JPS58136163A - Optical exchange - Google Patents

Optical exchange

Info

Publication number
JPS58136163A
JPS58136163A JP1811682A JP1811682A JPS58136163A JP S58136163 A JPS58136163 A JP S58136163A JP 1811682 A JP1811682 A JP 1811682A JP 1811682 A JP1811682 A JP 1811682A JP S58136163 A JPS58136163 A JP S58136163A
Authority
JP
Japan
Prior art keywords
optical
signal
switch
terminal voltage
subscriber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1811682A
Other languages
Japanese (ja)
Other versions
JPS6348470B2 (en
Inventor
Masahiro Ikeda
正宏 池田
Soichi Kobayashi
壮一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1811682A priority Critical patent/JPS58136163A/en
Publication of JPS58136163A publication Critical patent/JPS58136163A/en
Publication of JPS6348470B2 publication Critical patent/JPS6348470B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q3/00Selecting arrangements
    • H04Q3/42Circuit arrangements for indirect selecting controlled by common circuits, e.g. register controller, marker
    • H04Q3/52Circuit arrangements for indirect selecting controlled by common circuits, e.g. register controller, marker using static devices in switching stages, e.g. electronic switching arrangements
    • H04Q3/526Optical switching systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Use Of Switch Circuits For Exchanges And Methods Of Control Of Multiplex Exchanges (AREA)

Abstract

PURPOSE:To eliminate insertion loss and to attain high circuit integration, by using a terminal voltage change of an optical switch element itself as a monitor control signal. CONSTITUTION:An optical exchange 3 consists of a channel connection optical matrix switch 4 using a P-N junction semiconductor switch element 8. An optical signal from a subscriber 1 is detected at the element 8, the detected signal is led to a connection control circuit 7 to control the optical channel. Since the element 8 detects the optical signal with intensity modulation even at on/off any state as the change in terminal voltage, the signal is used as a monitor signal for each subscriber line. Since the change in terminal voltage of the element 8 itself is used as the monitor control signal, no insertion loss is caused. Since the optical signal is not branched because it is used as a monitor control, low loss is attained. After the setting of the optical channel, the optical signal of subscribers are monitored. Further, the switch 4 is highly integrated with the semiconductor process technology.

Description

【発明の詳細な説明】 杢発明は元信号を光のままで交換する小型で動作速度の
速い光交換機に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a compact and fast-operating optical switch that exchanges original signals in the form of light.

光交換機の基本機能として、加入者からの元信号を監視
、検出して元通話路を制御する必要がある。従来の光交
換機としては、第1図に示すような構成が考えらnてい
る。第1図において、1は加入者、2は光フアイバケー
ブル、8は光交換機、4は通話路接続用元マトリクスス
イッチ、5は光分岐回路、6は光検出器で、次にその動
作について説明する。
As a basic function of an optical switch, it is necessary to monitor and detect the original signal from the subscriber and control the original communication path. As a conventional optical switch, a configuration as shown in FIG. 1 has been considered. In Fig. 1, 1 is a subscriber, 2 is an optical fiber cable, 8 is an optical exchange, 4 is a source matrix switch for connecting communication paths, 5 is an optical branch circuit, and 6 is a photodetector.The operation thereof will be explained next. do.

まず加入者lからQy6信号を光分岐回路5で分岐し、
光検出器b1例えばPINフォトダイオードやムPDで
検出する。残りの光信号は通話路接続用光マトリクス・
スイッチ4に入力される。光検出器6で光電変換7nた
1J号は、接続制御回路7に導かれ、光曲話路を制御す
る。第1図の光マトリックス・スイッチ4では口■動形
ミラーの元マトリクス・スイッチを用いたが、他の形の
元マトリクスースイッチでもよい。
First, the Qy6 signal from subscriber 1 is branched by optical branching circuit 5,
Detection is performed by a photodetector b1 such as a PIN photodiode or a mu PD. The remaining optical signals are transferred to the optical matrix for communication path connection.
It is input to switch 4. The photoelectrically converted signal 7n by the photodetector 6 is guided to the connection control circuit 7, which controls the optical path. Although the optical matrix switch 4 in FIG. 1 uses a mouth-moving mirror type matrix switch, other types of matrix switches may also be used.

このように加入者の元信号を監視するために光分岐回路
と光検出器を各々設ける必要があるので、次のような欠
点がある。
Since it is necessary to provide an optical branch circuit and a photodetector to monitor the subscriber's original signal, there are the following drawbacks.

(1)  挿入損失が大きい、すなわち光分岐回路を仲
人することによる損失が避けられず、通常人、出射の結
合を考えると8(iBB10損失となる。
(1) The insertion loss is large, that is, the loss due to intermediary optical branching circuits is unavoidable, and when the coupling of output and output is considered, the loss is 8 (iBB10).

(It)  分岐比の調整が困鋪である。加入者ごとに
レベル1i14整をする必要があり、このため光分岐[
囮紬としてハーフミラ−形、Y分岐形、ノ(イコニカル
テーパ杉U〕いずれも調整が難かしい。
(It) It is difficult to adjust the branching ratio. It is necessary to perform level 1i14 adjustment for each subscriber, so optical branching [
As a decoy pongee, half-mirror type, Y-branched type, and (iconical taper cedar U) are all difficult to adjust.

を傅14檀化が困−である。光分岐回路と光検出器な各
々の加入者に設ける必要があることから、コンーパクト
に集積化することが罐かしい。また光分岐回路によって
分岐された光か、他チャンネルに結合することによるク
ロストークの増大かある。
It is difficult to make a fui 14 fan. Since it is necessary to provide an optical branch circuit and a photodetector for each subscriber, it is difficult to integrate it compactly. Also, there is an increase in crosstalk due to the light being branched by the optical branching circuit or being coupled to other channels.

本発明は−これらの欠点を解決するために、元マトリク
ス・スイッチとしてPN形半導体素子な用い、該元スイ
ッチ素子の爆千間の電圧変化を監視信号として用いる構
成としたものである。以下に図面(−より本発明の詳細
な説明する。
In order to solve these drawbacks, the present invention uses a PN type semiconductor element as the original matrix switch, and uses the voltage change of the original switch element as a monitoring signal. The present invention will be described in detail below with reference to the drawings.

第2図は本発明で用いるPN接合形半導体スインチ素子
の基本構成を示したものであり、該素子ヲ用いた元マト
リクス・スイッチについては特願昭5ti −4718
4号に詳述しである。第2図におい(,8はPN接合形
半導体元スイッチ素子、9は光導光波路、l(Lは負荷
抵抗を示している。光信号は該素子への注入電流をオン
、オフすることによってスイッチングざnる。この元ス
イッチ素子を用いて光マトリクス・スイッチはコンパク
トに構成される。本発明では、該光スイツチ素子の端子
電圧変化を監視48号として用いるもので、以下に具江
的に説明する。
Figure 2 shows the basic structure of the PN junction type semiconductor switch element used in the present invention, and the original matrix switch using this element is disclosed in Japanese Patent Application No. 5ti-4718.
Details are given in issue 4. In Figure 2, (, 8 is a PN junction type semiconductor switching element, 9 is an optical waveguide, and l (L is a load resistance). The optical signal is switched by turning on and off the current injected into the element. An optical matrix switch is constructed compactly using this original switch element.In the present invention, the terminal voltage change of the optical switch element is used as a monitoring item 48, and will be explained in detail below. do.

第8図はPN接合形半導体素子に光信号が入射した場合
の該素子の端子電圧変化を測定する測定系の構成図で、
10は定電流源、11はオシロスコープ、12は光信号
結合用レンズ、18は連続波の光信号を矩形波状の光信
号にするためのチョッパを表わす。
FIG. 8 is a configuration diagram of a measurement system that measures the terminal voltage change of a PN junction type semiconductor device when an optical signal is incident on the device.
10 is a constant current source, 11 is an oscilloscope, 12 is an optical signal coupling lens, and 18 is a chopper for converting a continuous wave optical signal into a rectangular wave optical signal.

第11は第8図の構成で端子電圧の変化を測定した結果
を示したものである。半導体レーザからの連続波の光を
チョッパで切り出し、該元スイッチ素子に注入した時の
端子電圧変化をオシロスコープで測定し、山から谷まで
の差の電圧値として示した。光スイツチ素子は半導体レ
ーザ素子を利用し、オンの状態は発振閾値σ)0.88
倍σ)注入電流で測定した。オフの状態では−15de
nの入射パワで約0.5 mvu+出力電圧が得ら、n
るのに対し°C5オ/の状態では−10dBmて向柵度
の出力が優られた。オンの状態では圧入−流を発振閾値
に吐づけるに従って出力電圧は増大し、はぼオフでの出
力と同一度が得られることがわかった。t’N接合接合
形体導体素子を注入した場合の端子電圧変化については
種々の文献があり(例えば三橋慶喜、島田膚−1三V秀
−1”自己結合半導体レーザの端子電圧変化”電子−1
1信学会技術研究報告資料OQE 80’−883、以
下のように端子電圧の変化は解釈できる。すなわちオフ
での端子電圧はPN接合での光起電力によるもので、−
万、オンにおける端子電圧の変化は注入光による活性領
域のキャリア濃度の減少によるものと考えられる。
11 shows the results of measuring changes in terminal voltage using the configuration shown in FIG. 8. Continuous wave light from a semiconductor laser was cut out with a chopper, and when it was injected into the original switching element, the change in terminal voltage was measured with an oscilloscope and shown as the voltage value of the difference from peak to valley. The optical switch element uses a semiconductor laser element, and the on state has an oscillation threshold σ) 0.88
times σ) measured at the injection current. -15de in off state
With an incident power of n, approximately 0.5 mvu+ output voltage is obtained, and n
On the other hand, when the temperature was 5 degrees Celsius, the output was superior by -10 dBm. It was found that in the on state, the output voltage increases as the press-in flow is discharged to the oscillation threshold, and the output voltage is the same as that in the off state. There are various documents regarding the terminal voltage change when a t'N junction type conductive element is implanted (for example, Yoshinobu Mitsuhashi, Shimada Hada-13V Hide-1 "Terminal voltage change of self-coupled semiconductor laser" Denshi-1
1 IEICE technical research report OQE 80'-883, the change in terminal voltage can be interpreted as follows. In other words, the terminal voltage in the OFF state is due to the photovoltaic force at the PN junction, and -
It is thought that the change in terminal voltage when the device is on is due to a decrease in the carrier concentration in the active region due to the injected light.

したがって該光スィッチではオフ、オフのいずれの状態
においても、強度変g4された元信号を端子電圧の変化
として検出できるので、各加入者線のVifI!m号と
して利用できることかわかる。次に実施例の構成法につ
いて説明する。
Therefore, the optical switch can detect the original signal whose intensity has been changed g4 as a change in the terminal voltage in either the OFF or OFF state, so that the VifI! of each subscriber line! I understand that it can be used as the M number. Next, the configuration method of the embodiment will be explained.

第5図は本発明の一実施例の構成図で、PN接合形半導
体党スイッチ素子8は入線1と出線jの1#号に対応し
てS と呼称する。S13の各々は端1コ 子奄圧の変化を検出することができるので、各;111
人者の入線1の監視は多くの素子で可能であるかここで
はS工、で検出した信号で元通話路を制御する。この構
成ではS工、がオンでもオフでも監視が可能である。
FIG. 5 is a block diagram of an embodiment of the present invention, in which the PN junction type semiconductor switching element 8 is designated as S corresponding to the number 1# of the input line 1 and output line j. Since each of S13 can detect a change in the pressure at one end, each;
Is it possible to monitor the input line 1 of a person by using many elements?Here, the source communication path is controlled by the signal detected by the S operator. With this configuration, monitoring is possible whether S is on or off.

第6図は本発明の池の実施例の構成図で、各加入層の人
11対応に監視制御用スイッチ14を設置し、S工。と
呼称する。この構成では加入者の発呼をSよ。のオフの
状態で検出し、元通話路設定後はオンの状態で監視する
。この構成では監視制御用スイッチの部分では、元信号
が分岐されていないので、端子電圧の出力を大きくとる
ことか可能である。また該光スイツチ素子はオンの状態
で光信号を4幅する機能かあるので、後段のスイッチネ
ットワークを構成する場合に、光パワの1.ヘルに自由
度が増す長所がある。
FIG. 6 is a block diagram of an embodiment of a pond according to the present invention, in which a supervisory control switch 14 is installed for each subscriber layer 11, and S construction is performed. It is called. In this configuration, the subscriber makes a call to S. It is detected when the device is off, and monitored when it is on after the original communication route is set. In this configuration, since the original signal is not branched at the supervisory control switch, it is possible to increase the output of the terminal voltage. In addition, since the optical switch element has the function of converting the optical signal into 4 widths when it is on, when configuring the subsequent switch network, it is necessary to increase the optical power to 1. Hell has the advantage of having more freedom.

以上説明したように、本発明の光交換機は監視制御用信
号として光スイツチ素子自体の端子電圧変化を利用する
ので、以下のような利点がある。
As explained above, since the optical switch of the present invention utilizes the terminal voltage change of the optical switch element itself as a supervisory control signal, it has the following advantages.

(1)  挿入損失がない。監視制御用として光信号を
分岐しないので、本質的に低損失となる。また元スイッ
チ素子自体は層幅機能を持たすことも11能である。
(1) No insertion loss. Since optical signals for monitoring and control purposes are not branched, loss is essentially low. Furthermore, the original switching element itself can also have a layer width function.

(11)元通話路設定後、各加入者の元信号を監視する
ことかできる。これは元スイッチをオンにした状態でも
、オフにした状態でも、信号検出がロエ能なためである
(11) After setting the original communication path, it is possible to monitor the original signal of each subscriber. This is because signal detection is possible regardless of whether the original switch is on or off.

(ill)  高集積化が可能である。監視制御用とし
て特別な回路を設けないθ)で、光マ) IJクス、ス
イッチがそのまま使える。該光マトリクス・スイッチは
半導体プロセス技術で高集積化が可能である。
(ill) High integration is possible. With θ), no special circuit is required for monitoring and control, optical machining, IJ, and switches can be used as is. The optical matrix switch can be highly integrated using semiconductor process technology.

(IV)  監視側#信号が電気信号でIjL接得られ
るので、光通話略制御用信号として直接便用することが
できる。
(IV) Since the # signal on the monitoring side can be obtained as an electrical signal from IjL, it can be directly used as an optical communication control signal.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光交換機の構成図、 第2図は本発明の実施例で用いる元スイッチ素子の基本
構成図、 第3図は該元スイッチ素子の端子電圧変化を測定する系
の構成図、 第4図は端子電圧変化の測定結果を不す図、第5図およ
び第6図は本発明の光交換機の実施例の構成図である。 ■・・・加入者、2・・・元ファイバケーブル、8・・
・光交換機、4・・・通11i!i賂接続用元マトリク
ススイッチ、5・・・光分岐回路、6・・・光検出器、
7・・・接続制御101路、8・・・PN接合形半導体
元スイッチ素子、9・・・光導波路、10・・・定電流
源、11・・・オシロスコープ、12・・・元信号結合
用レンズ、18・・・チョッパ、■4・・・監視制御用
スイッチ。 第1図 む 第2図      吃 第:3図 第41閾 大村ノマワ (dBM) 第3図 第t1図
Fig. 1 is a block diagram of a conventional optical switch; Fig. 2 is a basic block diagram of a switching element used in an embodiment of the present invention; Fig. 3 is a block diagram of a system for measuring changes in terminal voltage of the switching element. , FIG. 4 is a diagram showing the measurement results of terminal voltage changes, and FIGS. 5 and 6 are configuration diagrams of an embodiment of the optical exchanger of the present invention. ■...Subscriber, 2...Original fiber cable, 8...
・Optical switch, 4...11i! Original matrix switch for i-wire connection, 5... Optical branch circuit, 6... Photodetector,
7... Connection control 101 path, 8... PN junction type semiconductor element switching element, 9... Optical waveguide, 10... Constant current source, 11... Oscilloscope, 12... Original signal coupling Lens, 18... Chopper, ■4... Monitoring control switch. Figure 1 Figure 2 Figure 3 Figure 41 Threshold Omura no Mawa (dBM) Figure 3 Figure t1

Claims (1)

【特許請求の範囲】[Claims] L 元スイッチ素子としてPN接合形半導体スイッチを
用いた元マトリクススイッチによる通話路接続用元スイ
ッチと、その接続制御を何う接続制#部とを具備する光
交換機において、加入者の信号を監視するため、各加入
者線に接続される少なくとも1個以上の前記光スイツチ
素子の端子電圧変化を監視16号として用いて元通話路
の制御を行うことを特酸とする光交換機。
L Monitor the subscriber's signal in an optical exchange equipped with a source switch for connecting communication paths using a source matrix switch using a PN junction type semiconductor switch as the source switch element, and a connection control unit that controls the connection. Therefore, the optical switching system is characterized in that the terminal voltage change of at least one optical switch element connected to each subscriber line is used as a monitoring signal 16 to control the original communication path.
JP1811682A 1982-02-09 1982-02-09 Optical exchange Granted JPS58136163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1811682A JPS58136163A (en) 1982-02-09 1982-02-09 Optical exchange

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1811682A JPS58136163A (en) 1982-02-09 1982-02-09 Optical exchange

Publications (2)

Publication Number Publication Date
JPS58136163A true JPS58136163A (en) 1983-08-13
JPS6348470B2 JPS6348470B2 (en) 1988-09-29

Family

ID=11962635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1811682A Granted JPS58136163A (en) 1982-02-09 1982-02-09 Optical exchange

Country Status (1)

Country Link
JP (1) JPS58136163A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8408263B2 (en) 2003-12-01 2013-04-02 Fuji Electric Holding Co., Ltd. Vacuum lamination device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8408263B2 (en) 2003-12-01 2013-04-02 Fuji Electric Holding Co., Ltd. Vacuum lamination device

Also Published As

Publication number Publication date
JPS6348470B2 (en) 1988-09-29

Similar Documents

Publication Publication Date Title
CA1317363C (en) Dual mode light emitting diode/detector diode for optical fiber transmission lines
EP2775331A2 (en) Mode coupler, passive optical network system and detection method
JPH06338647A (en) Drive circuit for light-emitting element and optical amplification relay using same
CN107024744A (en) A kind of optical module and wavelength monitor method
JP3734939B2 (en) Light receiving element and light receiving element module
EP0346389A4 (en) Dual mode laser/detector diode for optical fiber transmission lines
Wang et al. Active-passive 4x4 SOA-based switch with integrated power monitoring
US7016609B2 (en) Receiver transponder for protected networks
US20020190261A1 (en) Method and apparatus for bit-rate and format insensitive performance monitoring of lightwave signals
US5315104A (en) Photodiode photodetector with adjustable active area
MacDonald et al. Switching with photodiodes
Tong et al. Characterization of a 16-channel optical/electronic selector for fast packet-switched WDMA networks
JPS58136163A (en) Optical exchange
KR100956630B1 (en) Optical wavelength analyzer and Method for analyzing optical wavelength
Giuliani et al. Multifunctional characteristics of 1.5-μm two-section amplifier-modulator-detector SOA
Bach et al. Ultrafast monolithically integrated InP-based photoreceiver: OEIC-design, fabrication, and system application
US20020164146A1 (en) Optical attenuator
Kurosaki et al. 1.3/1.55-µm Full-Duplex WDM Optical Transceiver Modules for ATM-PON (PDS) Systems Using PLC-Hybrid-Integration and CMOS-IC Technologies
Tong et al. A four-channel monolithic optical/electronic selector for fast packet-switched WDMA networks
Tangdiongga et al. Performance assessment of a complete packaged sub-Gbps WDM receiver
US6952297B2 (en) Method of differentially connecting photonic devices
Spiekman et al. Space-switching using wavelength conversion at 2.5 Gb/s and integrated phased array routing
JP3183556B2 (en) Tunable wavelength filter device and use thereof
Paśnikowska et al. Integrated InP-based multichannel transmitters for WDM-PON system
MacDonald et al. Optoelectronic switching'