JPS58136236A - Inverter operation control system for solar light generating system - Google Patents

Inverter operation control system for solar light generating system

Info

Publication number
JPS58136236A
JPS58136236A JP57017446A JP1744682A JPS58136236A JP S58136236 A JPS58136236 A JP S58136236A JP 57017446 A JP57017446 A JP 57017446A JP 1744682 A JP1744682 A JP 1744682A JP S58136236 A JPS58136236 A JP S58136236A
Authority
JP
Japan
Prior art keywords
voltage
inverter
power generation
generation system
solar power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57017446A
Other languages
Japanese (ja)
Other versions
JPH0572176B2 (en
Inventor
川平 浩良
市東 利一
小西 博雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Hitachi Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP57017446A priority Critical patent/JPS58136236A/en
Publication of JPS58136236A publication Critical patent/JPS58136236A/en
Publication of JPH0572176B2 publication Critical patent/JPH0572176B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は交流系統に適用された太陽光発電システムのイ
ンバータの運転制御方式に係り、特に太陽電池から取シ
出すことのできる出力を最大とし。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an operation control system for an inverter in a solar power generation system applied to an AC system, and particularly to a method for maximizing the output that can be extracted from solar cells.

かつ系統の電圧安定化を図るに好適なインバータの運転
制御方式に関する。
The present invention also relates to an inverter operation control method suitable for stabilizing system voltage.

最近、一段と厳しさを増してきた内外のエネルギ情勢に
対処するために太陽光発電システムの開発が進められて
いる。このようなシステムを交流系統に適用した場合、
システムをどのように運転するかが非常に大きな問題と
なる。
Recently, solar power generation systems have been developed to cope with the increasingly severe domestic and international energy situation. When such a system is applied to an AC system,
The big question is how to operate the system.

第1図は交流系統のうちの配電系統に太陽光発電システ
ムが適用された場合の一系統図を示している。1は配電
系統への高圧側の給電線、2は1次側に2次側の電圧を
調整するためのタップをもったタップ付主変圧器、21
は主変圧器2次側の電圧を検出する交流電圧変成器、2
2は線路電圧降下補償器で、主変圧器1次側の電圧変動
に伴う2次側配電線の電圧変動を抑制するため交流電圧
変成器21で検出された主変圧器2次側の電圧に基づき
主変圧器1次側のタップを調整する。3は配電線、41
〜46は配電線3の送電端0点から末端■点までの間に
接続された負荷、5は太陽光発電システムで、太陽光発
電システムの詳細な構成を第2図に示す。51は太陽電
池、52は電池のエネルギを蓄積し、インバータの入力
エネルギを平滑化するコンデンサ、53は半導体スイッ
チで構成される交直変換器(インバータ)で、このイン
バータは自身で電流の転流が可能な自励式インバータで
も、系統からの電源により転流を行う他励式インバータ
のどちらでも良いが、ここでは用途としてより広範囲な
運転能力をもつ自励式インバータについて説明する。5
4はインバータの□1 高調波成分を除去するための交流フィルタ、55はイン
バータ53を配電系統へ接続する変換用変圧器、56は
インバータ53を構成する半導体スイッチのオンオフを
制御する制御回路、57.58はインバータの交流出力
側及び配電線の交流電圧を検出する交流電圧変成器であ
る。通常このようなシステムは半導体スイッチのオンオ
フを行う位相とインバータの交流出力電圧の大きさを制
御して、一定の力率(例えば力率=1)でかつ、太陽電
池から*b出すことのできる出力が最大となるような運
転方式が考えられている。
FIG. 1 shows a system diagram when a solar power generation system is applied to a distribution system of an AC system. 1 is a high-voltage power supply line to the power distribution system, 2 is a tapped main transformer with a tap on the primary side for adjusting the voltage on the secondary side, 21
is an AC voltage transformer that detects the voltage on the secondary side of the main transformer, 2
2 is a line voltage drop compensator that adjusts the voltage on the secondary side of the main transformer detected by the AC voltage transformer 21 to suppress voltage fluctuations on the secondary distribution line due to voltage fluctuations on the primary side of the main transformer. Adjust the tap on the primary side of the main transformer based on this. 3 is the power distribution line, 41
46 is a load connected between the power transmission end point 0 and the terminal point 2 of the distribution line 3, and 5 is a solar power generation system. The detailed configuration of the solar power generation system is shown in FIG. 51 is a solar battery, 52 is a capacitor that stores battery energy and smoothes the input energy of the inverter, and 53 is an AC/DC converter (inverter) composed of semiconductor switches. Either a self-excited inverter or a separately-excited inverter that performs commutation using power from the grid may be used, but here we will discuss a self-excited inverter that has a wider range of operating capabilities. 5
4 is an AC filter for removing □1 harmonic components of the inverter, 55 is a conversion transformer that connects the inverter 53 to the power distribution system, 56 is a control circuit that controls the on/off of the semiconductor switch that constitutes the inverter 53, 57 .58 is an AC voltage transformer that detects the AC voltage on the AC output side of the inverter and the distribution line. Normally, such a system controls the phase for turning on and off the semiconductor switch and the magnitude of the AC output voltage of the inverter, so that the power factor can be maintained at a constant level (e.g., power factor = 1) and can be output from the solar cell. An operating method that maximizes output is being considered.

第3図は第1図の配電系統における配電線各所の電圧分
布の概略を示した図である。配電線は配電線末端(第1
図では0点)において定格負荷状態で規定の電圧降下内
1例えば6.8 kVの配電系統では末端における電圧
降下はaooVに入るように長さが決められる。ここで
、送電端(0点)は前述の線路電圧降下補償器22によ
って常時定格電圧の一定に保たれている。しかし、送電
端以外においては負荷の変動によって配電線の電圧が変
動し、軽負荷となると電圧は上昇する。第3図に実線6
0で定格負荷時の、また破線61で1/2負荷時の電圧
分布の概略を示しており、上昇の大きさは末端において
最も大きくなっている。さて。
FIG. 3 is a diagram schematically showing the voltage distribution at various locations on the power distribution line in the power distribution system shown in FIG. The distribution line is located at the end of the distribution line (first
In a power distribution system of 1, for example, 6.8 kV, the length is determined so that the voltage drop at the terminal is within the specified voltage drop at the rated load state (point 0 in the figure) at aooV. Here, the power transmission end (point 0) is always kept at a constant rated voltage by the line voltage drop compensator 22 described above. However, at areas other than the transmission end, the voltage of the distribution line fluctuates due to changes in load, and when the load becomes light, the voltage increases. Solid line 6 in Figure 3
0 shows the outline of the voltage distribution at rated load, and broken line 61 shows the outline of the voltage distribution at 1/2 load, and the magnitude of the rise is greatest at the end. Now.

一定力率で運転される太陽光システムが配電系統へ挿入
された場合は太陽光システムの挿入場所、挿入容量によ
って様相は異なるが配電線各所の電圧は第3図中一点鎖
線61に概略を示すように変動し、この場合も末端にお
いて電圧変動は最も大きくなる。
When a solar power system operated at a constant power factor is inserted into the power distribution system, the voltage at various points on the power distribution line is shown schematically by the dashed-dotted line 61 in Figure 3, although the situation will differ depending on the insertion location and insertion capacity of the solar system. In this case as well, the voltage fluctuation is greatest at the terminal end.

したがって配電系統等の交流系統に太陽光システムを適
用した場合、負荷変動による電圧変動に応じて太陽光シ
ステムの運転を適切に行わないと、系統末端における電
圧変動が大きくなり、電圧変動が規定の範囲、例えば電
圧変動許容範囲幅±6%にはいらなくなるような場合が
生じると、負荷に安定な電力が供給できない場合が生じ
る。
Therefore, when a solar power system is applied to an AC system such as a power distribution system, if the solar system is not operated appropriately in response to voltage fluctuations due to load fluctuations, the voltage fluctuations at the end of the system will increase and the voltage fluctuations will exceed the specified level. If a situation arises where the range, for example, voltage fluctuation tolerance range width ±6%, is no longer required, a stable power supply to the load may not be possible.

本発明は上述した問題点を除き、太陽電池から最大の電
力をとり出しつつ、かつ交流系統の電圧安定化を図るこ
とのできる太陽光発電システムのインバータの運転制御
方式を提供することにある。
An object of the present invention is to eliminate the above-mentioned problems and provide an operation control method for an inverter in a solar power generation system that can obtain maximum power from solar cells and stabilize the voltage of an AC system.

太陽電池から最大の電力をとり出しつつ、交流系統の安
定化を図るためのインバータの運転方式を検討するため
、第1図に示す系統のディジタルシミュレーションを行
った。その結果の一例を第4図、第5図に示す。第4図
は太陽光発電システムの容量(出力)を変えた場合の配
電線末端における電圧を示した図で、パラメータは太陽
光発電システムの配電系統への挿入位置である。同、こ
の場合、太陽光発電システムの運転力率は一定である。
In order to study an inverter operation method to stabilize the AC system while extracting maximum power from the solar cells, we conducted a digital simulation of the system shown in Figure 1. Examples of the results are shown in FIGS. 4 and 5. FIG. 4 is a diagram showing the voltage at the end of the distribution line when the capacity (output) of the solar power generation system is changed, and the parameter is the insertion position of the solar power generation system into the distribution system. Similarly, in this case, the operating power factor of the solar power generation system is constant.

配電線末端の電圧は太陽光発電システムの出力の増加に
対して略直線的に上昇している。太陽光発電システム挿
入によ、る配電線末端の電圧変動に与える影響は挿入位
置が末端に近づく程大きくなっている。
The voltage at the end of the distribution line increases approximately linearly with the increase in the output of the solar power generation system. The influence of the insertion of a solar power generation system on voltage fluctuations at the end of a distribution line increases as the insertion position approaches the end.

第5図は太陽光発電システムの出力を一定としてシステ
ムの力率を変えに場合の配電線末端の電圧を示している
。パラメータは第4図と同様である。遅れ力率で運転の
ときは末端の電圧は下がり、進み力率では上っている。
Figure 5 shows the voltage at the end of the distribution line when the output of the solar power generation system is constant and the power factor of the system is varied. The parameters are the same as in FIG. When operating with a lagging power factor, the terminal voltage decreases, and with a leading power factor, it increases.

太陽光発電システム挿入位置が末端の電圧変動に与える
影響は第4図同様、挿入位置が末端に近づく程大きくな
っている。
As in FIG. 4, the influence of the solar power generation system insertion position on the terminal voltage fluctuation increases as the insertion position approaches the terminal.

図゛よシ負荷変動に伴う末端の電圧変動は太陽光発電シ
ステムの運転力率を制御する仁とにより抑制できること
が分る。
The figure shows that terminal voltage fluctuations due to load fluctuations can be suppressed by controlling the operating power factor of the solar power generation system.

以上から太陽光発電システムを最大出力点で運転しかつ
系統の電圧安定化を図るためには、インバータの出力を
太陽光電池の最大出力点で運転しかつ負荷変動に伴う系
統の電圧変動を抑えるためには系統の電圧変動または負
荷変動に応じて太陽光発電システムの運転力率を制御す
るようにすればよく、軽負荷時に系統の電圧が上昇した
場合はインバータを遅れ力率、重負荷時に系統の電圧が
下った場合は進み力率で運転するようにした。
From the above, in order to operate the solar power generation system at the maximum output point and stabilize the grid voltage, it is necessary to operate the inverter output at the maximum output point of the solar cells and to suppress the voltage fluctuations in the grid due to load fluctuations. The operating power factor of the solar power generation system can be controlled according to grid voltage fluctuations or load fluctuations.If the grid voltage rises during light loads, the inverter is delayed and the power factor increases, and when heavy loads the grid voltage increases. When the voltage drops, the system operates with a leading power factor.

また、太陽光発電システムの挿入位置に関しては送電端
においては系統の電圧安定化の効果が顕著でないことが
分ったので、送電端以外に挿入するようにした。
In addition, regarding the insertion position of the solar power generation system, it was found that the effect of stabilizing the voltage of the grid was not significant at the power transmission end, so it was decided to insert it at a place other than the power transmission end.

本発明の一実施例を第6図〜第7図に示す。An embodiment of the present invention is shown in FIGS. 6 and 7.

第6図は配電系統の電圧安定化を図るために最も挿入効
果の大きい配電系統一末端に太陽光発電ント: ステムを適用した系統図を示している。第7図に太陽光
発電システムのインバータの制御回路のブロック図を示
す。501は太陽光の強さに応じて太陽電池から取り出
すことのできる最大電力に相当する電力指令値r、(r
、の作成については本特許には関係ないので作られたも
のと仮定する)の信号の極性を反転する極性反転器、5
02,503は後述する比較器505,506の11#
の信号により導通状態となるスイッチ、504は配電線
末端の電圧の基準信号r、と末端の交流電圧の大きさ1
e、1との差を求める加算器%505,506は比較器
でr、−18,I〉Oのとき505の出力が1”、その
他のときは出力″′0″、506はr、−1e、l<O
のとき出力が′1″、その他のときは出力″′0″とな
シ、各々の比較器の出力が′1”のとき、各々前述のス
イッチ503,502を導通させる。507は配電線末
端の電圧の大きさ1e、[を求める絶対値回路、508
はインバータ出力の電圧e、(第2図参照)と配電線末
端の電圧との差Δe=ei−Te、を求め、これのe、
方向(etと同相)成分Δevとe、に垂直な方向の成
分Δe、とに分離する成分分離回路で、この詳細をベク
トル図で第8図に示す。509は前述のスイッチ回路5
02,503の出力r、とΔe、を入力とし、Δe、が
rlと等しくなるようにインバータの出力電圧の位相制
御を行う周波数制御回路で、r、が正のとき、即ちr、
〉1e、l  のときは周波数を上げてインバータの電
圧位相を進め、進みの電流を流すようにする。一方、r
fが負のとき。
Figure 6 shows a system diagram in which a solar power generation system is applied at one end of the distribution system, where the insertion effect is greatest, in order to stabilize the voltage in the distribution system. FIG. 7 shows a block diagram of the control circuit for the inverter of the solar power generation system. 501 is a power command value r, (r
Since the creation of , is not related to this patent, it is assumed that the polarity inverter for inverting the polarity of the signal of 5
02, 503 are 11# of comparators 505, 506, which will be described later.
504 is a reference signal r of the voltage at the end of the distribution line and the magnitude 1 of the AC voltage at the end.
The adders 505 and 506 that calculate the difference between e and 1 are comparators, and when r, -18, I>O, the output of 505 is 1'', otherwise the output is ``0'', and 506 is r, - 1e, l<O
When the output is ``1'', the output is ``0'' otherwise.When the output of each comparator is ``1'', the aforementioned switches 503 and 502 are made conductive. 507 is an absolute value circuit for calculating the voltage magnitude 1e at the end of the distribution line, 508
Find the difference Δe=ei−Te between the inverter output voltage e (see Figure 2) and the voltage at the end of the distribution line, and calculate this e,
This is a component separation circuit that separates a component Δev in the direction (in phase with et) and a component Δe in the direction perpendicular to e, the details of which are shown in a vector diagram in FIG. 509 is the aforementioned switch circuit 5
This is a frequency control circuit that takes the outputs r and Δe of the 02, 503 as inputs and controls the phase of the output voltage of the inverter so that Δe becomes equal to rl.When r is positive, that is, r,
>1e, l, the frequency is increased to advance the voltage phase of the inverter so that a leading current flows. On the other hand, r
When f is negative.

即ちr、<le、lのときは周波数を下げてインバータ
の電圧位相を遅らせ、遅れの電流を系統に流すように動
作する。510は配電線末端の電圧の基準値r、とle
、l及びΔe7とから、le、lがr7の規定範囲内に
入るようにインバータの出力′電圧の大きさを制御する
。511は周波数制御回路509の制御信号と電圧制御
回路510の制御信号とから、インバータを構成する半
導体スイッチのON、OFF信号(ゲート信号)を作成
するゲートロジック回路で、この回路の一例の動作波形
を第9図に示す。第9図は自励式インバータをパルス幅
変調(PWM)する場合で、基本周波数(三相の正弦波
の周波数)に対して15倍の周波数(三角波の周波数)
で変調をかけた場合を示している。前述の周波数制御回
路5090制御信号は基本周波数の周波数を制御(従っ
て変調波の周波数も当然変る)することによってインバ
ータの電圧位相を制御する。一方、電圧制御回路510
′の制御信号は変調波の振幅を制御してPWM波の幅を
変えることによりインバータの出力電圧の大きさを制御
する(この場合、変調波の振幅を一定とし、基準の三相
正弦波の振幅を変えても同様にPWM波の幅を変えられ
、いずれでも良い)。
That is, when r<le, l, the frequency is lowered, the voltage phase of the inverter is delayed, and the delayed current is operated to flow through the grid. 510 is the reference value r of the voltage at the end of the distribution line, and le
, l and Δe7, the magnitude of the output voltage of the inverter is controlled so that le and l fall within the specified range of r7. Reference numeral 511 denotes a gate logic circuit that creates ON/OFF signals (gate signals) for the semiconductor switches constituting the inverter from the control signal of the frequency control circuit 509 and the control signal of the voltage control circuit 510. is shown in Figure 9. Figure 9 shows a case where a self-excited inverter is pulse width modulated (PWM), and the frequency (triangular wave frequency) is 15 times the fundamental frequency (three-phase sine wave frequency).
This shows the case where modulation is applied. The frequency control circuit 5090 control signal described above controls the voltage phase of the inverter by controlling the frequency of the fundamental frequency (therefore, the frequency of the modulated wave naturally changes as well). On the other hand, voltage control circuit 510
The control signal ' controls the magnitude of the inverter's output voltage by controlling the amplitude of the modulated wave and changing the width of the PWM wave (in this case, the amplitude of the modulated wave is constant and the amplitude of the standard three-phase sine wave You can also change the width of the PWM wave by changing the amplitude, either of which is fine).

PWM波は変調波と基準の正弦波との大きさ比較から簡
単に得られ、三相のうちの一相1例えばU相は変調波e
7と正弦波e、からe〒〉e、の期間はU相負側のサイ
リスタUNをオン、et (c++の期間は正側Upを
オン、その他の期間はオフする。
The PWM wave can be easily obtained by comparing the magnitude of the modulated wave and a reference sine wave, and one of the three phases, for example, the U phase, is the modulated wave e.
7 and sine wave e, to e〒〉e, the U-phase negative side thyristor UN is turned on, et (during the c++ period, the positive side Up is turned on, and the other periods are turned off.

図中にはU相のPWM波のみを示しているが、他のV相
、W相についても同様である。この信号を前述のインバ
ータの半導体スイッチのゲートに入れることにより所望
のインバータ動作が得られることは明らかである。
Although only the U-phase PWM wave is shown in the figure, the same applies to the other V-phase and W-phase. It is clear that the desired inverter operation can be obtained by applying this signal to the gate of the semiconductor switch of the inverter described above.

以上の回路により系統の電圧変動に応じて太陽光発電シ
ステムの運転力率が変わることになるので系統の電圧変
動を規定の範囲内に抑えられ、系統の電圧安定化を図る
ことができる。
With the above circuit, the operating power factor of the solar power generation system changes according to voltage fluctuations in the grid, so voltage fluctuations in the grid can be suppressed within a specified range, and voltage stabilization in the grid can be achieved.

なお、上述の実施例では系統の電圧安定化を図る上で最
も効果の大きい系統末端に太陽光発電システムを設置し
た場合について説明したが、太陽光発電システムの挿入
位置としては、系統の送電端以外なら、系統いずれの位
置においても系統の電圧安定化を図る効果が期待でき、
その場合の運転方法は上述の実施例の説明から簡単に類
推できるのでここでは述べない。
In addition, in the above example, the solar power generation system was installed at the end of the grid, where it is most effective in stabilizing the voltage of the grid. Otherwise, the effect of stabilizing the voltage of the grid can be expected at any position in the grid.
Since the operating method in that case can be easily inferred from the explanation of the above embodiment, it will not be described here.

また、上述の実施例では系統の電圧変動を検出してイン
バータの力率を変えるものとしたが、系統の負荷変化の
検出が簡単に行えるものでは、負荷変化を検出して、こ
れにょシインパータの運転力率を変えるようにしても良
く、この場合は前述実施例の電圧規準値r、の代りに負
荷の規準値r1とし、系統電圧の検出値の大きさ1e、
[の代りに全負荷の大きさIPTlとし、かつ加算器5
04の加算結果の符号を反転する、即ちr t >P 
Tの軽負荷時はインパ〜りの運転力率を遅らせ、系統の
電圧を下げ、r t りP Tの重負荷時は進ませて系
統の電圧を上げるようにすることによシ、前述と同様の
回路によシ同様に行える。
In addition, in the above embodiment, the power factor of the inverter is changed by detecting voltage fluctuations in the grid, but in a system where it is possible to easily detect changes in the load in the grid, the load change is detected and the power factor of the inverter is changed. The operating power factor may be changed; in this case, the voltage reference value r of the above-mentioned embodiment is replaced by the load reference value r1, and the magnitude of the detected value of the system voltage is 1e,
[Instead of the total load size IPTl, and the adder 5
Invert the sign of the addition result of 04, i.e. r t >P
By delaying the operating power factor of the imper to lower the grid voltage when the T is lightly loaded, and increasing the grid voltage by advancing it when the T is under heavy load, the above-mentioned method can be achieved. A similar circuit can be used in the same manner.

太陽光発電システムを、太陽光の強さに応じてとシ出せ
る最大出力点で運転でき、かつ、太陽光発電システムに
より系統の電圧安定度を改善できる。また、系統末端に
太陽光発電システムを挿入することにより、最も効率よ
く系統安定化を図ることができる。
The solar power generation system can be operated at the maximum output point that can be output depending on the intensity of sunlight, and the voltage stability of the grid can be improved by the solar power generation system. In addition, by inserting a solar power generation system at the end of the system, it is possible to stabilize the system most efficiently.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は太陽光発電システムを適用した配電系統の一系
統図、第2図は太陽光発電システムの概略図、第3図は
第1図の系統における配電線の電圧分布、第4図、第5
図は第1図の系統における配電線末端における電圧のデ
ィジタルシミュレーション結果、第6図は本発明の詳細
な説明するための太陽光発電システムを適用した配電系
統の一系統図、第7図は本発明による太陽光発電システ
ムのインバータの制御回路ブロック図、第8図。 第9図は第7図の制御回路の動作を説明するためのベク
トル図及び動作波形図である。 51・・・太陽電池、52・・・コンデンサ、53・・
・交直変換器、55・・・変換用変圧器、56・・・制
御回路。 57.58・・・交流電圧変成器、54・・・交流フィ
ル第1図 ′IAz図 久   b   C反  e 西已電用2次イ則e線 7v4丸システム容量(PLLン ¥ 5 図 方J墨たシステムの運転力41 ’1 6 図
Figure 1 is a system diagram of a distribution system to which a solar power generation system is applied, Figure 2 is a schematic diagram of a solar power generation system, Figure 3 is voltage distribution of distribution lines in the system of Figure 1, Figure 4, Fifth
The figure shows the result of a digital simulation of the voltage at the end of the distribution line in the system shown in Figure 1. Figure 6 is a system diagram of a power distribution system to which a photovoltaic power generation system is applied to explain the present invention in detail. FIG. 8 is a control circuit block diagram of the inverter of the solar power generation system according to the invention. FIG. 9 is a vector diagram and an operation waveform diagram for explaining the operation of the control circuit shown in FIG. 7. 51...Solar cell, 52...Capacitor, 53...
- AC/DC converter, 55... conversion transformer, 56... control circuit. 57.58... AC voltage transformer, 54... AC filter Figure 1 'IAz Figure Hisa b C reaction e Nishihama electrical secondary law e line 7v4 circle system capacity (PLL n\ 5 Figure J Driving power of the marked system 41 '1 6 Figure

Claims (1)

【特許請求の範囲】 1、太陽光発電システムが挿入されて構成される交流系
統において、太陽光発電システムの一構成要素のインバ
ータを指定の出力で運転を行い、負荷変動に伴う系統の
電圧変動が規定の範囲内に入るようにするため、負荷変
動または電圧変動に応じてインバータの運転力率を変え
ることを特徴とする太陽光発電システム用インバータの
運転制御方式。 2、特許請求の範囲第1項において、配電系統の電圧変
動を規定範囲内に保つため、配電線の電圧と電圧規準値
との差の極性に応じて、インバータの運転力率を前述の
差が正のときは遅らせ、負のときは進ませることを特徴
とする太陽光発電システム用インバータの運転制御方式
。 3、特許請求の範囲第1項において、配電系統の電圧変
動を規定範囲内に保つため、太陽光発電システムを配電
線の送電端以外に設置することを特徴とする太陽光発電
システム用インバータの運転制御方式。
[Claims] 1. In an AC system configured with a solar power generation system inserted, the inverter, which is one component of the solar power generation system, is operated at a specified output to prevent voltage fluctuations in the system due to load fluctuations. An operation control method for an inverter for a solar power generation system, which is characterized by changing the operating power factor of the inverter according to load fluctuations or voltage fluctuations in order to keep the power factor within a specified range. 2. In claim 1, in order to keep the voltage fluctuation of the distribution system within a specified range, the operating power factor of the inverter is adjusted according to the polarity of the difference between the voltage of the distribution line and the voltage standard value. An operation control method for an inverter for a solar power generation system, which is characterized by delaying when is positive and advancing when is negative. 3. Claim 1 provides an inverter for a solar power generation system, characterized in that the solar power generation system is installed at a location other than the transmission end of a power distribution line in order to maintain voltage fluctuations in the power distribution system within a specified range. Operation control method.
JP57017446A 1982-02-08 1982-02-08 Inverter operation control system for solar light generating system Granted JPS58136236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57017446A JPS58136236A (en) 1982-02-08 1982-02-08 Inverter operation control system for solar light generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57017446A JPS58136236A (en) 1982-02-08 1982-02-08 Inverter operation control system for solar light generating system

Publications (2)

Publication Number Publication Date
JPS58136236A true JPS58136236A (en) 1983-08-13
JPH0572176B2 JPH0572176B2 (en) 1993-10-08

Family

ID=11944245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57017446A Granted JPS58136236A (en) 1982-02-08 1982-02-08 Inverter operation control system for solar light generating system

Country Status (1)

Country Link
JP (1) JPS58136236A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6051470A (en) * 1983-08-30 1985-03-22 Yamaha Motor Co Ltd Inverter device
JPS6126433A (en) * 1984-07-16 1986-02-05 株式会社東芝 System stabilizer
JP2010279133A (en) * 2009-05-27 2010-12-09 Ntt Facilities Inc Method and device for controlling power conditioner in solar light generating system
JPWO2017037925A1 (en) * 2015-09-03 2018-06-14 株式会社東芝 Voltage fluctuation suppressing apparatus and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56107742A (en) * 1980-01-25 1981-08-26 Hitachi Ltd Power source

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56107742A (en) * 1980-01-25 1981-08-26 Hitachi Ltd Power source

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6051470A (en) * 1983-08-30 1985-03-22 Yamaha Motor Co Ltd Inverter device
JPH0582155B2 (en) * 1983-08-30 1993-11-17 Yamaha Motor Co Ltd
JPS6126433A (en) * 1984-07-16 1986-02-05 株式会社東芝 System stabilizer
JPH0510896B2 (en) * 1984-07-16 1993-02-12 Tokyo Shibaura Electric Co
JP2010279133A (en) * 2009-05-27 2010-12-09 Ntt Facilities Inc Method and device for controlling power conditioner in solar light generating system
JPWO2017037925A1 (en) * 2015-09-03 2018-06-14 株式会社東芝 Voltage fluctuation suppressing apparatus and method

Also Published As

Publication number Publication date
JPH0572176B2 (en) 1993-10-08

Similar Documents

Publication Publication Date Title
US7499296B2 (en) Electric power converter device with control means and process and converting power
JP6240704B2 (en) Three-phase inverter offset voltage generator and three-phase inverter controller
US10079558B2 (en) Switching scheme for static synchronous compensators using cascaded H-bridge converters
US9722459B2 (en) Apparatus and method for providing uninterruptible power
KR20090100655A (en) Multi level inverter
Kaura et al. Operation of a voltage source converter at increased utility voltage
KR20070078524A (en) Photovoltaic power generation system and control method thereof
JP2016208820A (en) Offset voltage generator of three-phase inverter and three-phase inverter control device
US20230074022A1 (en) Power converter topologies with power factor correction circuits controlled using adjustable deadtime
TW201838301A (en) Power converting apparatus
CN109196766B (en) Bidirectional insulation type DC/DC converter and smart power grid
JP5238772B2 (en) Power converter
JPS58136236A (en) Inverter operation control system for solar light generating system
Ahmed et al. Fractional order sliding mode control for voltage source voltage converters under reconfiguration
US20230071003A1 (en) Power factor correction circuits controlled using adjustable deadtime
US20230076369A1 (en) Unidirectional power converters with power factor correction circuits controlled using adjustable deadtime
JP3862320B2 (en) Grid-connected inverter device
JP2020114049A (en) Power conversion device, railway vehicle and power conversion device control method
JP2006311725A (en) Controller for power converter
JP6463976B2 (en) Power conversion device and solar power generation system thereof
JP2585691B2 (en) Control method for semiconductor power converter
JP4277360B2 (en) 3-level inverter controller
JP2015006055A (en) Neutral point clamp type power conversion system
JPH0799783A (en) Inverter device
KR101750224B1 (en) Apparatus and method for controlling transfer of inverter