JPS5812971A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPS5812971A
JPS5812971A JP56110780A JP11078081A JPS5812971A JP S5812971 A JPS5812971 A JP S5812971A JP 56110780 A JP56110780 A JP 56110780A JP 11078081 A JP11078081 A JP 11078081A JP S5812971 A JPS5812971 A JP S5812971A
Authority
JP
Japan
Prior art keywords
valve
refrigerant
valve stem
stator
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56110780A
Other languages
Japanese (ja)
Other versions
JPH0245104B2 (en
Inventor
磯部 正和
和久井 勝
青木 忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP56110780A priority Critical patent/JPS5812971A/en
Publication of JPS5812971A publication Critical patent/JPS5812971A/en
Publication of JPH0245104B2 publication Critical patent/JPH0245104B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は電動形(パルスモータ形)膨張弁を用いた冷暖
房装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heating and cooling system using an electric type (pulse motor type) expansion valve.

冷暖房装置の冷媒回路中に挿入される膨張弁としては、
負荷の変動に対し冷媒流量を速やかに増減でき、かつ調
整を正確に行うことができること、並びに運転起動時や
運転停止時に冷媒流量を最大限に増加させ急速冷暖房を
行い、あるいはコンプレッサの入出力口の圧力を速やか
に均等化する等を行うことができるものが望まれている
As an expansion valve inserted into the refrigerant circuit of an air conditioning system,
The refrigerant flow rate can be quickly increased or decreased in response to load fluctuations, and adjustments can be made accurately, and the refrigerant flow rate can be increased to the maximum at startup or shutdown to perform rapid cooling and heating, or to increase or decrease the refrigerant flow rate at the input and output ports of the compressor. What is desired is a device that can quickly equalize the pressure of

しかし従来における膨張弁は、蒸発器出口部温度を感熱
筒により圧力に変換し、この圧力によりベローズやダイ
ヤプラム等の隔膜を変形させて弁棒を上下動させ冷媒の
流量を制御していた。しかしこの方法にあっては、蒸発
器出口部の温度を圧力に変換するために感温筒の応答速
度が遅く、かつ膨張弁等は積分動作をもたないため冷凍
サイクル負荷によって過熱度が変化するという欠点があ
ったQ また上記した弁棒の移動量が小さく、かつ冷媒による流
体圧が大きいため作動圧も大きくしなければならない等
の欠点を有していた。
However, conventional expansion valves convert the temperature at the outlet of the evaporator into pressure using a heat-sensitive cylinder, and use this pressure to deform a diaphragm such as a bellows or diaphragm to move the valve stem up and down to control the flow rate of refrigerant. However, with this method, the response speed of the thermosensor is slow because it converts the temperature at the evaporator outlet into pressure, and the expansion valve etc. do not have integral action, so the degree of superheat changes depending on the refrigeration cycle load. Furthermore, since the amount of movement of the valve stem is small and the fluid pressure caused by the refrigerant is high, the operating pressure must also be increased.

そこで近年、上記した欠点を是正するものとして、蒸発
器出入口部での温度を電気信号に変換し、その電気信号
で電磁コイル内に挿入された鉄心を上下動させる比例型
膨張弁が開発されているが、しかしこの膨張弁にあって
は応答性が改良されるものの、弁調整、すなわち弁開度
の微調整が非常に難しいという欠点があった。
In recent years, in order to correct the above-mentioned drawbacks, a proportional expansion valve has been developed that converts the temperature at the evaporator inlet and outlet into an electrical signal, and uses that electrical signal to move the iron core inserted in the electromagnetic coil up and down. However, although this expansion valve has improved responsiveness, it has the drawback that valve adjustment, that is, fine adjustment of the valve opening, is extremely difficult.

本発明は斜上の点に鑑みて成されたもので、その目的と
するところは、負荷の変動に対し冷媒流量を速やかに増
減できると共に微調整を容易に行えることにより、最適
冷暖房が行える冷暖房装置を提供するにある。
The present invention was made in view of the above-mentioned problem, and its purpose is to quickly increase or decrease the refrigerant flow rate in response to load fluctuations, and to easily make fine adjustments to achieve optimal cooling and heating. We are in the process of providing equipment.

また本発明の他の目的とするところは、弁の最大および
最小開度を迅速に行うことができることにより、急速冷
暖房を行えると共に停止時のコンプレッサ入出力ロ圧カ
を速やかに均等化できて、再起動の時間を短縮し得る冷
暖房装置を提供するにある。
Another object of the present invention is that by quickly adjusting the maximum and minimum openings of the valve, rapid heating and cooling can be performed, and the input and output pressures of the compressor can be quickly equalized when the compressor is stopped. An object of the present invention is to provide a heating and cooling device that can shorten restart time.

さらに本発明の他の目的とするところは、コイル部をケ
ーシングの外に配置し、電気的絶縁の問題、発熱の問題
を解決すると共に回転部でのシールの問題がないので漏
れを防止でき、かつ小型化が図れ製作容易でコストの低
減を図ることができる冷暖房装置を提供寒:子にある。
Furthermore, another object of the present invention is that the coil part is disposed outside the casing to solve the problem of electrical insulation and heat generation, and there is no problem of sealing in the rotating part, so leakage can be prevented. In addition, we provide air-conditioning and heating equipment that is compact, easy to manufacture, and reduces costs.

°以下に本発明の一実施例を第1図に示す冷媒回路を参
考に説明する。
An embodiment of the present invention will be described below with reference to the refrigerant circuit shown in FIG.

図において、11はコンプレッサであり、電磁四方弁1
2を介して、熱源側熱交換器13、正逆流可能な電動形
膨張弁14及び利用側熱交換器15を環状に連結して、
冷暖可能な冷凍サイクルi形成している。16はコンプ
レッサ11への吸入管部に設けた受液器である。すなわ
ち、この冷凍サイクルは、冷房運転時においては、コン
プレ9.す11から吐出された冷媒は順次、電磁四方片
12、熱源側熱交換器(蹄縮器として動作)13、正逆
流可能な電動形膨張弁14、利用側熱交換器(蒸発器と
して動作)15、電磁四方弁12、受液器16を通過し
て、コンプレッサ11へ吸入される。
In the figure, 11 is a compressor, and an electromagnetic four-way valve 1
2, the heat source side heat exchanger 13, the electrically operated expansion valve 14 capable of forward and reverse flow, and the usage side heat exchanger 15 are connected in an annular manner,
It has a refrigeration cycle i that can be cooled and heated. Reference numeral 16 denotes a liquid receiver provided in the suction pipe section to the compressor 11. That is, in this refrigeration cycle, during cooling operation, the compressor is 9. The refrigerant discharged from the pipe 11 is sequentially passed through the electromagnetic square piece 12, the heat source side heat exchanger (operates as a compressor) 13, the electrically operated expansion valve 14 capable of forward and reverse flow, and the user side heat exchanger (operates as an evaporator). 15, an electromagnetic four-way valve 12, and a liquid receiver 16, and is sucked into the compressor 11.

また暖房運転時においては、コンプレッサ11から吐出
された冷媒は、順次、電磁四方弁12、利用側熱交換器
(凝縮器として動作)15、電動形膨張弁14、熱源側
熱交換器(蒸発器として動作)13、電磁四方弁12、
受液器16を通過して、コンプレッサ11へ吸入される
。  17.1Bは各々、利用側熱交換器の温度、その
冷媒出口温度と     (?を検出する感温抵抗素子
である。19.20は各々、熱源側熱交換器13の温度
、その冷媒出口温度とを検出する感温抵抗素子である。
During heating operation, the refrigerant discharged from the compressor 11 is sequentially transferred to the electromagnetic four-way valve 12, the user-side heat exchanger (operates as a condenser) 15, the electric expansion valve 14, and the heat source-side heat exchanger (evaporator). ) 13, solenoid four-way valve 12,
It passes through the liquid receiver 16 and is sucked into the compressor 11. 17.1B is a temperature-sensitive resistance element that detects the temperature of the heat exchanger on the user side, the refrigerant outlet temperature and This is a temperature-sensitive resistance element that detects

21は電気制御回路であり、冷房運転時には感温抵抗素
子17.18の両者からの信号により、一方暖房運転時
には感温抵抗素子19.20の両者からの信号により電
動形膨張弁14の開度を制御するものである。さらに、
22は立ち上がり制御電気回路であり、運転起動時には
電気制御回路21には通電せず、電動形膨張弁14に“
多数パルスを印加し、運転起動かつ所定時間を経過した
後、通電゛を電動形膨張弁14から電気制御回路21に
切換えるものである。
Reference numeral 21 denotes an electric control circuit, which controls the opening degree of the electric expansion valve 14 by signals from both temperature-sensitive resistance elements 17 and 18 during cooling operation, and by signals from both temperature-sensitive resistance elements 19 and 20 during heating operation. It controls the moreover,
Reference numeral 22 denotes a start-up control electric circuit, in which the electric control circuit 21 is not energized at the start of operation, and the electric expansion valve 14 is not energized.
After applying a large number of pulses and starting the operation and a predetermined period of time has elapsed, energization is switched from the electric expansion valve 14 to the electric control circuit 21.

以下前記型動形膨張弁14、すなわちパルスモータ形の
膨張弁の構造を第2図以降について説明する。
The structure of the type-operated expansion valve 14, that is, the pulse motor type expansion valve, will be explained below with reference to FIG. 2 and subsequent figures.

1はシリンダ一部1aとケーシング部1bとが一体成形
された本体にして、シリンダ一部1aの下端に冷媒流入
管2が、また側面には冷媒流出管3が固着されている。
Reference numeral 1 denotes a main body in which a cylinder part 1a and a casing part 1b are integrally molded, and a refrigerant inlet pipe 2 is fixed to the lower end of the cylinder part 1a, and a refrigerant outlet pipe 3 is fixed to the side surface.

そして上記流入管2が固着された部分には弁座1a+ 
が形成されている。4はシリンダ一部1aに形成したネ
ジ孔1a2に螺合された弁棒にして、先端ニードル弁4
aが上記弁座1a+ 内に臨んでいる。そしてこの弁棒
4の上端には角孔4bが穿たれている。5はケーシング
部lb内に仕切板1b1と後述する蓋体6との間に形成
された減速ギヤにして、その出力軸5aが仕切板1b+
 を貫通してシリンダ一部la内に臨むと共に先端角柱
部5aが上記弁棒4の角孔4b内に上下動自在に挿入さ
れている。従って出力軸5aが回転されると、弁棒4は
回転しながら上下動する。6はケーシング1bの上端開
口部に螺合密閉された非磁性体による蓋体にして、中央
より上方に肉薄の円筒部6aが延長されると共にその上
端に軸受部6bが一体に形成されている。また蓋体6の
中央には軸受6Cが嵌着されている。
The valve seat 1a+ is located at the portion where the inflow pipe 2 is fixed.
is formed. 4 is a valve stem screwed into a screw hole 1a2 formed in the cylinder part 1a, and a tip needle valve 4
a faces into the valve seat 1a+. A square hole 4b is bored in the upper end of this valve stem 4. Reference numeral 5 denotes a reduction gear formed in the casing part lb between the partition plate 1b1 and a lid 6 to be described later, and its output shaft 5a is connected to the partition plate 1b+.
The end prismatic portion 5a is inserted into the rectangular hole 4b of the valve stem 4 so as to be vertically movable. Therefore, when the output shaft 5a is rotated, the valve stem 4 moves up and down while rotating. Reference numeral 6 denotes a lid made of a non-magnetic material that is screwed onto the upper end opening of the casing 1b and sealed, and a thin cylindrical portion 6a extends upward from the center, and a bearing portion 6b is integrally formed at the upper end. . Further, a bearing 6C is fitted in the center of the lid 6.

なお蓋体6はケーシング1bに螺合締付けると、下面傾
斜部6dがケーシング1bの段部lb2に当接するので
、この部分において密閉されるが、より密閉度を良くす
るのであれば、開口部6eにシール材(例えば半田や接
着剤)を充填することにより行える。7は外周面にN極
とS極が交互に着磁された永久磁石である回転子にして
、上記円筒部6a内に回転自在に収納されると共に回転
軸7aが上記軸受部6bと軸受6Cとに軸支されている
。そして回転軸7aの下端は軸受6Cより突出されると
共に上記減速ギヤ5と噛合する歯車7bが固着されてい
る。8は2相のコイルからなる固定子にして、上記円筒
部6aの外周に嵌合されている。そしてそのリード線8
aは蒸発器出入口(図示せず)の差温を検出すると共に
該差温変化に比例してパルス信号を送出するコントロー
ラに接続されている。従って差温が大きくなると正のパ
ルスが発生するので、固定子8には正のパルスが印加さ
れ、回転子7をパルプが開く方向に回転させる。9は上
記した軸受部6bに螺合固定された固定手押え部材にし
て、これを締め付けることにより固定子8を蓋体6側に
押え付け、固定子8を固定する。     、、1.、
、 次に上記構成に基いて動作を説明する。
When the lid 6 is screwed and tightened onto the casing 1b, the lower sloped portion 6d comes into contact with the stepped portion lb2 of the casing 1b, so it is sealed at this portion, but if you want to improve the degree of sealing, the opening 6e This can be done by filling the area with a sealing material (for example, solder or adhesive). A rotor 7 is a permanent magnet whose outer circumferential surface is alternately magnetized with north and south poles, and is rotatably housed in the cylindrical portion 6a, and the rotating shaft 7a is connected to the bearing portion 6b and the bearing 6C. It is pivoted on. The lower end of the rotating shaft 7a protrudes from the bearing 6C, and a gear 7b that meshes with the reduction gear 5 is fixed thereto. Reference numeral 8 denotes a stator consisting of a two-phase coil, which is fitted onto the outer periphery of the cylindrical portion 6a. And the lead wire 8
A is connected to a controller that detects a temperature difference between the evaporator inlet and outlet (not shown) and sends out a pulse signal in proportion to the change in temperature difference. Therefore, when the temperature difference increases, a positive pulse is generated, so a positive pulse is applied to the stator 8, and the rotor 7 is rotated in the direction in which the pulp opens. Reference numeral 9 denotes a fixed hand holding member screwed and fixed to the above-mentioned bearing portion 6b, and by tightening this, the stator 8 is pressed against the lid body 6 side, and the stator 8 is fixed. ,,1. ,
, Next, the operation will be explained based on the above configuration.

今コントローラより固定子8たるコイルに正または負の
パルスが印加されると、該コイルはN極またはS極に励
磁され、回転子7たる永久磁石はパルスの数に比例した
回転角で回転する。これにより回転軸7aが回転され、
減速ギヤ5で減速“されて出力軸5aに伝達される。出
力軸5aが回転されると、その角柱部5aが角孔4bに
挿入されていることからして、弁棒4が回転されてその
ニードル4aが弁座1a+ を開閉する。
Now, when a positive or negative pulse is applied from the controller to the coil, which is the stator 8, the coil is excited to the north or south pole, and the permanent magnet, which is the rotor 7, rotates at a rotation angle proportional to the number of pulses. . As a result, the rotating shaft 7a is rotated,
It is decelerated by the reduction gear 5 and transmitted to the output shaft 5a. When the output shaft 5a is rotated, the valve stem 4 is rotated, since its square column part 5a is inserted into the square hole 4b. The needle 4a opens and closes the valve seat 1a+.

ところで上記において、冷媒の流体圧はニードル4aに
加わるが、ここで流体はネジ孔1a2を介して弁棒4の
上部空間にも流れ込む(もし上下空間において差圧が生
じるような場合には、二点鎖線で示すような貫通孔4C
を形成しても良い)ので、弁棒4には外圧が加わらず、
従って駆動トルクは小さくて良いので、モータの小形化
が図れる。また回転子7までを密閉された蓋体6内に収
納したことにより、回転部分でのシールが全く不要にな
り、シールの□・信頼性を向上できる。
By the way, in the above, the fluid pressure of the refrigerant is applied to the needle 4a, but here the fluid also flows into the upper space of the valve stem 4 via the screw hole 1a2 (if a differential pressure occurs in the upper and lower spaces, the two Through hole 4C as shown by the dotted chain line
), so no external pressure is applied to the valve stem 4,
Therefore, since the driving torque only needs to be small, the motor can be made smaller. Furthermore, by housing up to the rotor 7 in the sealed lid 6, there is no need to seal the rotating part at all, and the reliability of the seal can be improved.

また電流を流す固定子8をケーシングの外に出    
    :1゛したことにより、電気的絶縁は全く問題
が無くなると共にコイルの自己加熱および通過流体の温
度による発熱の問題も全く心配もな(、しかも固定子8
は取外し自在であるから、断線や他のコイルとの交換も
容品に行えるものである。
In addition, the stator 8 through which the current flows is removed from the casing.
:1), there is no problem with electrical insulation, and there is no need to worry about the problem of self-heating of the coil or heat generation due to the temperature of the passing fluid (in addition, the stator 8
Since it is removable, it can easily be disconnected or replaced with another coil.

第2,3図は他の弁部分の実施例を示し、第1図におけ
る弁棒4にあっては、出力軸5aの回転力によってニー
ドル4aが弁座1a+ に喰い込む可能性があるが、本
実施例ではこの点における改良を施している。
FIGS. 2 and 3 show examples of other valve parts, and in the valve stem 4 in FIG. 1, there is a possibility that the needle 4a may bite into the valve seat 1a+ due to the rotational force of the output shaft 5a. This embodiment has been improved in this respect.

すなわち第2図において、弁棒4の下端に空胴部4dを
形成すると共に該空胴部4d内にニードル4aを抜は出
ないように挿入し、かつスプリング10によって押圧し
ている。これによりニードル4aはスプリング10のば
ね力によって弁座1al に押圧され、ニードル4aが
弁座1a+ に当接した後は弁棒4のみが下降すること
となる。従ってニードル4aが弁座1a+ に喰い込む
ようなことはない。
That is, in FIG. 2, a cavity 4d is formed at the lower end of the valve stem 4, and the needle 4a is inserted into the cavity 4d so as not to come out, and is pressed by a spring 10. As a result, the needle 4a is pressed against the valve seat 1al by the spring force of the spring 10, and after the needle 4a comes into contact with the valve seat 1a+, only the valve stem 4 descends. Therefore, the needle 4a will not bite into the valve seat 1a+.

また第3図において、流入管2と流出管3とがシリンダ
ー1aの側面に固定されると共に弁座1a1によって上
室1a3と下室1a4とに区画し、上室1a3と流入管
2を、下室1a4と流出管3を夫々連通し、また下室t
a4内にニードル4aを弁座1a+側に向けて挿入する
と共にスプリング10によって常時ニードル4aを弁座
1a+側に押し付ける。そして弁棒4の下端を細くして
突杆4eとなし、これをニードル4aの先端に当接する
。これにより弁棒4が下降するとニードル4aはスプリ
ング10のばね力に抗して下降し弁を開口する。また弁
棒4が上昇するとニードル4aはスプリング10のばね
力によって上昇し、弁座1a+ に当接する。従ってニ
ードル4aが弁座1a1に喰い込むようなことはない。
Further, in FIG. 3, an inflow pipe 2 and an outflow pipe 3 are fixed to the side surface of the cylinder 1a, and are divided into an upper chamber 1a3 and a lower chamber 1a4 by a valve seat 1a1. The chamber 1a4 and the outflow pipe 3 are communicated with each other, and the lower chamber t
The needle 4a is inserted into a4 toward the valve seat 1a+ side, and the spring 10 constantly presses the needle 4a toward the valve seat 1a+ side. Then, the lower end of the valve stem 4 is made thinner to form a protruding rod 4e, which is brought into contact with the tip of the needle 4a. As a result, when the valve rod 4 descends, the needle 4a descends against the spring force of the spring 10 to open the valve. Further, when the valve stem 4 rises, the needle 4a rises due to the force of the spring 10 and comes into contact with the valve seat 1a+. Therefore, the needle 4a will not bite into the valve seat 1a1.

なおモータはパルスモータに限定されるものではなく、
同期電動機等の他のモータも利用できる。
Note that the motor is not limited to a pulse motor.
Other motors such as synchronous motors can also be used.

さらに回転子7は永久磁石でな(とも良く、回転鉄片子
(この場合は内部に永久磁石が固定され、該永久磁石と
コイルとの間に位置させる)を利用することもできる。
Furthermore, the rotor 7 is not a permanent magnet (or alternatively, a rotating iron piece (in this case, a permanent magnet is fixed inside and positioned between the permanent magnet and the coil) can also be used.

またパルスモータを利用した場合は、パルス数によって
回転角を制御できるので、モータの極数を多くすること
により1パルスにおける回転角を小さくでき、従ってこ
の場合には減速ギヤ5は必ずしも必要としない。
Furthermore, when a pulse motor is used, the rotation angle can be controlled by the number of pulses, so by increasing the number of poles of the motor, the rotation angle for one pulse can be reduced, so the reduction gear 5 is not necessarily required in this case. .

以上の構成において、次に作用を説明する。In the above configuration, the operation will be explained next.

通電開始時には、立ち上がり制御電気回路22により電
気制御回路21には通電せず、電動形膨張弁14内のコ
イル8に多数のパルス信号が印加され、電動形膨張弁1
4の開弁、′すなわち弁座1a1と弁棒4の下端との間
の開放が急速に大きくなった状態で冷房または暖房運転
が行われる。従って急速冷房または暖房が行われるもの
である。そして所望時間経過して冷房または暖房運転が
定常状態に達した後、立ち上がり制御回路22により電
動形膨張弁14から電気制御回路21へと通電の切換え
が行われる。電気制御回路21に通電が行わえると、冷
房運転時には感温抵抗素子17゜18からの、一方暖房
・運転時には感温抵抗素子19.20からの温度差によ
る電圧差として検出し、その電圧差に応じて電動形膨張
弁14内のコイル8にパルス信号を印加し制御するよう
になる。
At the start of energization, the rise control electric circuit 22 does not energize the electric control circuit 21, and a large number of pulse signals are applied to the coil 8 in the electric expansion valve 14.
Cooling or heating operation is performed in a state where the opening of the valve 4', that is, the opening between the valve seat 1a1 and the lower end of the valve stem 4 rapidly increases. Therefore, rapid cooling or heating is performed. After a desired period of time has elapsed and the cooling or heating operation reaches a steady state, the start-up control circuit 22 switches the energization from the electric expansion valve 14 to the electric control circuit 21 . When the electric control circuit 21 is energized, a voltage difference due to the temperature difference is detected from the temperature-sensitive resistance elements 17 and 18 during cooling operation, and from the temperature-sensitive resistance elements 19 and 20 during heating operation, and the voltage difference is detected. Accordingly, a pulse signal is applied to the coil 8 in the electric expansion valve 14 to control it.

すなわち、電圧差が大きいときは多くのパルスを発生し
て電動形膨張弁14を大きく開放するようにし、また電
圧差が小さいときはパルス数を小さくして開放度合いを
小さくするようにしている。
That is, when the voltage difference is large, many pulses are generated to widen the electric expansion valve 14, and when the voltage difference is small, the number of pulses is small to reduce the degree of opening.

また冷暖房停止時には、立ち上がり制御回路22よりの
パルス信号によって電動形膨張弁14の弁を大きく開け
てコンプレッサ11の両端圧力差は速やかに均等化する
。これにより再起動までの待ち時間を短縮することがで
きる。
Furthermore, when heating and cooling is stopped, the electric expansion valve 14 is opened wide in response to a pulse signal from the start-up control circuit 22, and the pressure difference between both ends of the compressor 11 is quickly equalized. This can shorten the waiting time until restart.

本発明は上記したように、冷房または暖房運転時に蒸発
器の温度とその冷媒出口温度との差を検出して電動形膨
張弁のコイルへのパルス数を制御することにより負荷に
応じて冷暖房能力を極めて速やかに制御できると共に冷
暖房起動時および停止時に弁開度を速やかに最大にでき
ることにより、急速冷暖房が行え、かつ停止時は速やか
にコンプレッサの出入口圧を均等化でき再起動までの時
間を短縮できる外、モータの回転子を弁棒か収納さ  
    !Ilれるケーシング内に収納すると共にこの
ケーシングの外周に固定子を配置したので回転部でのシ
ールが不要となりシールの信頼性を向上し得ると共に発
熱する固定子はケーシング外であるから放熱に考慮をは
らう必要がなく、また固定子であるコイルの取外しが容
易に行えることにより、コイルの断線や、駆動力を大き
くし、あるいは小さくする等によるコイルの交換が自由
に行え、また弁棒への流体圧が加わらないことによりモ
ータに小型の6のを使用でき全体として小型化が図れる
外、組立てが容易で生産コストの低減が図れる等の効果
を有するものである。
As described above, the present invention detects the difference between the temperature of the evaporator and the refrigerant outlet temperature during cooling or heating operation, and controls the number of pulses to the coil of the electric expansion valve, thereby adjusting the heating and cooling capacity according to the load. The valve opening can be quickly maximized when starting and stopping cooling/heating, allowing rapid cooling/heating, and when the compressor is stopped, the pressure at the inlet and outlet of the compressor can be quickly equalized, shortening the time it takes to restart. If possible, store the motor rotor near the valve stem.
! Since the stator is housed in a casing that can be rotated, and the stator is placed around the outer periphery of this casing, there is no need for a seal at the rotating part, which improves the reliability of the seal.The stator, which generates heat, is outside the casing, so consideration must be given to heat dissipation. Since there is no need to remove the stator coil, and the stator coil can be easily removed, it is possible to freely change the coil due to disconnection of the coil, increase or decrease the driving force, etc., and prevent fluid flow to the valve stem. Since no pressure is applied, a small 6-inch motor can be used and the overall size can be reduced, and assembly is easy and production costs can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における冷暖房装置の冷媒回
路図、第2〜4図は同冷暖房装置に用いる電動形膨張弁
の夫々実施例を示す断面図である。 1・・・本体、4・・・弁棒、6a・・・円筒部、7・
・・回転子、8・・・フィル、13,15・・・熱交換
器。
FIG. 1 is a refrigerant circuit diagram of a heating and cooling system according to an embodiment of the present invention, and FIGS. 2 to 4 are cross-sectional views showing examples of electric expansion valves used in the heating and cooling system. DESCRIPTION OF SYMBOLS 1...Main body, 4...Valve stem, 6a...Cylindrical part, 7...
... Rotor, 8... Fill, 13, 15... Heat exchanger.

Claims (1)

【特許請求の範囲】[Claims] 螺合回転する弁棒を有する本体内に肉薄の同筒部をシー
ル状態で形成し、該円筒部内に回転子を、また円筒外周
に固定子を夫々配置したパルスモータ形膨張弁を冷媒回
路中に設け、かつ上記固定子を冷媒回路中に設けられた
温度検出器よりの電気信号をパルス信号に変換する電気
制御回路に接続し、上記パルス信号によって回転子を回
転させて上記弁棒を上下動させ冷媒の流量を制御するよ
う、にしたことを特徴とする冷暖房装置。
A pulse motor type expansion valve is used in a refrigerant circuit, in which a thin cylindrical portion is formed in a sealed state in a main body having a valve stem that screws together and rotates, and a rotor is placed inside the cylindrical portion, and a stator is placed on the outer periphery of the cylinder. The stator is connected to an electric control circuit that converts an electric signal from a temperature sensor installed in the refrigerant circuit into a pulse signal, and the pulse signal rotates the rotor to move the valve stem up and down. A heating and cooling device characterized in that the air conditioner is configured to move the refrigerant and control the flow rate of the refrigerant.
JP56110780A 1981-07-17 1981-07-17 Air conditioner Granted JPS5812971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56110780A JPS5812971A (en) 1981-07-17 1981-07-17 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56110780A JPS5812971A (en) 1981-07-17 1981-07-17 Air conditioner

Publications (2)

Publication Number Publication Date
JPS5812971A true JPS5812971A (en) 1983-01-25
JPH0245104B2 JPH0245104B2 (en) 1990-10-08

Family

ID=14544417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56110780A Granted JPS5812971A (en) 1981-07-17 1981-07-17 Air conditioner

Country Status (1)

Country Link
JP (1) JPS5812971A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59123270U (en) * 1983-02-07 1984-08-20 太平洋工業株式会社 Valve seat shape of expansion valve for heat pump
JPS6020062A (en) * 1983-07-14 1985-02-01 株式会社鷺宮製作所 Method of controlling refrigeration system
JPS6082764A (en) * 1983-10-13 1985-05-10 松下精工株式会社 Method of controlling refrigerant
JPS6082763A (en) * 1983-10-13 1985-05-10 松下精工株式会社 Heat pump type air conditioner
JPS60196569A (en) * 1984-03-19 1985-10-05 三洋電機株式会社 Controller for flow rate of refrigerant
JPH0989387A (en) * 1995-09-29 1997-04-04 Toshiba Corp Air conditioner
EP1178270A1 (en) * 1999-05-12 2002-02-06 Daikin Industries, Ltd. Motor-driven needle valve for refrigerating circuit and refrigerating device with the motor-driven needle valve
KR101029050B1 (en) * 2008-07-17 2011-04-15 자화전자(주) Electronic expansion valve of high precision and noiseless type
KR101103777B1 (en) * 2011-01-21 2012-01-06 자화전자(주) Electronic expansion valve of high precision and noiseless type
JP2021060133A (en) * 2019-10-03 2021-04-15 株式会社デンソー Refrigeration cycle device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102853598B (en) * 2011-06-27 2015-04-15 浙江三花股份有限公司 Electronic expansion valve

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4131128A (en) * 1976-04-07 1978-12-26 Ernst Flitsch Gmbh U. Co. Control valve
JPS557411U (en) * 1978-06-29 1980-01-18
JPS5642776A (en) * 1979-09-18 1981-04-21 Matsushita Electric Ind Co Ltd Electric expansion valve

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4131128A (en) * 1976-04-07 1978-12-26 Ernst Flitsch Gmbh U. Co. Control valve
JPS557411U (en) * 1978-06-29 1980-01-18
JPS5642776A (en) * 1979-09-18 1981-04-21 Matsushita Electric Ind Co Ltd Electric expansion valve

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59123270U (en) * 1983-02-07 1984-08-20 太平洋工業株式会社 Valve seat shape of expansion valve for heat pump
JPS6020062A (en) * 1983-07-14 1985-02-01 株式会社鷺宮製作所 Method of controlling refrigeration system
JPS6082764A (en) * 1983-10-13 1985-05-10 松下精工株式会社 Method of controlling refrigerant
JPS6082763A (en) * 1983-10-13 1985-05-10 松下精工株式会社 Heat pump type air conditioner
JPH042863B2 (en) * 1983-10-13 1992-01-21
JPS60196569A (en) * 1984-03-19 1985-10-05 三洋電機株式会社 Controller for flow rate of refrigerant
JPH0989387A (en) * 1995-09-29 1997-04-04 Toshiba Corp Air conditioner
EP1178270A1 (en) * 1999-05-12 2002-02-06 Daikin Industries, Ltd. Motor-driven needle valve for refrigerating circuit and refrigerating device with the motor-driven needle valve
EP1178270A4 (en) * 1999-05-12 2009-06-03 Daikin Ind Ltd Motor-driven needle valve for refrigerating circuit and refrigerating device with the motor-driven needle valve
KR101029050B1 (en) * 2008-07-17 2011-04-15 자화전자(주) Electronic expansion valve of high precision and noiseless type
KR101103777B1 (en) * 2011-01-21 2012-01-06 자화전자(주) Electronic expansion valve of high precision and noiseless type
JP2021060133A (en) * 2019-10-03 2021-04-15 株式会社デンソー Refrigeration cycle device

Also Published As

Publication number Publication date
JPH0245104B2 (en) 1990-10-08

Similar Documents

Publication Publication Date Title
JPS5812971A (en) Air conditioner
JP2000346227A (en) Expansion valve
EP2811167A1 (en) Pump, refrigeration cycle device, and method for producing pump
JP2020067122A (en) Motor valve
JPH08312821A (en) Sealed type flow rate regulating valve
US2043058A (en) Magnetic unloader
JPH10220614A (en) Electric control valve
JP2001343076A (en) Control valve
JP2020067123A (en) Motor valve
JP3327670B2 (en) Fluid compressors and air conditioners
JPH0821556A (en) Motor-driven flow control valve
JP2001004052A (en) Solenoid controlled pilot type four-way valve
JP6755835B2 (en) Solenoid valve and refrigeration cycle system
JP3150885B2 (en) Control valve
JP7375395B2 (en) valve device
JP3746839B2 (en) Refrigeration cycle
JP2022093842A (en) Motor-operated valve
CN109386643B (en) Stator for electric valve and electric valve
JPS6233242A (en) Control system for air conditioner
KR100544717B1 (en) Electronic expantion valve for refrigerating cycle
CN114761707A (en) Drive transmission device and drive device
JP6781730B2 (en) Solenoid valve and refrigeration cycle system
JP2001153491A (en) Motor operated selector valve and refrigerating cycle equipment
EP4361438A1 (en) Heat pump compressor
JPH0842737A (en) Four-way valve