JPS58133775A - Cooling method of fuel cell power generating system - Google Patents

Cooling method of fuel cell power generating system

Info

Publication number
JPS58133775A
JPS58133775A JP57015413A JP1541382A JPS58133775A JP S58133775 A JPS58133775 A JP S58133775A JP 57015413 A JP57015413 A JP 57015413A JP 1541382 A JP1541382 A JP 1541382A JP S58133775 A JPS58133775 A JP S58133775A
Authority
JP
Japan
Prior art keywords
fuel cell
cooling
temperature
cell
cell power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57015413A
Other languages
Japanese (ja)
Inventor
Yoshio Sato
佐藤 美雄
Masahide Nomura
野村 政英
Minoru Izumitani
泉谷 稔
Terunobu Miyazaki
宮崎 照信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57015413A priority Critical patent/JPS58133775A/en
Publication of JPS58133775A publication Critical patent/JPS58133775A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To maintain a cell efficient in a wide range of load by installing a plurality of cooling fluid controllers and controlling the temperature independently. CONSTITUTION:A plurality of controllers V1-Vn are installed to cool a fuel cell inlet and the amount of a cooling fluid entering the cell is controlled independently with the controllers V1-Vn. By this process, the temperature in each part of the cell is kept in an optimum value even when the load is changed. Therefore, the efficiency of the cell is kept in the highest level.

Description

【発明の詳細な説明】 本発明は、燃料電池の冷却方法に係り、時に、広範囲な
負荷帯で運転することを費求される燃料電池に好適な冷
却方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cooling method for a fuel cell, and more particularly, to a cooling method suitable for a fuel cell that is sometimes required to operate in a wide range of load ranges.

従来の燃料′電池の冷却方法は、tA1図に示す如く、
燃料−池100の出口の冷却用流体の温度が現足櫨にな
るように全冷却tIL量を制御してい友。
The conventional cooling method for fuel cells is as shown in figure tA1.
The total amount of cooling tIL is controlled so that the temperature of the cooling fluid at the outlet of the fuel pond 100 is the same as the current temperature.

燃料電池発電システムとは、水素及び酸承(又は窒気)
供給管101,102によシ供紺され死水XH,及びO
8が、燃料電池100で、2H,+0.→2H30・・
・・・・・・・・・・・・・・・・・・・・・・・・・
(1)の化学反応が起こ9、その時流れる電子4I−を
電流として取p出すものである。又、未反応の水素H8
及び繊素O8は排出管103,104より取シ出され、
水素生成装置(図では省略)や排熱回収装置(図で紘省
略)勢で利用される。とζろで、(1)式の反応紘、尭
熱反応である丸め、冷却が必賛とな如、従来は、電池出
口の冷却流体層り管106に設けられ丸亀度検出ato
mの温度が規定値になるように、冷却流体供給管105
に設けられた弁107を調節することによって、電池を
冷却していた。このような制御方法を採用し死時の1.
S!、−・・、1点における温度分布を示すと第2図の
ようになる。すなわち、高負荷と低負荷で@度分布が変
わp1低負荷では効率が著しく低下するという問題があ
り九。
A fuel cell power generation system uses hydrogen and acid (or nitrogen)
Dead water XH and O are supplied through the supply pipes 101 and 102.
8 is the fuel cell 100, 2H, +0. →2H30...
・・・・・・・・・・・・・・・・・・・・・・・・
The chemical reaction (1) occurs 9, and the electrons 4I- flowing at that time are taken out as an electric current. In addition, unreacted hydrogen H8
and cellulose O8 are taken out from the discharge pipes 103 and 104,
It is used in hydrogen generators (not shown) and waste heat recovery equipment (not shown). As the rounding and cooling which are the reactions of equation (1) and heat reactions are indispensable, conventionally, the Marukame degree detection ato is provided in the cooling fluid layer pipe 106 at the battery outlet.
cooling fluid supply pipe 105 so that the temperature of
The battery was cooled by adjusting a valve 107 provided in the battery. By adopting such a control method, 1.
S! , -... The temperature distribution at one point is shown in Figure 2. In other words, there is a problem in that the degree distribution changes between high and low loads, and efficiency drops significantly at low loads.

本発明の目的は、従来技#lの欠点をなくシ、広範囲の
負荷帯で電池を常に高効率Km持できる冷却方法を提供
するにあ゛る。
An object of the present invention is to provide a cooling method that eliminates the drawbacks of conventional technique #1 and that can maintain a battery at high efficiency at all times over a wide range of load bands.

本発明は、冷却管に複数の冷却流体のlll11節器を
設け、1,2.・・・、1点の温度を調節できるように
し九のが特徴である。
The present invention provides a cooling pipe with a plurality of cooling fluid moderators, 1, 2. ..., it is characterized by being able to adjust the temperature at one point.

以下1本発明の具体的l実施例を第3図により説明する
0図で@1図と同−記号又は符号は同−切又は寺価吻を
示している。本実施例の特徴は、IIc池入口の冷却に
調節器を仮数側v1〜yt>設けたことである。すなわ
ち、これら調節器v1〜vnにより、電池に入る冷却流
体の電を独立に制御するのが目的である。第4図はその
制御方法の1例を示す0図で、401から401mは温
度設定置を表わし、減算im411〜411mで検出澁
T1〜Tnからの温度検出値との偏差を取シ、制御演算
器421〜42nで比例・積分・微分等の制御演算を施
し、―節介vi−vnを操作する。このような制御を実
施することによシ、電池各部の温度を常に最適な値に保
持することが可能となる。
Hereinafter, a specific embodiment of the present invention will be explained with reference to FIG. 3. In FIG. 0, the same symbol or symbol as in FIG. The feature of this embodiment is that a regulator is provided on the mantissa side v1 to yt> for cooling the inlet of the IIc pond. That is, the purpose of these regulators v1 to vn is to independently control the power of the cooling fluid entering the battery. Fig. 4 is a diagram showing an example of the control method, in which 401 to 401m represent temperature setting positions, and subtraction im411 to 411m takes the deviation from the detected temperature value from the detection level T1 to Tn and calculates the control. The controllers 421 to 42n perform control calculations such as proportionality, integration, and differentiation, and operate the -articulation vi-vn. By performing such control, it becomes possible to always maintain the temperature of each part of the battery at an optimal value.

第4図の例では、調節弁Vl−vnに対応して、Ia池
出口の温度分布T1〜Tnを測定する例について示した
が、ifi&分布を測定せずに、−縮伸v1〜■nは、
負荷の関数とし、冷却流体の全体の温度108を調節弁
107で制御することも可能である。賛するに、負荷に
応じて各冷却管の抵抗を変化させることが本発明の特徴
であり、温度の外に各電池セルの効率を計算し、それら
の効率が全て等しくなるように、あるいは最大の効率に
なるように調節弁v1〜vaを動作させることも可能で
ある。
In the example of FIG. 4, an example was shown in which the temperature distributions T1 to Tn at the outlet of pond Ia were measured corresponding to the control valves Vl-vn. teeth,
It is also possible to control the overall temperature 108 of the cooling fluid with a regulating valve 107 as a function of the load. In particular, it is a feature of the present invention that the resistance of each cooling pipe is changed according to the load, and the efficiency of each battery cell is calculated in addition to the temperature, and the efficiency is adjusted so that the efficiencies are all equal or the maximum It is also possible to operate the control valves v1 to va so that the efficiency is as follows.

従って、本発明によれば、負荷が変化しても電池各部の
温度を常に最適な値に保つことができ、ひいては、電池
全体の効率を常に最高点に保つことができるという効果
を持つことになる。
Therefore, according to the present invention, even when the load changes, the temperature of each part of the battery can always be kept at an optimal value, and the efficiency of the entire battery can always be kept at its highest point. Become.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の燃料電池冷却系統図、第2図は、従来
の冷却系統による制御特性、第3図は本発明の1実施例
を示す冷却系統図、第4図は本発明の1実施例を示す冷
却制御系統図である。 100・・・燃料電池、101−・・水素供給管、10
2・・・酸素供給管、103−・・水素排出管、104
−・・酸素排出管、105・・・冷却水供給管、106
・・・冷却水戻p管、107・・・冷却水−縮伸、10
8・・・温度検出協。 代理人 弁理士 高橋明夫 ?、:1 七孟24【云νす1,4、
FIG. 1 is a conventional fuel cell cooling system diagram, FIG. 2 is a control characteristic of a conventional cooling system, FIG. 3 is a cooling system diagram showing one embodiment of the present invention, and FIG. 4 is a diagram of one embodiment of the present invention. It is a cooling control system diagram showing an example. 100...Fuel cell, 101-...Hydrogen supply pipe, 10
2...Oxygen supply pipe, 103-...Hydrogen discharge pipe, 104
-...Oxygen discharge pipe, 105...Cooling water supply pipe, 106
...Cooling water return p pipe, 107...Cooling water - contraction, 10
8...Temperature detection association. Agent: Patent attorney Akio Takahashi? , :1 Seven Meng 24 [云νsu1,4,

Claims (1)

【特許請求の範囲】[Claims] i、a数の電池セルと複数の冷却管で構成される燃料電
池発電システムにおいて、冷却管に少なくとも2つ以上
の冷却流体の調節器tTRけ、電池内の温度分布を制御
することを%黴とする燃料電池発電システムの冷却方法
In a fuel cell power generation system consisting of i, a number of battery cells and a plurality of cooling pipes, the cooling pipes are equipped with at least two cooling fluid regulators to control the temperature distribution within the battery. Cooling method for fuel cell power generation system.
JP57015413A 1982-02-01 1982-02-01 Cooling method of fuel cell power generating system Pending JPS58133775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57015413A JPS58133775A (en) 1982-02-01 1982-02-01 Cooling method of fuel cell power generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57015413A JPS58133775A (en) 1982-02-01 1982-02-01 Cooling method of fuel cell power generating system

Publications (1)

Publication Number Publication Date
JPS58133775A true JPS58133775A (en) 1983-08-09

Family

ID=11888050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57015413A Pending JPS58133775A (en) 1982-02-01 1982-02-01 Cooling method of fuel cell power generating system

Country Status (1)

Country Link
JP (1) JPS58133775A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61214368A (en) * 1985-03-19 1986-09-24 Sanyo Electric Co Ltd Air cooling type fuel cell
JPS61214369A (en) * 1985-03-19 1986-09-24 Sanyo Electric Co Ltd Temperature controller of fuel cell
JPS63291364A (en) * 1987-05-25 1988-11-29 Toshiba Corp Control of fuel cell voltage distribution
JPH01265460A (en) * 1988-04-15 1989-10-23 Fuji Electric Co Ltd Fuel cell operating method
US5041344A (en) * 1984-12-14 1991-08-20 Fuji Electric Corporate Research And Development Ltd. Fuel cell cooling device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5041344A (en) * 1984-12-14 1991-08-20 Fuji Electric Corporate Research And Development Ltd. Fuel cell cooling device
JPS61214368A (en) * 1985-03-19 1986-09-24 Sanyo Electric Co Ltd Air cooling type fuel cell
JPS61214369A (en) * 1985-03-19 1986-09-24 Sanyo Electric Co Ltd Temperature controller of fuel cell
JPS63291364A (en) * 1987-05-25 1988-11-29 Toshiba Corp Control of fuel cell voltage distribution
JPH01265460A (en) * 1988-04-15 1989-10-23 Fuji Electric Co Ltd Fuel cell operating method

Similar Documents

Publication Publication Date Title
CN101116219B (en) Nonlinear thermal control of a pem fuel cell stack
CN103339773A (en) Method and arrangement to control operating conditions in fuel cell device
EP3503275B1 (en) Fuel cell system
KR20210041816A (en) Coolant control system and control method of fuel cell
JPS58133775A (en) Cooling method of fuel cell power generating system
CN101416339A (en) Fuel cell system and control method thereof
JPS6056374A (en) Fuel flow controlling device for fuel cell
CN114362259B (en) Thermal power plant joint frequency modulation system containing solid oxide fuel cell and energy storage and control method thereof
JPS6356672B2 (en)
JPH0461464B2 (en)
JPS6229868B2 (en)
JPS6139369A (en) Fuel cell power generation plant
JPS6180767A (en) Fuel supply system for fuel cell electric power generating plant
JP2005071913A (en) Fuel cell system
JPS6229867B2 (en)
JPS58166672A (en) Operation control method of fuel cell
JPS6356674B2 (en)
JPS61267273A (en) Control method for power generation plant of fuel cell and its apparatus
JPS6345763A (en) Operation controller of fuel cell power generating plant
JPS62119869A (en) Control system for fuel cell power generation plant
US20230253598A1 (en) Power management control
JPS6340269A (en) Cooling line control device of fuel cell power generating plant
JPH03149760A (en) Solid electrolyte type fuel cell generating system
JPS58133773A (en) Control system of fuel cell power generating plant
JPH02213056A (en) Fuel cell power generating plant