JPS58129787A - Fused carbonate fuel cell layer body - Google Patents

Fused carbonate fuel cell layer body

Info

Publication number
JPS58129787A
JPS58129787A JP57011850A JP1185082A JPS58129787A JP S58129787 A JPS58129787 A JP S58129787A JP 57011850 A JP57011850 A JP 57011850A JP 1185082 A JP1185082 A JP 1185082A JP S58129787 A JPS58129787 A JP S58129787A
Authority
JP
Japan
Prior art keywords
interconnector
bank
gas
fuel cell
molten carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57011850A
Other languages
Japanese (ja)
Inventor
Hakaru Ogawa
斗 小川
Yoichi Seta
瀬田 曜一
Kenji Murata
謙二 村田
Tamotsu Shirogami
城上 保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57011850A priority Critical patent/JPS58129787A/en
Publication of JPS58129787A publication Critical patent/JPS58129787A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0254Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form corrugated or undulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0265Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant the reactant or coolant channels having varying cross sections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To constitute an interconnector with a piece of metal lamina as well as to offer a fused carbonate fuel cell layer body capable of feeding gas through an external manifold system. CONSTITUTION:Elementary cells 34 are made up in a form of sandwiching an electrolytic tile 37 between an anode 35 and a cathode 36. An interconnector 31 projects over both top and bottom surfaces and there are provided with circular truncated cone type convex parts 32 and 33 which are so disposed as to cause each bottom diameter to be made smaller in regular sequence toward a gas flowing direction. When the cell is operated, both fuel and oxidizer gases are led in a direction that the top ad bottom surfaces of the interconnector 31 are opposed each other and, what is more, letting these gasea flow in a diagonal direction at each surface whereby power generation is carried out.

Description

【発明の詳細な説明】 〔発明の^する技術分野〕 本発明は、一枚の金属薄板で構成されるインクコネクタ
を使用する溶融炭酸塩燃料喧池積層体に関する。
DETAILED DESCRIPTION OF THE INVENTION FIELD OF THE INVENTION The present invention relates to a molten carbonate fuel reservoir stack using an ink connector constructed from a single sheet of metal.

〔従来技術とその問題点〕[Prior art and its problems]

一般に燃料電池は、第1因に示されるような単位セルを
複数スタンク上(=積み重ねた積層構造とし℃用いられ
る。スタックの隣接した単位セルのアノードl及びカソ
ード2にアノードガスとカソードガスが混合しないよう
に供給し、かつ、隣接した単位セルを磁気的に直列に接
続するため金属薄板からなるインタコネクタを挿入する
のが一般的である。なお第1図における単位セルの3は
眠解質タイル、4は集電体、5はガスマニホールドを形
成したインターコネクタである。
In general, a fuel cell is a stacked structure in which multiple unit cells are stacked on top of each other as shown in the first factor.The anode gas and cathode gas are mixed at the anode 1 and cathode 2 of adjacent unit cells in the stack. It is common to insert an interconnector made of a thin metal plate in order to magnetically connect adjacent unit cells in series.In addition, unit cell 3 in Figure 1 is a sleep cell. 4 is a current collector, and 5 is an interconnector forming a gas manifold.

第2図は、従来用いられてきたガス流を直交させるイン
タコネクタの第1の例の概略構成を示す斜視図である。
FIG. 2 is a perspective view showing a schematic configuration of a first example of a conventionally used interconnector for orthogonal gas flows.

インタコネクタは、通常ステンレス鋼で構成され、2板
の波型薄板11.12の間に平薄板15をはさんで、溶
接することによって作成される。
The interconnector is usually constructed of stainless steel and is made by sandwiching a flat thin plate 15 between two corrugated thin plates 11, 12 and welding them together.

波型薄板12の上に平薄板15をのせ、この上C二液型
薄板11を波型薄板12の谷14の方向が、波型薄板1
1の谷13の方向と直交するようにのせ、波型薄板11
,12が同時に平薄板15と接触する点を溶接する。
A flat thin plate 15 is placed on top of the corrugated thin plate 12, and the C two-component thin plate 11 is placed on top of the flat thin plate 15 so that the direction of the troughs 14 of the corrugated thin plate 12 is the same as that of the corrugated thin plate 1.
The corrugated thin plate 11 is placed so as to be perpendicular to the direction of the valley 13 of 1.
, 12 are simultaneously welded at the points where they contact the flat thin plate 15.

このインタコネクタでは、金属薄板3枚で構成しなけれ
ばならず、厚みが大きくなることや、スポット溶接か必
要でセルサイズが大きくなるにつれ、スポット溶接点が
、@1.速に多くなるという欠点があった。
This interconnector must be composed of three thin metal plates, and as the thickness increases and the cell size increases due to the need for spot welding, the spot welding points become @1. It has the disadvantage that it increases rapidly.

また他の積層体の例としては一部な′@3図(alに示
すものが知られ℃いる。即ち燃料@池は$3図1b+に
外形を示す噸解質鳩を形成する電解質タイル21をカン
ード鰍極22、アノード電極23で挾み、更に喧極22
.23の外側に中間部両面に直線状に配したガス通路と
なる凹凸部を設けた一枚の隔離板25が配着されて周囲
接面を気密に接合しC&層化し構成される。各電極22
,23は電解質タイル21の寸法より小さく、電解質タ
イル21の凹部26に納まり、かつ隔離板25の凹凸部
を覆う寸法となつ℃いる。また電解質タイル21の対向
する2辺に沿ってガス流通用の貫通孔27が配列され開
けられており、積層化した時には貫通孔27周囲仁題解
質タイル21と隔離板25の間にガス流通間隙全形成す
るための複数個の円錐突部な有する間隔リング28が接
面を気密に取着される。
As an example of other laminates, there are some known examples of laminates, such as those shown in Figure 1b. is sandwiched between the cand electrode 22 and the anode electrode 23, and then the cylindrical electrode 22
.. A separator plate 25 having concave and convex portions arranged linearly on both surfaces of the intermediate portion of the separator plate 23 is disposed on the outside of the separator plate 23, and the peripheral contact surfaces are hermetically joined to form a C&layer. Each electrode 22
, 23 are smaller than the size of the electrolyte tile 21 and have a size that fits into the recess 26 of the electrolyte tile 21 and covers the uneven portion of the separator 25. In addition, through holes 27 for gas flow are arranged and opened along two opposing sides of the electrolyte tile 21, and when stacked, a gas flow gap is formed around the through holes 27 and between the electrolysis tile 21 and the separator 25. A spacing ring 28 having a plurality of conical protrusions for forming a full-length spacing ring 28 is attached in a gas-tight manner to the contact surfaces.

このように構成されたものにおいては貫通孔27を通し
て供給された燃料ガスA1酸化剤ガスBは間隔リング2
8で交互に各流通間隙(二送り込款れる。酸化剤ガスB
は第3図(atにおける隔離板25の表面側を、燃料ガ
スAは裏面側をそれぞれのガス通路を同一方向に流れ@
題′8A22.23に供給される。
In this structure, the fuel gas A1 and the oxidant gas B supplied through the through hole 27 are supplied to the spacer ring 2.
Oxidizing gas B
The fuel gas A flows in the same direction through the gas passages on the front side of the separator 25 in Figure 3 (at), and the fuel gas A flows on the back side of the separator plate 25 in the same direction.
Provided in Title '8A22.23.

上記構成のものにおい又は、電解質タイルの周辺部にガ
ス流通の為比較的広幅にわたる間隙を内部ガスマニホー
ルドとして設けなければならず貫通孔周囲で電解質メイ
ルを部分的に交えることとなり電解質タイルの破壊、亀
裂の発生等の破損を招きやすく、特に積層数が増大する
にしたがい多量のガスを流さねばならず寸法拡大ととも
ζ二破損の真が増大する。また電解質タイルには貫通孔
を開けなくてはならず加工工程を複雑にする問題と、間
隔リング部のガス流路の目詰り発生尋の問題がある。さ
らC二継解質タイルの周辺部のガスマニホールド部位で
は電解質タイルに亀裂が発生した場合動作温度で燃料ガ
スと酸化剤ガスとの差圧によって溶融した炭酸塩の保持
の均衡が崩れ、ガスが泡出し、交差混合が起りやすく、
温度の上昇、下降によりこの交差混合はさらに顕著なも
のとなる問題かある。またさらC二電解質タイルの周辺
にガスマニホールドを形成する為、電解質タイルの寸法
シ二対する冷極の存在比が小さく電解質タイルの利用度
合が少ないという欠点を有している。
In the case of the above structure, a relatively wide gap must be provided as an internal gas manifold around the electrolyte tile for gas circulation, and the electrolyte mail may be partially interlaced around the through hole, resulting in destruction of the electrolyte tile. It is easy to cause damage such as the occurrence of cracks, and in particular, as the number of laminated layers increases, a large amount of gas must flow, and the probability of ζ2 damage increases as the dimensions increase. Further, the electrolyte tile has the problem of complicating the processing process because through holes must be made, and the problem of clogging of the gas flow path in the spacer ring portion. In addition, in the gas manifold area around the C-secondary electrolyte tile, if cracks occur in the electrolyte tile, the differential pressure between the fuel gas and oxidizer gas at operating temperatures will upset the retention balance of molten carbonate, causing the gas to leak. Foaming and cross-mixing are likely to occur,
There is a problem in that this cross-mixing becomes more pronounced as the temperature increases or decreases. Furthermore, since the gas manifold is formed around the C2 electrolyte tile, there is a drawback that the ratio of the cold electrode to the size of the electrolyte tile is small and the degree of utilization of the electrolyte tile is small.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、一枚の金M薄板でインタコネクタ!構
成するとともに、外部マニホールド方式でガスを供給で
きる溶融炭酸塩燃料踵池積層体を提供することにある。
The purpose of the present invention is to create an interconnector using a single gold M thin plate! It is an object of the present invention to provide a molten carbonate fuel heel pond stack that can be constructed and supplied with gas in an external manifold manner.

〔発明の概要〕[Summary of the invention]

本発明では、上記目的を達成するために、一枚の金属薄
板の表裏に円錐台状の凹凸の突起を設け、上面の対向す
る2辺に電極積載用の土手を設け、上面に土手を有・す
る辺と同じ下面の辺は薄板を折り曲げて喧極を保持させ
るとともに、上面の土手ビ有してない2辺の対角線方向
の位置に、各辺の中心までガス流路遮へいのため薄板を
上方向に折り曲げ、該2辺の残りの部分を下方向に折り
曲げ、さらに、上面突起の円状底部の直径を土手方向に
沿つ℃徐々に小さくするとともに、下面突起円状底部の
直径を上面とは逆方向に徐々に小さくする事により、積
層セル間の電気的結合と燃料酸化剤ガス間の隔離を行う
インタコネクタを構成する事を特徴とした溶融炭酸塩燃
料電池積層体である。
In order to achieve the above object, in the present invention, a truncated cone-shaped uneven projection is provided on the front and back sides of a single thin metal plate, and banks for loading electrodes are provided on two opposing sides of the top surface.・Fold a thin plate on the same bottom side as the side to hold the pole, and add thin plates to the center of each side in the diagonal direction of the two sides that do not have a bank on the top side to block the gas flow path. Bend it upward, bend the remaining parts of the two sides downward, and then gradually reduce the diameter of the circular bottom of the upper protrusion along the bank direction, and change the diameter of the circular bottom of the lower protrusion to the upper surface. This is a molten carbonate fuel cell stack characterized by forming an interconnector that electrically connects stacked cells and isolates fuel oxidizer gas by gradually decreasing the size in the opposite direction.

〔発明の実施例〕[Embodiments of the invention]

次に本発明の実施例〉図面7用いて説明する。 Next, embodiments of the present invention will be described with reference to FIG. 7.

(実施例1) 第4図は本発明に係る第1の実施例の要部を示す縦断面
図で符号31は上面、下面に突出した凸部32.33を
有する金属薄板のインタコネクタで、このインタコネク
タ31を介在させて素庫池34が積層される。素暉池屯
4はアノード35とカソード36の間に電解質タイル3
7をはさんで形成される。インタコネクタ31は第5図
にその斜視図yxiTよう(二0.25mの厚さt有す
る5U8316の金属薄板を上面及び下面に繰返しピッ
チ31、突出した部位の円状底部の最大のものの血′径
が2、3313.最)]\のものの組径が0.5鰭、突
起の高さ1、5 IIaのガス通流方向孟二向って底部
直径が緘次小さくなるよう配列された円錐台状の凸部3
2.33が設けられている。又このインタコネクタ31
0〕ガス通流方向の対向する2辺38a、38bには凸
部32の頂面と同じ高さの素磁池横載用段部39a。
(Embodiment 1) FIG. 4 is a vertical cross-sectional view showing the main parts of the first embodiment of the present invention, and reference numeral 31 denotes an interconnector made of a thin metal plate having convex portions 32 and 33 protruding from the upper and lower surfaces. The raw storage ponds 34 are stacked with this interconnector 31 interposed therebetween. Suhui Chitun 4 has an electrolyte tile 3 between the anode 35 and the cathode 36.
It is formed by sandwiching 7. The interconnector 31 is shown in a perspective view in FIG. 2, 3313.most)] The diameter of the set of fins is 0.5, the height of the protrusion is 1,5. Convex part 3
2.33 is provided. Also, this interconnector 31
0] On two opposite sides 38a and 38b in the gas flow direction, there is a stepped portion 39a for horizontally mounting the elementary magnetic pond, which has the same height as the top surface of the convex portion 32.

39bが形成された樋状の第lの土手30m、30bが
薄板端部な折り曲げて設けられ、更に第1の土手30a
、301)の外面を形成した薄板端部は薄板の下面側に
まで延伸して第2の土手40a、40bを形成し℃いる
30 m of a gutter-shaped first bank 39b is formed, and 30b is provided by bending the end of a thin plate, and a first bank 30a
, 301) extend to the lower surface of the thin plate to form second banks 40a, 40b.

次に、土手の存在しない2辺の対角線方向の位置に、各
辺の中心まで金属薄板を上に折り曲げ、この2辺の残り
の部分で、金属薄板を下に折り曲げてガス流路遮蔽板4
1a、41b、 42a、 42b乞形成した。次に、
土手30a、30b、 40a、 40bの樋状部の末
端の空隙を盲板43を磁子ビーム溶接して、ふさいだ。
Next, bend the metal thin plate upward to the center of each side in the diagonal direction of the two sides where the bank does not exist, and then bend the metal thin plate downward on the remaining parts of these two sides to form the gas flow path shielding plate 4.
1a, 41b, 42a, 42b were formed. next,
The gaps at the ends of the gutter-like portions of the banks 30a, 30b, 40a, and 40b were closed by magneton beam welding with blind plates 43.

次に電極(カソード)36を下面にのせて第2の土手4
0a、40bの長手方向に平行な両端を折り曲げて、電
極(カソード)36をインタコネクタ31に密着して保
持できるように、電極弁えを形成した。ついで、上面の
第1の土手30a。
Next, place the electrode (cathode) 36 on the bottom surface of the second bank 4.
Both ends parallel to the longitudinal direction of 0a and 40b were bent to form an electrode valve so that the electrode (cathode) 36 could be held in close contact with the interconnector 31. Next, the first bank 30a on the upper surface.

30bに電極(アノード)35を載せて、これを一つの
単位として、電解質タイル37と変互に積み重ねて縦横
151M、セル20枚の溶融炭酸塩燃料硫池槓鉢体を形
成した。このとき、電極積載用の第1の土手30a、3
ob 、 電極弁えなど庫解質タイル37と接触するイ
ンタコネクタ31の部分には、アルミナコーチ4フフZ
行なった0アノード35とカソード36は、土手の大き
さを調節すれば逆でもかまわない。電池を動作させる時
には燃料ガスと酸化剤ガスをイ、ンタコネクタ31の上
面、下面をそれぞれ対向する方向に流し、かつ各面では
対角線方向に流し℃発電が行われる。
An electrode (anode) 35 was placed on 30b, and this was used as one unit and stacked alternately with electrolyte tiles 37 to form a molten carbonate fuel sulfur pond body measuring 151M in length and width and having 20 cells. At this time, the first banks 30a, 3 for loading electrodes
The parts of the interconnector 31 that come into contact with the cell solution tile 37, such as the electrode valve, are covered with alumina coach 4 fufu Z.
The 0 anode 35 and cathode 36 may be reversed as long as the size of the bank is adjusted. When the battery is operated, fuel gas and oxidant gas are flowed in opposite directions on the upper and lower surfaces of the interconnector 31, and diagonally on each surface to generate power.

(実施例2) 上記実施例1のようにインタコネクタに金属薄板で電極
積載用の第lの土手30a、 30b ′f:形成する
かわり(二所定厚さを有する別部材を固着して、それ(
二かえても良い。即ち第5図と同一部位は同符号を付け
て示した第6図、第7図において、インタコネクタ51
の金属薄板の対向する2辺は下面側に折り曲げて第2の
土手40a、40bは形成されており、上面側ζ二は厚
さ2. l wxの5US316で素嘔池積載用段部5
2a、52bを有する第lの土手53a、53bが亀子
ビーム溶接により溶接されている。この場合(二は実施
例1で要した盲板は不要となる。さらにインタコネクタ
は次の例のようじ斐−形して構成しても良い◎ (変形例1) (実施例1)のように、円錐台状突起を設けた金属薄板
に、(実施例1)と同じ辺の上面には、厚さ2.1 w
axの酩料極積載用の肩を有する8US316の土手t
、上下面は厚1.8 yuの酸化剤極積載用の屑を有す
る8US316の土手な電子ビーム溶接したのち、(実
施例1)と同様に、ガス流路遮蔽板を設けた。
(Example 2) Instead of forming the first bank 30a, 30b'f for electrode loading on the interconnector with a thin metal plate as in Example 1 above, another member having a predetermined thickness is fixed to the interconnector. (
You can change it by two. That is, in FIGS. 6 and 7, the same parts as in FIG. 5 are indicated with the same reference numerals.
The second banks 40a, 40b are formed by bending the two opposing sides of the thin metal plate toward the bottom side, and the top side ζ2 has a thickness of 2. l wx 5US316 with stepped section 5 for loading Sonoike
2a, 52b are welded together by Kameko beam welding. In this case (2), the blind plate required in Embodiment 1 is not required.Furthermore, the interconnector may be constructed in the toothpick shape as shown in the following example. (Modification 1) As in (Example 1) On the top surface of the same side as (Example 1), a thin metal plate provided with a truncated conical protrusion has a thickness of 2.1 w.
8US316 bank t with shoulder for ax loading
After electron beam welding of 8US316 with 1.8 yu thick oxidizer electrode loading scraps on the upper and lower surfaces, a gas flow path shielding plate was provided in the same manner as in Example 1.

(変形例2) (実施例1)、(実施例2)、(変形例1)のインタコ
ネクタの上下面に、ガスを四隅に流すためのガス流向変
向板を設ける。
(Modification 2) Gas flow direction changing plates for flowing gas to the four corners are provided on the upper and lower surfaces of the interconnectors of (Example 1), (Example 2), and (Modification 1).

(変形例3) ガス流路遮蔽板を円錐台状突起を設けた金属薄板を折り
曲げて形成するかわりに、5U8316板を電子ビーム
溶接し℃形成する。
(Modification 3) Instead of forming the gas flow path shielding plate by bending a thin metal plate provided with a truncated conical projection, it is formed by electron beam welding of a 5U8316 plate at ℃.

〔発明の効果〕〔Effect of the invention〕

上記のように構成した本発明は以下の効果を有する。 The present invention configured as described above has the following effects.

■ 重量は(従来例1)の半分、(従来例2)とほぼ同
じとなる。
■ The weight is half of (Conventional Example 1) and approximately the same as (Conventional Example 2).

■ (従来例1)に較べ多数のヌボット溶接を必要とし
ない。
■ Compared to (Conventional Example 1), a large number of Nubot welds are not required.

■ (従来例2)に較べ、外部マニホールド方式でガス
を供給できるので電解質タイルの周辺に穴をあける必要
がない。
■ Compared to (Conventional Example 2), gas can be supplied using an external manifold method, so there is no need to drill holes around the electrolyte tile.

■ (従来例2)に較べ、電極の存在していない面積の
割合が小さい。30α角の電解質タイルを用いた際(従
来例2)では電極は24zX28mであったのに対し、
本発明では30n+X27crn となり、電極の占め
る割合が74.7%から90%に向上した。
(2) Compared to (Conventional Example 2), the ratio of the area where no electrode exists is small. When using electrolyte tiles with a 30α angle (conventional example 2), the electrodes were 24z x 28m;
In the present invention, the ratio was 30n+X27crn, and the ratio occupied by the electrodes increased from 74.7% to 90%.

■ (従来例2)では、燃料か入側と酸化剤ガス間に0
.3〜/cfIの差圧をかけ、常温〜650”Cと熱サ
イクルを3度繰返した際に顕著なガスの交差混合が起っ
たが、本発明ではこれを5度杓っても顕著な交差混合は
起らなかった。
■ (Conventional Example 2), there is no
.. Significant cross-mixing of gases occurred when a pressure difference of 3~/cfI was applied and the thermal cycle was repeated three times from room temperature to 650"C, but in the present invention, even after this was repeated five times, no significant cross-mixing occurred. No cross-mixing occurred.

以上に述べた様に本発明のインタコネクタは部品点数が
少なく、縦置な周囲に土手を設けた1枚の金属薄板で構
成されながら、電極の占める面積の割合が大きく、また
外部マニホールド方式で燃料ガス、酸化剤ガスを供給で
きるので電解質タイルの周辺部に穴をあける必要がなく
なりまたその製造工程か簡易化されるので、その工業的
価値は非常に大である。
As described above, the interconnector of the present invention has a small number of parts, is composed of a single thin metal plate with a bank around its periphery, and has a large area occupied by electrodes. Since fuel gas and oxidant gas can be supplied, there is no need to make holes around the electrolyte tile, and the manufacturing process is simplified, so its industrial value is very large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は溶融炭酸塩燃料電池の基本構成を示す断面図、
第2図は従来例の1つに使用されるインタコネクタン示
すM視図、第3図は他の従来例の要部を示す斜視図、第
4図は本発明の一実施例の一部ン示す縦断面図、第5図
は第4図に使用されるインタコネクタを示す斜視図、第
6図は本発明の他の実施例のインタコネクタを示す斜視
図、第7図は第6図のA−A矢方向の断面を示す縦断面
図である。 31・・・インタコネクタ 3’2,33・・・凸部3
4・・・素電池       30a、30b・・・第
1の土手35・・・アノード    36川カンード3
7・・・電解質タイル   40a、 40b・・・第
2の土手411L、41b、42&、42b−!閉板(
7317)代理人 弁理士 則 近 憲 佑(ほか1名
) 第  1  図 第  2  図 /J
Figure 1 is a sectional view showing the basic configuration of a molten carbonate fuel cell;
Fig. 2 is an M view showing an interconnector used in one of the conventional examples, Fig. 3 is a perspective view showing the main parts of another conventional example, and Fig. 4 is a part of an embodiment of the present invention. 5 is a perspective view showing the interconnector used in FIG. 4, FIG. 6 is a perspective view showing an interconnector according to another embodiment of the present invention, and FIG. FIG. 31... Interconnector 3'2, 33... Convex portion 3
4...Battery 30a, 30b...First bank 35...Anode 36 River Cando 3
7... Electrolyte tiles 40a, 40b... Second bank 411L, 41b, 42&, 42b-! Closed board (
7317) Agent: Patent Attorney Noriyuki Chika (and 1 other person) Figure 1 Figure 2/J

Claims (1)

【特許請求の範囲】[Claims] 溶融炭酸塩を喧解質とする燃料電池において、一枚の金
属薄板の表裏に円錐台状の凸部を設け、一方の面の対向
する2辺に電極積載用の第lの土手を設け、他方の面の
第1の土手を有する辺と同じ辺に第2の土手を設け、土
手を有し℃いない2辺に対角線方向の位置にも角からも
辺の中心までガス流路逍閉板な上面及び下面に交互in
設は前記凸部の円状底部の直径を土手の長手方向に沿っ
て徐々に小さくした積層セル間の電気的結合と燃料酸化
ガス間の隔離を行なうインタコネタと、前記土手C二載
置された素敵池とを交互に順次積層して構成されたこと
を特徴とする溶融炭酸塩燃料電池積層体。
In a fuel cell using molten carbonate as a solubilizer, a truncated cone-shaped convex portion is provided on the front and back sides of one thin metal plate, and a first bank for loading an electrode is provided on two opposing sides of one surface, A second bank is provided on the same side as the side with the first bank on the other side, and a gas flow path closing plate is provided at a diagonal position on the two sides that do not have the bank and from the corner to the center of the side. alternately in the upper and lower surfaces
The structure includes an interconnector for electrically coupling between the laminated cells and isolating the fuel oxidizing gas, in which the diameter of the circular bottom of the convex portion is gradually reduced along the longitudinal direction of the bank, and an interconnector that is placed on the bank C2. A molten carbonate fuel cell stack is characterized in that it is constructed by sequentially stacking molten carbonate ponds.
JP57011850A 1982-01-29 1982-01-29 Fused carbonate fuel cell layer body Pending JPS58129787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57011850A JPS58129787A (en) 1982-01-29 1982-01-29 Fused carbonate fuel cell layer body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57011850A JPS58129787A (en) 1982-01-29 1982-01-29 Fused carbonate fuel cell layer body

Publications (1)

Publication Number Publication Date
JPS58129787A true JPS58129787A (en) 1983-08-02

Family

ID=11789193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57011850A Pending JPS58129787A (en) 1982-01-29 1982-01-29 Fused carbonate fuel cell layer body

Country Status (1)

Country Link
JP (1) JPS58129787A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0290470A (en) * 1988-09-27 1990-03-29 Mitsubishi Electric Corp Lamination type fuel battery
NL1001858C2 (en) * 1994-12-08 1998-08-11 Mtu Friedrichshafen Gmbh Bipolar plate for fuel cells.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0290470A (en) * 1988-09-27 1990-03-29 Mitsubishi Electric Corp Lamination type fuel battery
NL1001858C2 (en) * 1994-12-08 1998-08-11 Mtu Friedrichshafen Gmbh Bipolar plate for fuel cells.

Similar Documents

Publication Publication Date Title
JPS5912572A (en) Fuel cell
JPH05159790A (en) Solid electrolyte fuel cell
JPH08162141A (en) Fuel cell
US20090004531A1 (en) Fuel cell stack having multiple parallel fuel cells
JPH03266365A (en) Separator of solid electrolytic type fuel cell
JPH0541239A (en) High temperature type fuel cell module
JPS5893170A (en) Molten carbonate type fuel cell
JPH11224684A (en) Fuel cell
JPS58129787A (en) Fused carbonate fuel cell layer body
JP6890040B2 (en) Electrochemical reaction cell stack
JPH10134836A (en) Fuel cell
US3873366A (en) Electrode for electrical lead accumulators
JPH06349512A (en) Fuel cell
JP6945035B1 (en) Electrochemical reaction cell stack
JP3791702B2 (en) Flat solid electrolyte fuel cell
US11271221B2 (en) Electrochemical reaction cell stack, interconnector-electrochemical reaction unit cell composite, and method for manufacturing electrochemical reaction cell stack
JPS58129788A (en) Fused carbonate fuel cell layer body
JPS63166159A (en) Solid electrolyte fuel cell
JPS58150276A (en) Fuel cell
JPH07153472A (en) Current collecting plate for fuel cell
JP7237043B2 (en) Electrochemical reaction cell stack
JP7210509B2 (en) Electrochemical reaction cell stack
JP2018181405A (en) Fuel cell power generation module
JPH0290470A (en) Lamination type fuel battery
JPH0260068A (en) Sealed lead-acid battery