JPS58129334A - Infrared detector - Google Patents

Infrared detector

Info

Publication number
JPS58129334A
JPS58129334A JP57013892A JP1389282A JPS58129334A JP S58129334 A JPS58129334 A JP S58129334A JP 57013892 A JP57013892 A JP 57013892A JP 1389282 A JP1389282 A JP 1389282A JP S58129334 A JPS58129334 A JP S58129334A
Authority
JP
Japan
Prior art keywords
infrared
infrared rays
permeable
parts
transmitting part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57013892A
Other languages
Japanese (ja)
Other versions
JPH0216858B2 (en
Inventor
Yukinori Kuwano
桑野 幸徳
Shoichi Nakano
中野 昭一
Toshiaki Yokoo
横尾 敏昭
Kenichi Shibata
賢一 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP57013892A priority Critical patent/JPS58129334A/en
Priority to US06/407,582 priority patent/US4485305A/en
Priority to GB08223932A priority patent/GB2105033B/en
Publication of JPS58129334A publication Critical patent/JPS58129334A/en
Publication of JPH0216858B2 publication Critical patent/JPH0216858B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0803Arrangements for time-dependent attenuation of radiation signals
    • G01J5/0805Means for chopping radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/34Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using capacitors, e.g. pyroelectric capacitors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To eliminate a chopper mechanism and miniaturize an infrared detecting part, by a method wherein, through oscillation of an oscillating body, parts non-permeable to infrared rays of one opposite body are overlapped periodically alternately with parts permeable to infrared rays and parts non-permeable to infrared rays of the opposite body. CONSTITUTION:At an oscillating time of a bimorph, second parts 36, 36 non-permeable to infrared rays of a second opposite body 27 oscillates so that they are overlapped alternately with first parts 38, 38 non-permeable to infrared rays and first parts 39, 39 permeable to infrared rays of a first opposite body 25. In this case, shapes and sizes of said parts permeable to infrared rays and parts non- permeable to infrared rays are made equal to each other and a size in the oscillating direction of each part is made to be proportional to the width of oscillation of each part, and this causes the second part non-permeable to infrared rays to be completely overlapped alternately with the first parts permeable to infrared rays and the first parts non-permeable to infrared rays, which results in improving a modulation degree of infrared rays entering an infrared detecting body.

Description

【発明の詳細な説明】 本発明は赤外線検出器に関する。[Detailed description of the invention] The present invention relates to an infrared detector.

近時の赤外線検出器では、その赤外線検出部に例えば無
電型の赤外線検出体が内蔵されている。
In recent infrared detectors, for example, an electroless infrared detector is built into the infrared detector.

斯る赤外線検出体は入射赤外線の変化量に基づいて電荷
を発生する特性を有し、父上記赤外線検出体の検出精度
は入射赤外線量の変化が周期的である柵向上し、従って
上記赤外線検出体に入射する赤外線を周期的に断続する
必要があり、このために第1m@及び轟に示す如く赤外
線検出器(1)の前方にはモータ(2)によって周期的
に回転駆動される金属板チ″1’/パ(3)が配置され
ズいる。
Such an infrared detector has the property of generating a charge based on the amount of change in incident infrared rays, and the detection accuracy of the above infrared detector is improved when the amount of incident infrared rays changes periodically. It is necessary to periodically interrupt the infrared rays that enter the body, and for this purpose there is a metal plate in front of the infrared detector (1) that is rotated periodically by a motor (2) as shown in the first m@ and Todoroki. Chi ``1''/Pa (3) is placed.

しかし乍ら、斯るチ1ツバ(3)は形状が大きくスペー
ス上の問題があり、且つ上記モータ(2)は回転むらを
生じて必ずしもチ11ツバ(3)を周期的(ニー転駆動
しないため検出精度の低下を招いてしまう。
However, the shape of the tip collar (3) is large and there is a space problem, and the motor (2) has uneven rotation and does not necessarily drive the tip tip (3) periodically (knee rotation). This results in a decrease in detection accuracy.

本発明は斯る点に鑑みてなされたもので、以下本発明実
施例を図面に基づいて詳述する。
The present invention has been made in view of these points, and embodiments of the present invention will be described in detail below with reference to the drawings.

第2図は赤外線検出器(4)を示し、(5)はタンタル
酸リチウム(LsTaOm )単結晶から成り入射赤外
線変化量に応じて電荷を発生する無電型の赤外線検出体
、(6)及び(7)は夫々該赤外線検出体の表、裏面(
二ニクロム蒸看膜(二て形成された表、S面電極、(8
)は鋼、燐青鋼などからなる金属性支持台で、lf支持
台上には、上記41面電極(7)を支持台(8)上面に
対向するようにして、王妃赤外線検出体(5) #’銀
ベーストなどの導電性接着剤(9)にて固着されている
Figure 2 shows an infrared detector (4), (5) is an electroless infrared detector made of lithium tantalate (LsTaOm) single crystal and generates electric charge according to the amount of change in incident infrared radiation, (6) and ( 7) are the front and back surfaces (
dinichrome vaporized film (two formed surfaces, S-plane electrode, (8
) is a metal support made of steel, phosphorescent steel, etc. On the lf support, the queen infrared detector (5 ) #' It is fixed with a conductive adhesive (9) such as silver base.

a・は上記赤外線検出体(5)が高抵抗であるが故に斯
る高抵抗を低抵抗ζ:変換するためのインピーダンス変
換回路Iが配置されたアルミナ基板、υは金属性のキャ
ップ(至)及びヘッダa4からなる収納体で、該収納体
内の上記ヘッダα4上には上記支持台(8)及び基板0
〔が固定されている。鰺は上記ヘッダUに直接的に植設
されたアース端子で◆該端子は上記支持台(8)及び!
If剤(9)を介して上記裏面電極(7)に電気的に接
続されている。α・及び面は夫々上記ヘッダu41に絶
縁材(2)、(2)を介して植設された第1、第2リー
ド端子、c!IJは上記表面電極(6)とインピーダン
ス変換回路αBとを結線するリード線、■■は上記イン
ピーダンス変換回路αυと第1・第2リード端子α68
節とを結線するリード線である。
Since the infrared detector (5) has a high resistance, a is an alumina substrate on which an impedance conversion circuit I for converting the high resistance to a low resistance ζ is placed, and υ is a metal cap (to). and a header a4, and the support stand (8) and the board 0 are mounted on the header α4 inside the housing.
[is fixed. The mackerel is a ground terminal directly planted on the header U.◆The terminal is connected to the support base (8) and!
It is electrically connected to the back electrode (7) via the If agent (9). α・ and c! are the first and second lead terminals implanted in the header U41 via insulating materials (2) and (2), respectively; IJ is a lead wire connecting the above-mentioned surface electrode (6) and impedance conversion circuit αB, and ■■ is the above-mentioned impedance conversion circuit αυ and the first and second lead terminals α68.
This is a lead wire that connects the nodes.

(至)は上記赤外線検出体(5)に表面電極(5)側か
ら赤外線を入射せしめるべく上記キャップ(至)に穿設
された開口、@は該開口を1g寵する第1赤外線透過体
で、iI逓遥体は波長2〜15声肩の赤外線に対する透
過率が高い厚さ数100声島のV9コン又はゲルマニウ
ム板からなっている。(至)は上記開口−に対向すべく
上記第1赤外線透過体−の下面に固定された平面状の第
1対向体(詳細は後述する)、fiは上記収納体(至)
内において上記第1赤外線透過体−に近接対向すべく配
置された第2赤外線透過体で・該透過体は上記第1赤外
線透過体−と同様1;波長2#15μ講の赤外線に対す
る透過率が高い厚さ数100μ鳳のVリコン又はゲルマ
ニウム板からなっている。鰭は上記開口−に対向すべく
、更には上記第1対向体−に平行にして近接賞向すべく
上記第2赤外線透過体(至)の上面に固定された平面状
の第2対向体(詳細は後述する)である。
(to) is an opening formed in the cap (to) to allow infrared rays to enter the infrared detector (5) from the surface electrode (5) side, and @ is the first infrared transmitting body that covers the opening by 1g. , iI transmitter is made of a V9 conductor or germanium plate with a thickness of several 100 tones and which has high transmittance to infrared rays having a wavelength of 2 to 15 tones. (to) is a planar first opposing body fixed to the lower surface of the first infrared transmitting body to face the opening (details will be described later); fi is the storage body (to);
A second infrared transmitting body disposed to be close to and opposite to the first infrared transmitting body within the interior; and the transmitting body has a transmittance for infrared rays having a wavelength of 2 and 15 μm, similar to the first infrared transmitting body. It is made of V-recon or germanium plate with a thickness of several 100 μm. The fins are arranged in a planar second opposing body fixed to the upper surface of the second infrared transmitting body (towards) so as to face the opening and further parallel to the first opposing body. (Details will be described later).

(2)は2枚の圧電板を張り合わせて形成された一動体
、IOちバイモルフで・該バイモルフは直方体太ヤ 形状を有し七の長さ/、v&W、厚みαは太葛約50園
、5謹、05m!1であり、水晶1口・ソンエル塩6酒
石酸エチレン、ジアミン、酒石酸カリ、第一リン酸カリ
、第一リン酸アンモン、硫酸リチウム。
(2) is an IO bimorph, which is a one-moving body formed by pasting two piezoelectric plates together.The bimorph has a rectangular parallelepiped shape with lengths of 7/, v&W, and thickness α of approximately 50 mm. 5 mins, 05 m! 1, 1 mouth of crystal, Son'er's salt, 6 ethylene tartrate, diamine, potassium tartrate, monobasic potassium phosphate, monobasic ammonium phosphate, lithium sulfate.

チタン酸バリウム、硫酸グリシンなどの単結晶や、チタ
ン酸/<リウム系磁器、シリコン酸・チタン酸鉛系磁器
。ニオブ酸系磁器などの磁器材料からなっている。そし
て、上記バイモルフ(至)は赤外線入射方向に垂直な方
向、IlOち横方向ζ;長くなるようにして左端−が上
記へラダIに設けられた絶縁台(2)に固定され、右端
〆に上記第2赤外線透過体(至)が装着されている。(
至)及び(至)は上記へ・ラダI(ユ絶縁材@(至)を
介して植設された第3.第4リード端子、@及び(至)
は第3図にも示す如く上記バイモルフ(至)の左端−の
v4diに形成された第1.第2擾動電極で・該第1 
、’1211動電極は夫々上記第3゜第4リード端子(
至)、Gnl:、接続されている。
Single crystals such as barium titanate and glycine sulfate, porcelain based on lithium titanate, and porcelain based on silicon acid and lead titanate. It is made of porcelain material such as niobic acid-based porcelain. The bimorph (to) is fixed in the direction perpendicular to the infrared incident direction, in the lateral direction ζ; the left end is fixed to the insulating stand (2) provided on the ladder I, and the right end is The second infrared transmitting body (to) is attached. (
(to) and (to) above - Ladder I (3rd and 4th lead terminals implanted via insulating material @ (to), @ and (to)
As shown in FIG. 3, the first . At the second stirring electrode, the first
, '1211 moving electrodes are connected to the 3rd and 4th lead terminals (
), Gnl:, connected.

而して、上記第1.第211I動電極鱒、(至)間に第
3、第遮り一ド端子(至)、aXlを介して所定の交流
信号を印画すると、上記バイモルフ(至)b3交流信号
の周波数に応じて撓んで第2赤外線透過体(至)を円弧
状1方向(第3図)に周期的に撮動せしめる。この場合
、上記第2対向体勿は第1対向体(至)に対して常に平
行状態に保持されながら円弧状A方向に周期的に擾動す
る。
Therefore, the above 1. When a predetermined alternating current signal is printed between the 211I dynamic electrode trout (to) and the third and third blocking terminal (to), aXl, the bimorph (to) b3 bends according to the frequency of the alternating current signal. The second infrared transmitting body (toward) is periodically photographed in one arcuate direction (FIG. 3). In this case, the second opposing body is always held parallel to the first opposing body (to) and periodically oscillates in the arcuate direction A.

ここで、上記第1.第2対向体(至)、vIを詳述する
に、第2対向体翰において(至)、m・・・はアルミニ
ウム、金、imなどの赤外線非透過材料からなり紙面に
略平行な方向(第2図)にて第4図すに示す如く線状に
延設された複機の第2赤外線非透過部。
Here, the above 1. To explain the second opposing body (to) and vI in detail, in the second opposing body (to), m... is made of an infrared non-transparent material such as aluminum, gold, im, etc., and the direction (to) is approximately parallel to the paper surface ( In FIG. 2), the second infrared opaque portion of the multifunction machine extends linearly as shown in FIG. 4.

(2)、(至)・・・は1第2赤外線非透過部の各々の
間に位置し第2゛赤外線非透過部(至)、■・・・と同
一の形状及び寸法を有する第2赤外線透過部である。そ
して第2赤外線非透過部(至)、(至)・・・及び第2
赤外線透過部(支)、(2)・・・の各部分の揚動方向
寸法は各部分の優動輻に比例している。従って、第2対
向体(2)は円弧状A方向に撮動するから、上記第2赤
外線非透過部(至)m−・・及び第2赤外纏透過部−0
(2)・・・は共に、上記パイモルガ」:最も近い部分
の揚動方向寸法が最小幅F1となりバイモルフ(至)か
ら最も遠い部分の振動方向寸法が最大144F’zとな
るようなJdv−をなしている。
(2), (to)... are located between each of the first and second infrared non-transmissive parts and have the same shape and dimensions as the second infrared non-transmissive part (to), ■... This is an infrared transmitting part. And the second infrared non-transmissive part (to), (to)... and the second
The dimensions in the lifting direction of each part of the infrared transmitting part (support), (2), etc. are proportional to the dominant radiation of each part. Therefore, since the second opposing body (2) images in the arcuate direction A, the second infrared non-transmissive part (to) m-... and the second infrared transparent part -0
(2)... are both the above-mentioned "Pimolga": Jdv- such that the dimension in the lifting direction of the nearest part is the minimum width F1 and the dimension in the vibration direction of the part farthest from the bimorph (to) is the maximum 144F'z. I am doing it.

(に、上記第1対向体−において、@、@・・・は上記
第2赤外線非透過部(至)、cn・・・と同一材料から
なり紙面に略平行な方向(第2図)にて第4図aに示す
如く線状に延設された複数の第1赤外線非i過部、(至
)、(至)・・・は該第1赤外線非透過部の各々の間に
位置する第1赤外線透過部で、上記第1赤外線非透過部
(至)、(至)・・・及び第1赤外線透過部(至)。
(In the first opposing body, @, @... are made of the same material as the second infrared non-transmissive part (to), cn... As shown in FIG. 4a, a plurality of linearly extending first infrared non-transmissive parts, (to), (to), etc. are located between each of the first infrared non-transmissive parts. The first infrared transmitting part, the first infrared non-transmitting part (to), (to), and the first infrared transmitting part (to).

(至)・・・は上記第2対向体勿の第2赤外線非透過部
(至)、(至)・・・及び第2赤外線透過部(ロ)、(
至)・・・と同一の扇形状及び寸法を有している。
(to)... is the second infrared non-transmissive part (to), (to)... and the second infrared transmissive part (b), (to) of the second opposing body.
)... has the same fan shape and dimensions.

そして1例えば、上記第1赤外線非透過部(至)。and 1, for example, the first infrared opaque portion (to).

(至)・・・、@1赤外線透過部(至)、(至)・・・
、第2赤外線非透過部(至)、(至)・・・及び第2赤
外線透過部葡・葡・・°の幅JF’ + 、 /l’ 
x ハ夫々100μza、 12oμya−テアり長さ
lは3閤、厚さDは0.1〜100μmである。
(to)..., @1 infrared transmitting section (to), (to)...
, the second infrared non-transmissive part (to), (to)... and the second infrared transmissive part 葡, 葡...° width JF' + , /l'
x 100μza and 12oμya respectively, the tear length l is 3 strands, and the thickness D is 0.1 to 100μm.

而して、上記がイそルフ(至)の振動時には、上記第2
対向体勿の第2赤外線非透過部(至)、(至)・・・は
第5図に詳細に示す如く上記第1対向体(至)の第1赤
外線非透過部(至)、@・・・及び第1赤外線透過部(
至)。
Therefore, when the above vibration is at the end, the second vibration occurs.
As shown in detail in FIG. 5, the second infrared non-transmissive portions (to), (to), etc. of the opposing body are the first infrared non-transmissive portions (to), @, of the first opposing body (to), ...and the first infrared transmitting section (
to).

(至)・・・に交互に完全に重畳するように、即ち打点
領塚l及び斜峰領域Jに位1するように振動する。
(to) ... vibrates so as to alternately and completely overlap, that is, to be located at the dot region L and the oblique peak region J.

ここに、上記第1赤外線非透過部(至)、(至)・・・
、第1赤外線透過部(至)、m−、第2赤外線非透過部
(至)、(至)・・・及び第2赤外線透過部(財)0g
1)・・・の唱は第6図ts 、 jに示す如く一定と
するのが通常である。
Here, the first infrared non-transmissive portion (to), (to)...
, the first infrared transmitting part (to), m-, the second non-infrared transmitting part (to), (to)... and the second infrared transmitting part (foundation) 0g
1) The chanting of... is usually kept constant as shown in Figure 6, ts and j.

この場合、第2対向体翰は円弧状1方向に振動するから
1例えば第2赤外線非透過部(至)、(至)・・・は第
7図に示す如く!11赤外赤外線検出器至)、(至)・
・・に完全には重畳しない。すると、赤外線検出器(4
)外部の被検出体からの赤外線を周期的に断続して赤外
線検出体(5)に入射する赤外線を周期的に変化せしめ
るにも、即ち交流的に変調せしめるにもその変調度が悪
く、従って赤外線検出体(5)におけるSN比が低下し
てしまう。
In this case, since the second opposing body ridge vibrates in one direction in an arc shape, for example, the second infrared opaque portion (to), (to), etc. are as shown in FIG. 7! 11 Infrared infrared detector (To), (To)・
It does not completely overlap with... Then, the infrared detector (4
) Even if the infrared rays from an external object to be detected are periodically interrupted and the infrared rays incident on the infrared detecting object (5) are changed periodically, that is, modulated in an alternating current manner, the degree of modulation is poor. The SN ratio in the infrared detector (5) will decrease.

この点、上記赤外線検出器(4)では、第2赤外線非透
過部(至)、OI・・・は第1赤外線非透過部(至)、
@・・・及び第1赤外線透過部(至)、(至)・・・に
完全に重畳するから、赤外線検出体(5)に入射する赤
外線の変調度は良好であり、従って赤外線検出体(5)
におけるSN比は顕著に向上する。尚、赤外線検出体(
5)の出力は被検出体の温度と室温との温度差に基づい
ている。
In this regard, in the infrared detector (4), the second infrared non-transmissive part (to), OI... is the first infrared non-transparent part (to),
Since the infrared rays are completely superimposed on @... and the first infrared transmitting parts (to), (to)..., the degree of modulation of the infrared rays incident on the infrared detector (5) is good, and therefore the infrared detector ( 5)
The signal-to-noise ratio is significantly improved. In addition, the infrared detector (
The output of 5) is based on the temperature difference between the temperature of the object to be detected and the room temperature.

第8図は上記赤外線検出器(4)を含む回路を示し。FIG. 8 shows a circuit including the infrared detector (4).

赤外線検出器(4)内のインピーダンス変換回路αυは
1010〜1011Ωの高入力抵抗叫、FET(電界効
果トランジスタ) (41)K及び約10fΩの出力抵
抗(ル2)苓;て形成されている。
The impedance conversion circuit αυ in the infrared detector (4) is formed of a high input resistance of 1010 to 1011Ω, an FET (field effect transistor) (41)K, and an output resistance (2) of about 10fΩ.

そして、上記赤外線検出器(4)は第1リード端子OQ
にて直流電圧が供給され、第2リード端子αηから被検
出体の温度と室温との温度差に応じた交流信号が出力さ
れる。爺(43)は室温測定を行なうダ・イオード、 
! (471)は無安定マルチバイブレータからなり周
期的パルスを発振する発優器、 (715)は上記パル
スに基づいて上記/へイモルフ(至)を振動せしめる(
撓ませる)ための交流信号を出力する駆動回路、 (4
65,(47)、 (4)は直流増幅器、 (49)は
フィルタ増幅器+ (50)は同期検波器で、上記赤外
線検出器(4)からの交流信号と上記発橡器(44)か
らのパルスとの同期をとり、被検出体の湿度が室温より
高い場合はその温度差に応じた正の直流信号を出力し、
被検出体の湿度が室温より低い場合はその温度差に応じ
た負の直流信号を出力する。(51)は上記同期検波器
(50)に訃の出力とダイオード(43)の出力とを合
成(加算)する合成回路で、Fk回路は被検出体の温度
に応じた信号を出力する。−訃(52)は斯る温度を所
望回路へ出力するための出力端子である。
The infrared detector (4) is connected to the first lead terminal OQ.
A DC voltage is supplied at the second lead terminal αη, and an AC signal corresponding to the temperature difference between the temperature of the object to be detected and the room temperature is output from the second lead terminal αη. The old man (43) is a diode that measures room temperature.
! (471) is an oscillator consisting of an astable multivibrator that oscillates periodic pulses, and (715) is an oscillator that oscillates the above/Heimorph based on the pulses.
a drive circuit that outputs an AC signal for bending (4
65, (47), (4) are DC amplifiers, (49) is a filter amplifier + (50) is a synchronous detector, which receives the AC signal from the infrared detector (4) and the oscillator (44). It is synchronized with the pulse, and if the humidity of the object to be detected is higher than room temperature, it outputs a positive DC signal according to the temperature difference.
When the humidity of the object to be detected is lower than room temperature, a negative DC signal corresponding to the temperature difference is output. (51) is a synthesis circuit that synthesizes (adds) the output of the deceased and the output of the diode (43) to the synchronous detector (50), and the Fk circuit outputs a signal according to the temperature of the detected object. - The terminal (52) is an output terminal for outputting the temperature to a desired circuit.

以上の説明から明らかな如く1本発明によれば入射赤外
線変化量に応じて電荷を発生する赤外線検出体、該検出
体を収納する収納体、被検出体からの赤外線を上記赤外
線検出体へ入射せしめるべく上記収納体に穿設された開
口、赤外線透過部及び赤外線非透過部を共に有し互いに
平行にして上記開口に対向すべく配置された平面状の一
対の対向体、上記平行状lを保持しながら一万の対向体
をその赤外線非透過部が他方の対向体の赤外線透過部及
び赤外線非透過部に周期的に交互に重畳するように振動
せしめる振動体を需え、上記−万の対向体の赤外線透過
部及び赤外線非透過部において、その形状及び寸法は互
いに同一とし、各部分の多動方向の寸法は各部分の撮動
幅に比例せしめ・線透過部及び赤外線非透過部と同一と
したから。
As is clear from the above description, according to one aspect of the present invention, there is an infrared detector that generates an electric charge according to the amount of change in incident infrared rays, a storage body that houses the detector, and an infrared ray from an object to be detected that is incident on the infrared detector. an opening drilled in the storage body, a pair of planar opposing bodies having both an infrared transmitting part and an infrared non-transmitting part and disposed parallel to each other to face the opening; A vibrating body is provided which vibrates one of the ten thousand opposed bodies while holding the other opposed body so that its infrared non-transmissive portion is periodically and alternately superimposed on the infrared transparent part and the infrared non-transmissive portion of the other opposed body; The shapes and dimensions of the infrared transmitting part and the infrared non-transmitting part of the opposing body are the same, and the dimensions of each part in the hyperactivity direction are proportional to the imaging width of each part. Because they are the same.

従来の如きチョッパ及びモータが不要となり、従って赤
外線検出部を小型化できると共に、赤外線検出体に入射
する赤外線はむらなく周期的に変化するため高精度の下
に赤外線検出を行なうことができる。四に、赤外線を変
化せしめる場合の変調度を向上でき、従って赤外線検出
体におけるSN比をl1llIに向上できる。
The conventional chopper and motor are not required, so the infrared detection section can be downsized, and since the infrared rays incident on the infrared detection body change evenly and periodically, infrared detection can be performed with high precision. Fourth, the degree of modulation when changing infrared rays can be improved, and therefore the S/N ratio in the infrared detector can be improved to 11llI.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a及びbは夫々従来の赤外縁検出機構の便面図及
び平面図、第2図は本発明実施例赤外繰第5図は同要部
の動作状移図、第6図G、轟は夫々第4図a、hに対応
する赤外線検出器の一般的要部平面図、第7図は同要部
の動作状1図、第8図は第2図の赤外線検出器を含む回
路図である。 (5)・・・赤外線検出体、(19−・・収納体、I2
3・・・開口、(至)・・・第1対向体、(至)、(至
)・・・第1赤外線非透過部、(至)(至)・・・第1
赤外線透過部、■・・・第2対向体、(至)、(至)・
・・第2赤外線非透過部−vJ、(2)・・・第2赤外
線透過部、(至)・・・バイモルフ。 第4図   CG )            (b 
)        第6図第8図
1A and 1B are a schematic view and a plan view of a conventional infrared edge detection mechanism, respectively, FIG. 2 is an infrared edge detection mechanism according to an embodiment of the present invention, FIG. , Todoroki are general plan views of the main parts of the infrared detector corresponding to Figs. 4a and h, Fig. 7 shows the operation of the same main parts in Fig. 1, and Fig. 8 includes the infrared detector shown in Fig. 2. It is a circuit diagram. (5)... Infrared detector, (19-... Storage body, I2
3...Opening, (To)...First opposing body, (To), (To)...First infrared non-transmissive part, (To) (To)...First
Infrared transmitting part, ■... second opposing body, (to), (to).
...Second infrared non-transmissive part -vJ, (2)...Second infrared transmissive part, (to)...Bimorph. Figure 4 CG) (b
) Figure 6 Figure 8

Claims (1)

【特許請求の範囲】 (11入射赤外線変化量口広じて電荷を発生する赤外線
検出体、li楡出体を収納する収納体、砿検出体からの
赤外線を上記赤外線検出体公入糞へ入射せしめるべく上
記収納体に穿Nされた開口・赤外線透過部及び赤外線非
透過部を共に有し互いに平行にして上紀開Oに対向すべ
く配置された平面状の一対の財同体、上紀平行状−を保
持しながら一方の対向体をその赤外線非透過部が他方の
対向体の赤外III透過部及び赤外線非透過部に周期的
に交互に重畳するように機動せしめる擾動体を需え。 上記−万の対向体の赤外線透過部及び赤外線非透過部に
おいて、その形状及び寸法は互いに同一とし・各部分の
**方向の寸法は各部分の機動@に比例せしめ、lf4
:、上記他方の対向体の赤外線透過部及び赤外線非透過
部の形状及び寸法は上起一方の対向体の赤外線透過部及
び赤外線非透過部と同一としたことを特徴とする赤外線
検出器。
[Scope of Claims] (11) An infrared detector that generates an electric charge by expanding its mouth, a storage body that stores a li-extrusion body, and infrared rays from a copper detector that enters the infrared detector. A pair of flat goods bodies having an opening bored in the storage body, an infrared transmitting part and an infrared non-transmitting part, and arranged parallel to each other to face the upper opening O, in a upper parallel shape. - a movable body that moves one opposing body so that its infrared non-transmissive portion periodically and alternately overlaps the infrared III transmissive portion and the infrared non-transmissive portion of the other opposing body while holding the above. - The shape and dimensions of the infrared transmitting part and the infrared non-transmitting part of the opposing body shall be the same, and the dimension of each part in the ** direction shall be proportional to the maneuverability of each part, and lf4
An infrared detector characterized in that the shape and dimensions of the infrared transmitting part and the infrared non-transmitting part of the other opposing body are the same as those of the infrared transmitting part and the infrared non-transmitting part of the one opposing body.
JP57013892A 1981-08-20 1982-01-29 Infrared detector Granted JPS58129334A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP57013892A JPS58129334A (en) 1982-01-29 1982-01-29 Infrared detector
US06/407,582 US4485305A (en) 1981-08-20 1982-08-12 Infrared detector with vibrating chopper
GB08223932A GB2105033B (en) 1981-08-20 1982-08-19 Infrared ray detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57013892A JPS58129334A (en) 1982-01-29 1982-01-29 Infrared detector

Publications (2)

Publication Number Publication Date
JPS58129334A true JPS58129334A (en) 1983-08-02
JPH0216858B2 JPH0216858B2 (en) 1990-04-18

Family

ID=11845829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57013892A Granted JPS58129334A (en) 1981-08-20 1982-01-29 Infrared detector

Country Status (1)

Country Link
JP (1) JPS58129334A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6118887A (en) * 1984-07-06 1986-01-27 Yokogawa Hokushin Electric Corp Chopper
US5019710A (en) * 1989-03-30 1991-05-28 Measurex Corporation Optical system for detecting properties of traveling sheet materials
JPH0477859B2 (en) * 1984-01-06 1992-12-09 Sanyo Electric Co

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56128432A (en) * 1980-03-13 1981-10-07 Brother Ind Ltd Optical detector
JPS56160628A (en) * 1980-05-14 1981-12-10 Sanyo Electric Co Ltd Infrared detector
JPS5711518A (en) * 1980-06-24 1982-01-21 Citizen Watch Co Ltd Manufacture for tuning fork type quartz oscillator
JPS5798033U (en) * 1980-12-05 1982-06-16

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56128432A (en) * 1980-03-13 1981-10-07 Brother Ind Ltd Optical detector
JPS56160628A (en) * 1980-05-14 1981-12-10 Sanyo Electric Co Ltd Infrared detector
JPS5711518A (en) * 1980-06-24 1982-01-21 Citizen Watch Co Ltd Manufacture for tuning fork type quartz oscillator
JPS5798033U (en) * 1980-12-05 1982-06-16

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0477859B2 (en) * 1984-01-06 1992-12-09 Sanyo Electric Co
JPS6118887A (en) * 1984-07-06 1986-01-27 Yokogawa Hokushin Electric Corp Chopper
JPH0550692B2 (en) * 1984-07-06 1993-07-29 Yokogawa Electric Corp
US5019710A (en) * 1989-03-30 1991-05-28 Measurex Corporation Optical system for detecting properties of traveling sheet materials

Also Published As

Publication number Publication date
JPH0216858B2 (en) 1990-04-18

Similar Documents

Publication Publication Date Title
US8511161B2 (en) Physical amount detecting device
US4485305A (en) Infrared detector with vibrating chopper
US11555702B2 (en) Physical quantity detection device, manufacturing method for physical quantity detection device, electronic apparatus, and moving object
EP0131996A2 (en) Infra-red radiation detector
US20110232382A1 (en) Physical amount detecting device, physical amount detecting apparatus, and electronic apparatus
JP6582501B2 (en) Vibration element, vibrator, electronic device and moving body
US11331075B2 (en) Ultrasonic sensor and ultrasonic sensor device
JP2005017273A (en) Piezoelectric vibrating gyroscope element, manufacturing method therefor, and piezoelectric vibrating gyroscope sensor
JPS58129334A (en) Infrared detector
JPH0238893B2 (en)
CN113048967B (en) Method for manufacturing physical quantity detection device
JPH0262810B2 (en)
JPS622246B2 (en)
JPH0156367B2 (en)
JPH0230740Y2 (en)
JPS5937431A (en) Infrared detector
JP2016186479A (en) Physical quantity detection vibration element, physical quantity detection vibrator, electronic apparatus and mobile body
JPH037890B2 (en)
JPH0142726Y2 (en)
JPS5973742A (en) Infrared ray detecting device
JPH0313707Y2 (en)
JPH0127069Y2 (en)
JPH0334668Y2 (en)
JPH05835Y2 (en)
JPH0238894B2 (en)