JPS58138905A - Two-step combustion controlling method - Google Patents

Two-step combustion controlling method

Info

Publication number
JPS58138905A
JPS58138905A JP57019694A JP1969482A JPS58138905A JP S58138905 A JPS58138905 A JP S58138905A JP 57019694 A JP57019694 A JP 57019694A JP 1969482 A JP1969482 A JP 1969482A JP S58138905 A JPS58138905 A JP S58138905A
Authority
JP
Japan
Prior art keywords
air
combustion
port
stage combustion
step combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57019694A
Other languages
Japanese (ja)
Inventor
Manabu Orimoto
折本 学
Takeo Mita
三田 武雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP57019694A priority Critical patent/JPS58138905A/en
Publication of JPS58138905A publication Critical patent/JPS58138905A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N3/00Regulating air supply or draught
    • F23N3/02Regulating draught by direct pressure operation of single valves or dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/12Integration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/18Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

PURPOSE:To lower the most of generation of NOX without increasing CO in the exhaust gas from a boiler and unburnt matter in the ash, by controlling the value of pressure difference between the pressure in a combustion chamber and the pressure of a blast box for two-step combustion to an optimum value. CONSTITUTION:A port 6 for two-step combustion is provided with a throat diameter varying apparatus 18 for adjusting the velocity of air so that when the amount of air supplied from said port is small, the diameter of the throat is decreased, while when the amount of the air is increased, the diameter of the throat is increased thereby increasing the velocity of air in the blast box 12 for two-step combustion to cause the flame gas in the combustion chamber and the air from the port to be mixed sufficiently. A signal from a two-step combustion air stream generator 19 via a charcteristic relay 21 and a signal from a two-step combustion draft generator 20 are inputted into a subtractor 22, and the output therefrom is processed in a proportional integrator 23, and is passed through a manual operation/automatic operation switch 24 to actuate a control drive 17 so that the desired control is performed.

Description

【発明の詳細な説明】 この発明は、二段燃焼制御法、特にボイラにおける排ガ
ス中のCOや灰中未燃分発生量を低減しながら窒素酸化
物の発生を防止する如好適な二段燃焼制御法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a two-stage combustion control method, particularly a two-stage combustion method that is suitable for preventing the generation of nitrogen oxides while reducing the amount of CO in exhaust gas and unburned matter in ash in a boiler. Concerning control methods.

石炭、石油、ガス等の化石燃料を用いて蒸気を発生させ
るボイラにおいては、公害防止の立場からNOxと称さ
れる窒素酸化物の発生を極力低減する必要がある反面、
省エネルギーの見地からCOlばい塵、灰中未燃分の発
生量を低下しなげればならないという要望がある。しか
も、両者は互に矛盾する要求である所に問題がある。
In boilers that generate steam using fossil fuels such as coal, oil, and gas, it is necessary to reduce the generation of nitrogen oxides called NOx as much as possible from the standpoint of pollution prevention.
From the standpoint of energy conservation, there is a desire to reduce the amount of CO1 dust and unburned matter in the ash. Moreover, the problem lies in the fact that these two requirements are contradictory to each other.

NOx低減法としては従来から、バーナ口の燃焼用空気
量を理論値以下にしてバーナ下流の燃焼温度を下げるこ
とによって目的を達成するという二段燃焼法が採られて
いる。また、排ガス再循環や低NOxバーナの採用も実
施されている。そして、第1図・第2図・第3図のグラ
フに、示されるようにNOx発生量を低減しようとする
と:ガス燃料を用いる場合(第1図に示す)にはCOが
増加し、油燃焼時(第2図に示す)にはCOや未燃炭素
が、石炭燃料の場合(第3図に示す)には灰中未燃分が
増す傾向があり、しかもこの現象はNOx発生防止に効
果がある二段燃焼法において著しく現れる6かかる従来
の二段燃焼方式を第4〜6図に基づいて説明する。第4
図に従来方式のボイラ廻りを15有する二段燃焼装置を
示し、送風機2によって昇圧された燃焼用空気は、空気
予熱機3を経てバーナ用風箱4及び二段燃焼用風箱12
に送られ、それぞれ燃焼用空気および二段燃焼用空気と
して火炉1に供給されるように構成されている。そして
全燃焼用空気量は送風機人口ダンパ2′によって調節さ
れると共に、二段燃焼用空気量は第5図に示すようケ一
定のプログラムに従って二段燃焼用ダンパ14によって
制御される。−また、これに用いる二段燃焼用ポート6
は第6図に示すようにエアレジスタ15を備え、手動ド
ライブ16によって開度を設定して燃焼用空気に旋回を
与えるように成されている。かかる従来の二段燃焼方式
を採ると前記のような諸問題を避けることができないこ
とは、我々の経験上明らかであった。
Conventionally, a two-stage combustion method has been adopted as a method for reducing NOx, which achieves the objective by lowering the amount of combustion air at the burner mouth below the theoretical value and lowering the combustion temperature downstream of the burner. Additionally, exhaust gas recirculation and low NOx burners have been adopted. As shown in the graphs of Figures 1, 2, and 3, when trying to reduce the amount of NOx generated, CO increases when gas fuel is used (as shown in Figure 1), and oil During combustion (as shown in Figure 2), CO and unburned carbon tend to increase, and in the case of coal fuel (as shown in Figure 3), the amount of unburned matter in the ash tends to increase. 6 The conventional two-stage combustion method, which is particularly effective in the two-stage combustion method, will be explained based on FIGS. 4 to 6. Fourth
The figure shows a conventional two-stage combustion system having 15 boiler sections. Combustion air pressurized by a blower 2 passes through an air preheater 3 to a burner wind box 4 and a two-stage combustion wind box 12.
and is configured to be supplied to the furnace 1 as combustion air and second-stage combustion air, respectively. The total amount of combustion air is regulated by the blower artificial damper 2', and the amount of air for second stage combustion is controlled by the second stage combustion damper 14 according to a predetermined program as shown in FIG. -Also, the two-stage combustion port 6 used for this
As shown in FIG. 6, it is equipped with an air register 15, and the opening degree is set by a manual drive 16 to give swirl to the combustion air. It has been clear from our experience that the above-mentioned problems cannot be avoided if such a conventional two-stage combustion system is adopted.

この発明は、上記した従来技術の諸欠点を解消し、ボイ
ラ排ガス中のCOや灰中未燃分を増加させることなくN
Ox発生量を低減できる二段燃焼制御法を提供すること
を目的としている。
This invention solves the above-mentioned drawbacks of the prior art, and eliminates the need for nitrogen without increasing CO in boiler exhaust gas or unburned content in ash.
The purpose of this invention is to provide a two-stage combustion control method that can reduce the amount of Ox generated.

発明者は種り試験検討した結果、既述し−た従来の二段
制御方式では二段燃焼用ポートからの空気流と火炉内火
炎ガス流とが十分に混合しないこと、及びかかる不混合
性が上記諸問題の原因となっていることを確認した。そ
して、この不混合性を解決して火炎ガス流と二段燃焼用
ポートからの空気とを良(混合するようにすれば、上記
目的を達成し得ることを確めた。即ち、従来の燃焼制御
方式を模擬した第7図のようなモデルプラントによって
試験して、従来方式では火炎ガスと二段燃焼ポート(か
らの)空気が良く混合しないことが確められ、このため
にバーナ口の酸素不足と相俟って上記のような現象を呈
するものであり、更に火炉内圧力と二段燃焼用風箱と圧
力の差を適当値に制御すればかかる諸問題を解消して本
目的を達成し得ることが判った。
As a result of various tests, the inventor found that in the conventional two-stage control method described above, the air flow from the two-stage combustion port and the flame gas flow in the furnace do not mix sufficiently, and that such immiscibility It was confirmed that this was the cause of the above problems. We confirmed that the above objective could be achieved by resolving this immiscibility and allowing good mixing of the flame gas flow and the air from the two-stage combustion port. Tests were conducted using a model plant simulating the control method as shown in Figure 7, and it was confirmed that in the conventional method, the flame gas and the air (from) the two-stage combustion port did not mix well. Together with the shortage, the above-mentioned phenomena occur, and if the difference between the pressure inside the furnace and the pressure in the two-stage combustion wind box is controlled to an appropriate value, these problems can be resolved and the objective can be achieved. It turns out it can be done.

要するに、この発明は二段燃焼用ポート径を可変にでき
るように調整用スロート径可変装置を併設し、これを操
作して上記圧力差を予め経験的に定めたプログラムに従
って制御するようにしたものである。
In short, this invention is equipped with a variable throat diameter adjusting device so that the port diameter for two-stage combustion can be varied, and by operating this device, the pressure difference is controlled according to a program determined empirically in advance. It is.

第8図に本発明の一実施例に係る二段燃焼方式を示し、
従来と同構成の二段燃焼装置(1〜16)において同図
(a)の如(二段燃焼用ポート6に、(b)の如くスロ
ート径を調節自在にした空気速度調整用のスロート径可
変装置18を設け、該ポートから供給される空気量が少
ない時はスロート径を小さくすると共に、空気量が増し
た時にはスロート径を大きくすることによって二段燃焼
用風箱12のドラフトを確保すなわち空気流速を高める
ようにしている。かくして第9図のように、火炉内火炎
ガスと二段燃焼ポート空気が十分に混合することが確め
られた。
FIG. 8 shows a two-stage combustion system according to an embodiment of the present invention,
In the two-stage combustion device (1 to 16) with the same configuration as the conventional one, the two-stage combustion port 6 is equipped with a throat diameter for air velocity adjustment as shown in (b), as shown in Figure (a). A variable device 18 is provided to ensure the draft of the two-stage combustion wind box 12 by reducing the throat diameter when the amount of air supplied from the port is small and increasing the throat diameter when the amount of air increases. The air flow velocity was increased.Thus, as shown in Figure 9, it was confirmed that the flame gas in the furnace and the second stage combustion port air were sufficiently mixed.

この二段燃焼制御方式を第8図(a)に例示し、減算器
22に二段燃焼用空気流発信器19かも特性リレー21
を経た信号と二段燃焼用ドラフト発信器20かもの信号
が人力し、その出力が比例積分器23において処理され
手動・自動切替器24を経てコントロールドライブ17
を作動させて所望の制御を行うようになっている。
This two-stage combustion control system is illustrated in FIG.
The signals from the two-stage combustion draft transmitter 20 and the signals from the two-stage combustion draft transmitter 20 are input manually, and the output thereof is processed by the proportional integrator 23 and sent to the control drive 17 via the manual/automatic switch 24.
is activated to perform the desired control.

以上の説明のように本発明によれば、NOx発生を抑え
なからボイラ排ガス中のCOや灰中未燃分発生を最小に
なし得るので、公害を防止しつつ省エネルギーに寄与で
きる。
As described above, according to the present invention, it is possible to minimize the generation of CO in the boiler exhaust gas and unburned matter in the ash by suppressing the generation of NOx, thereby contributing to energy conservation while preventing pollution.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図・第2図・第3図は従来の燃焼方式により発生す
るNOxとCOや灰中未燃分の関係を示すグラフ図、第
4図は従来の二段燃焼方式の概略図、第5図・第6図・
第7図は何れもその説明図、第8図は本発明による制御
方式の概略図、第9図はその火炉内燃焼状態図である。 1:火炉       5:バーナ 6:二段燃焼用ポート 9:排ガス再循環ファン 12:二段燃焼用風箱 15:エアレジスタ16:手動
ドライブ 17:コントロールドライブ 18ニスロート径可変装置 代理人弁理士 中 村 純之助
Figures 1, 2, and 3 are graphs showing the relationship between NOx, CO, and unburned content in ash generated by conventional combustion methods, and Figure 4 is a schematic diagram of the conventional two-stage combustion method. Figure 5・Figure 6・
FIG. 7 is an explanatory diagram thereof, FIG. 8 is a schematic diagram of the control method according to the present invention, and FIG. 9 is a diagram of the combustion state in the furnace. 1: Furnace 5: Burner 6: Two-stage combustion port 9: Exhaust gas recirculation fan 12: Two-stage combustion wind box 15: Air register 16: Manual drive 17: Control drive 18 Nisthroat diameter variable device Patent attorney Nakamura Junnosuke

Claims (1)

【特許請求の範囲】[Claims] 二段燃焼用ポートを有する火炉による二段燃焼法におい
て、当該二段燃焼用ポート径を可変自在にして該ポート
用風箱と火炉との圧力差を所定プログラムに従って調節
するようにしたことを特徴とする二段燃焼制御法。
In a two-stage combustion method using a furnace having two-stage combustion ports, the diameter of the two-stage combustion port is made variable and the pressure difference between the port wind box and the furnace is adjusted according to a predetermined program. A two-stage combustion control method.
JP57019694A 1982-02-12 1982-02-12 Two-step combustion controlling method Pending JPS58138905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57019694A JPS58138905A (en) 1982-02-12 1982-02-12 Two-step combustion controlling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57019694A JPS58138905A (en) 1982-02-12 1982-02-12 Two-step combustion controlling method

Publications (1)

Publication Number Publication Date
JPS58138905A true JPS58138905A (en) 1983-08-18

Family

ID=12006358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57019694A Pending JPS58138905A (en) 1982-02-12 1982-02-12 Two-step combustion controlling method

Country Status (1)

Country Link
JP (1) JPS58138905A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021028557A (en) * 2019-08-09 2021-02-25 一般財団法人電力中央研究所 Combustion facility and combustion method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5074001A (en) * 1973-11-07 1975-06-18

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5074001A (en) * 1973-11-07 1975-06-18

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021028557A (en) * 2019-08-09 2021-02-25 一般財団法人電力中央研究所 Combustion facility and combustion method

Similar Documents

Publication Publication Date Title
CN106247368B (en) A kind of industrial coal powder boiler flue gas recirculation low nitrogen burning method and system
CN104100979B (en) A kind of refuse incineration grate furnace oxygen-enriched combusting remodeling method and device
WO2011000136A1 (en) Tangential pulverized coal combustion device for low nox emission
WO2015103832A1 (en) Classification strengthened low nox pulverized coal burner
CN104913288A (en) Control method of 600 MW subcritical tangentially fired boiler
CN110906359B (en) Combustion device capable of adjusting secondary air temperature and use method
JPS58138905A (en) Two-step combustion controlling method
JPH11304109A (en) Boiler combustor
JPH05113208A (en) Controlling method for co in incinerator
JPS5668708A (en) Method of starting fluidized boiler
CN109539247B (en) Coal gasification low-nitrogen combustor system for thermal power boiler
JP2556480B2 (en) Nitrogen oxide reduction device
JPS62169907A (en) Pulverized coal combustion boiler
JPS63207894A (en) Control of nox in high efficiency
JPS6127410A (en) Combustion apparatus
CN218154187U (en) SCR deNOx systems's gas temperature governing system
CN208154493U (en) A kind of boiler system based on oxygen-enriched combustion technology
JPS6011286B2 (en) Combustion method and combustion device
JPS5758003A (en) Combustion equipment for solid fuel
JP2612284B2 (en) Combustion equipment
CN214501202U (en) Combustion system applied to boiler
JPS63315807A (en) Nox control method for coal fired boiler
JP3159737B2 (en) Control unit for desulfurization unit
CN2343488Y (en) Burning duster for vertical coal fired boiler
JPS6237607A (en) Starting procedure of burning device