By using the voltage ratio between the measurement voltage and the comparison voltage, there is no need to calibrate the material, shape, or ambient temperature of the test piece, and there is no need for constant current (constant voltage).

ところで、前記試験片4における亀裂抵抗rおよび試験
片抵抗Rの亀裂進展に伴なう抵抗変化は、第4図からも
明らかなようlこ非線形をなすのが通例である。このた
め、亀裂長さlと抵抗比 r/r、。
By the way, as is clear from FIG. 4, the crack resistance r and the resistance change of the test piece resistance R in the test piece 4 as the crack progresses are usually non-linear. Therefore, the crack length l and the resistance ratio r/r,.

R/Roとの関係も第5図に示すように線形と鉱ならな
い。
The relationship with R/Ro is also linear as shown in FIG.

しかし、これらの抵抗比 /、/  は、前記ro  
  kQ (1) 、 (2)式から導びかれるようにリード線7
.7および5,5の試験片4取付距離、すなわち亀裂検
出距離および通電距離のみの関数でhv、したがってこ
れらの距離を適当に設定することによシ、定範囲(第6
図ζこおりてl。からaまでの範囲)ζこおいて線形と
することが可能となる。そしてこれζこよシ、表示器9
の指示値から亀裂長さlを直読することが可能となる。
However, these resistance ratios /, / are
kQ As derived from equations (1) and (2), the lead wire 7
.. hv is a function of only the installation distance of test piece 4 of 7 and 5, 5, that is, the crack detection distance and the current conduction distance.Therefore, by appropriately setting these distances, it is possible to
Figure ζ Koorete l. It is possible to make it linear in the range from ζ to a). And this is ζkoyoshi, display 9
It becomes possible to directly read the crack length l from the indicated value.

しかして、亀裂検出距離および通電距離を適当に設定す
ることによシ、検出値から亀裂長さを直読することがで
きる。
By appropriately setting the crack detection distance and the energization distance, the crack length can be directly read from the detected value.

以上説明したように本発明は、亀裂電位差の増幅出力と
1通電距離にυける試験片抵抗および通電電流から求め
られる試験片電位の増1隔出力との割算比を求め、その
1直から亀裂長さを測定するので、試験片の材質、形状
′または雰囲気温度の較正が不要となシ、定電流(定電
圧)化の必要もない。
As explained above, the present invention calculates the division ratio of the amplified output of the crack potential difference and the increased output of the test piece potential obtained from the test piece resistance and the applied current over one energizing distance, and from that one turn. Since the crack length is measured, there is no need to calibrate the material, shape or ambient temperature of the test piece, and there is no need for constant current (constant voltage).

また、前記割算比が線形゛をなすように亀裂検出距離お
よび通電距離をそれぞれ設定し、線形をなす割算比の値
から亀裂長さを測定するので、検出値から亀裂長さを直
読することができる。
In addition, the crack detection distance and energization distance are each set so that the division ratio is linear, and the crack length is measured from the linear division ratio value, so the crack length can be directly read from the detected value. be able to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の電気ポテンシャル法を示す説明図、第2
図は従来の′亀裂長さ対電位差出力の特性図、第3図は
本発明の実施例を示す説明図、第4図および第5図は亀
裂長さ対亀裂抵抗、試験片抵抗の特性図、第6図は亀裂
長さ対割算器出力の特性図である。 3・・・切欠き、4・・・試験片、5・・・通電相リー
ド線。 7・・・亀裂電位差検出用リード線、8,11・・増幅
器、9・・・表示器、12・・・割算器。 出願人代理人   猪  股     清第1図 □1裟炙こ 第3図 4 第4図 10   □龜鼠臭さt 第5図 第6図 (。   □・龜袈畏之[ 252−
Figure 1 is an explanatory diagram showing the conventional electric potential method, Figure 2
The figure is a conventional characteristic diagram of crack length versus potential difference output, Figure 3 is an explanatory diagram showing an embodiment of the present invention, and Figures 4 and 5 are characteristic diagrams of crack length versus crack resistance and test piece resistance. , FIG. 6 is a characteristic diagram of crack length versus divider output. 3... Notch, 4... Test piece, 5... Current-carrying phase lead wire. 7... Lead wire for crack potential difference detection, 8, 11... Amplifier, 9... Display, 12... Divider. Applicant's agent Kiyoshi Inomata Figure 1 □ 1 Roasted Figure 3 Figure 4 Figure 4 10 □ The odor of a rat Figure 5 Figure 6 (.

Claims (1)

【特許請求の範囲】 1、試験片に設けた切欠きの両側1こ通電用リード線お
よび亀裂電位差検出用リード線をそれぞれ接続するとと
もに、この試験片1こ繰返し荷重を加え、亀裂電位差検
出用リード線を介して検出される亀裂電位差出力から亀
裂長さを求めるものにおいて、前記亀裂電位差の増幅出
力と1通電距離における試験片抵抗および通電電流から
求められる試験片電位の増幅出力との割算比を求め、そ
の値から亀裂長さを測定することを特徴とする試験片の
亀裂検出方法。 2、試験片に設けた切欠きの両側に通電用リード線およ
び亀裂電位差検出用リード線をそれぞれ接続するととも
に、この試験片に繰返し荷重を加え、亀裂電位差検出用
リード線を介して検出される亀裂電位差出力から亀裂長
さを求めるものにおいて、前記亀裂電位差の増幅出力と
、通電距離における試験片抵抗および通電電流から求め
られる試験片電位の増幅出力との割算比を求めるととも
に、この割算比が線形をなすように亀裂検出距離および
通電距離をそれぞれ設定し、線形をなす割算比の値から
亀裂長さを測定することを特徴とする試験片の亀裂検出
方法。
[Scope of Claims] 1. Connect the current-carrying lead wire and the crack potential difference detection lead wire to each side of the notch provided in the test piece, and apply a repeated load to the test piece to detect the crack potential difference. In determining the crack length from the output of the crack potential difference detected through the lead wire, divide the amplified output of the crack potential difference and the amplified output of the test piece potential determined from the test piece resistance and the energized current at one energizing distance. A method for detecting cracks in a test piece, characterized by determining the ratio and measuring the crack length from that value. 2. Connect current-carrying lead wires and crack potential difference detection lead wires to both sides of the notch provided in the test piece, apply repeated loads to this test piece, and detect crack potential difference detection via the crack potential difference detection lead wires. In determining the crack length from the output of the crack potential difference, find the division ratio between the amplified output of the crack potential difference and the amplified output of the test piece potential determined from the test piece resistance at the energizing distance and the energized current, and also calculate the division ratio. A method for detecting cracks in a test piece, characterized in that a crack detection distance and an energization distance are each set so that the ratio is linear, and the crack length is measured from the value of the linear division ratio.
JP11312581A 1981-07-20 1981-07-20 Detection of cracks in test pieces Pending JPS5814047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11312581A JPS5814047A (en) 1981-07-20 1981-07-20 Detection of cracks in test pieces

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11312581A JPS5814047A (en) 1981-07-20 1981-07-20 Detection of cracks in test pieces

Publications (1)

Publication Number Publication Date
JPS5814047A true JPS5814047A (en) 1983-01-26

Family

ID=14604158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11312581A Pending JPS5814047A (en) 1981-07-20 1981-07-20 Detection of cracks in test pieces

Country Status (1)

Country Link
JP (1) JPS5814047A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007003436A (en) * 2005-06-27 2007-01-11 Tokyo Electric Power Co Inc:The Sensor for crack depth measuring device and crack depth measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007003436A (en) * 2005-06-27 2007-01-11 Tokyo Electric Power Co Inc:The Sensor for crack depth measuring device and crack depth measuring device

Similar Documents

Publication Publication Date Title
US3847017A (en) Strain measuring system
EP0078592A2 (en) Method of and apparatus for automatically compensating for variations in output response characteristics of sensors and the like
US3688581A (en) Device for correcting the non-linear variation of a signal as a function of a measured magnitude
US3541844A (en) Force-measuring washer and readout arrangement
US6417678B2 (en) Bridge circuit for detector
US3609549A (en) Corrosion-measuring device
US4060715A (en) Linearized bridge circuitry
US4363243A (en) Strain gage measurement circuit for high temperature applications using dual constant current supplies
JPH05223771A (en) Heat conduction detector
JPS5814047A (en) Detection of cracks in test pieces
US3825483A (en) Red-ox potentiometer provided with a ph correction circuit
US1050563A (en) Electrical measuring instrument.
US3607701A (en) Electrochemical analyzer for measuring the oxygen content of hot gases
JPH0795022B2 (en) Material testing machine
US4464937A (en) Extensometer readout circuit
US3507152A (en) Method and apparatus for low-inertia or inertia-free temperature measurement
JPH0575058B2 (en)
JP3310479B2 (en) Grain moisture meter
JPS60257314A (en) Non-linearity correcting device
JPS6314784B2 (en)
JP3048377B2 (en) Grain moisture meter
JPS5947242B2 (en) Strain measurement method
JPS6161043B2 (en)
JP2020134330A (en) Heat conduction vacuum gauge
JPS6135967Y2 (en)