JPS58129226A - Infrared detector - Google Patents

Infrared detector

Info

Publication number
JPS58129226A
JPS58129226A JP57012432A JP1243282A JPS58129226A JP S58129226 A JPS58129226 A JP S58129226A JP 57012432 A JP57012432 A JP 57012432A JP 1243282 A JP1243282 A JP 1243282A JP S58129226 A JPS58129226 A JP S58129226A
Authority
JP
Japan
Prior art keywords
infrared
bimorph
infrared detector
detector
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57012432A
Other languages
Japanese (ja)
Other versions
JPH0262810B2 (en
Inventor
Yukinori Kuwano
桑野 幸徳
Shoichi Nakano
中野 昭一
Toshiaki Yokoo
横尾 敏昭
Kenichi Shibata
賢一 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP57012432A priority Critical patent/JPS58129226A/en
Priority to US06/407,582 priority patent/US4485305A/en
Priority to GB08223932A priority patent/GB2105033B/en
Publication of JPS58129226A publication Critical patent/JPS58129226A/en
Publication of JPH0262810B2 publication Critical patent/JPH0262810B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0803Arrangements for time-dependent attenuation of radiation signals
    • G01J5/0805Means for chopping radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/34Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using capacitors, e.g. pyroelectric capacitors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Radiation Pyrometers (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To miniaturize a detector itself and to detect infrared rays with high accuracy, by arranging a piezoelectric oscillator so as to oscillate keeping a parallel condition with one facing body. CONSTITUTION:When a prescribed alternating current signal is impressed between oscillation electrodes 38, 39 (not shown in the figure) through lead terminals 34, 35, a bimorph 32 is bent in accordance with frequency of the alternating current signal and an infrared transmission body 28 is oscillated periodically in a direction A vertical to the space. On this occasion, a right end 32' of the bimorph 32 is oscillated violently so that a facing body 29 is positioned periodically at each part where infrared nontransmission parts 30- superpose on infrared transmission parts 27- and infrared nontransmission parts 26- of a facing body 25. And, the bimorph 32 is so arranged as to be long in a transverse direction and as to oscillate in the direction A in a detecting device 4 of infared rays, so that the body 29 oscillates keeping a parallel condition to the body 25. Accordingly, the dimension of an infrared incidence direction is miniaturized.

Description

【発明の詳細な説明】 本発明は赤外線検出器に関する。[Detailed description of the invention] The present invention relates to an infrared detector.

近時の赤外線検出器では、その赤外線検出部に例えば焦
電型の赤外線検出体が内蔵されている。
In recent infrared detectors, for example, a pyroelectric infrared detector is built into the infrared detector.

断る赤外線検出体は入射赤外線の変化量に基づいて電荷
を発生する特性を有し、又上記赤外線検出体の検出精度
は入射赤外線量の変化が周期的である程向上し、従って
上記赤外線検出体に入射する赤外線を同期的に断続する
必要があり、このために第1図&及びbK示す如く赤外
線検出器(1)の前方にはモータ(2)によって同期的
に回転駆動される金属板チョッパ(3)が配置されてい
゛るっしかし乍ら、祈るチョッパ(3)は形状が大きく
スペース上の問題があり、且つ上記モータ(2)は回転
むらを生じて必ずしもチョッパ(3)を周期的に回転駆
動しないため検出精度の低下を招いてしまうっ本発明I
/i祈る点に鑑みてなされたもので、以下本発明実施例
を図面に基づいて詳述する。
The infrared detector has a characteristic of generating electric charge based on the amount of change in incident infrared light, and the detection accuracy of the infrared detector improves as the amount of incident infrared light changes more periodically. It is necessary to synchronously interrupt the infrared rays incident on the infrared rays, and for this purpose, as shown in Fig. 1 & bK, a metal plate chopper is installed in front of the infrared detector (1), which is driven to rotate synchronously by a motor (2). (3) is installed, however, the chopper (3) is large in shape and there is a space problem, and the motor (2) rotates unevenly, so the chopper (3) cannot be rotated periodically. The present invention I causes a decrease in detection accuracy because it is not rotationally driven.
Embodiments of the present invention will be described below in detail with reference to the drawings.

第2図は赤外線検出器(4)を示し、(5)はタンタル
酸リチウム(LiTa05)単結晶から成り入射赤外線
変化量に応じて電荷を発生する焦電型の赤外線検出体、
(6)及び(7)Fi大々該赤外線検出体の表、裏面に
ニクロム蒸着膜にて形成された表、裏面電極、(8)は
銅、燐青銅などから&る金属@!文搾台で、該支持台上
には、上記裏面電極(7)を支持台(8)上面に対向す
るようにして、上記赤外線検出体(5)が銀ペーストな
どの導電性接着剤(9)にて固着されている。
FIG. 2 shows an infrared detector (4), (5) is a pyroelectric infrared detector made of lithium tantalate (LiTa05) single crystal and generates a charge according to the amount of change in incident infrared radiation;
(6) and (7) Fi large front and back electrodes formed of nichrome vapor deposited films on the front and back surfaces of the infrared detector; (8) are metals made of copper, phosphor bronze, etc. On the support stand, the infrared detector (5) is coated with a conductive adhesive (9) such as silver paste, with the back electrode (7) facing the upper surface of the support stand (8). ) is fixed.

α・は上記赤外線検出体(5)が高抵抗であるが故に断
る高抵抗を低抵抗(変換するためのインピーダンス変換
回路aυが配置されたアルミナ基板、αりは金属性のキ
ャップ0及びヘッダa4からなる収納体で、該収納体内
の上記ヘッダI上には上記支持台(8)及び基板ulが
固定されているう(19は上記ヘッダQ4)K直接的に
植設され九アース端子で、該噛子は上記支持台(8)及
び接着剤(9)を介して上記裏面電極(7)に電気的に
接続されている。(le及び住ηは大々上記ヘッダC1
4)K絶縁材(IL (11を介して植設された第1、
第2リード端子、■は上記表面電極(6)とインピーダ
ンス変換回路Uυとを結線するリード線、Cυ、@は上
記インピーダンス変換回路αυと第1、第2リード端子
α!、(17)とを結線するリード線である。
α・ is an alumina substrate on which an impedance conversion circuit aυ for converting the high resistance rejected because the above-mentioned infrared detector (5) has a high resistance to a low resistance, α is a metal cap 0 and a header a4 The support base (8) and the board UL are fixed on the header I in the storage body (19 is the header Q4) K is directly implanted and has a ground terminal, The bracket is electrically connected to the back electrode (7) via the support base (8) and adhesive (9). (le and η are approximately connected to the header C1.
4) K insulation material (IL (first implanted through 11,
A second lead terminal, ■ is a lead wire connecting the above-mentioned surface electrode (6) and the impedance conversion circuit Uυ, Cυ, @ is the above-mentioned impedance conversion circuit αυ and the first and second lead terminals α! , (17).

4は上記赤外線検出体(5)に2を面電極(6)側から
赤外線を入射せしめるべく上記キャップa3に9股され
た開口側は該開口を閉塞する第1赤外線透過休で、該透
過体は波長2〜15μmの赤外線に対する透過率が高い
厚さ数100μmのシリコン又はゲルマニクム板からな
っているっ(至)は上記開口1に対向すべく上記!!1
赤外線透過休C体4)の下面に固定された平面状の第1
対向体で、該第1対向体において、■、■・・・はアル
ミニウム、金、銀などの赤外線非透過材料からなり紙面
に平行な方向にて第5図aに示す如く線状罠延設された
複数の第1赤外線非透過部、罰、@・・・Fi断る第1
赤外線非透過部(至)、弼・・・の各々の間に位置する
第1赤外線透過部である。そして、上記第1赤外線非透
過部(ハ)、(至)・・・の幅Wは1μm〜2μm1厚
さDtlo、1〜100μmで、上記第1赤外線透過部
−1額・・・の幅tは上紀幅Wと同一寸法である。(至
)は上記収納体0内において上記第1赤外線透過体c!
尋に近接対向すべく配置された第2赤外線透過体で、該
透過体は上記第1赤外線透過休Q4と同様に波長2〜1
5μmの赤外線に対する透過率が高い厚さ数100μm
のシリコン又はゲルマニクム板からなっている。(至)
は上記開口e3に対向すべく更に詳しくは、上記第1対
向体@に平行にして近接対向すべく上記91!2赤外線
透過体(至)の上面に固定された平面状の第2対向体で
、該IN2対向体において、鴫、(至)・・・は上記第
1赤外線非透過部(至)、(瀾・・・と同一材料からな
抄紙1fiK平行な方向にて第5図すに示す如く線状に
延設され九複数の第2赤外線非透過部、00、 Clυ
・・・は所る第2赤外線非透過部■、(7)・・・の各
々の闇に位置する第2赤外線透過部である。そして、上
記赤外線非透過部■、(至)・・・の幅W′、厚さD′
及びト記91!2赤外線透過部01)、6υ・・・の幅
t′は夫々上記第1赤外線非透過部(至)、(至)・・
・の幅W、厚さD及び第1赤外線透過部@、@・・・の
幅tと同一寸法である。
Reference numeral 4 denotes a first infrared transmitting hole that closes the opening, and the opening side of the cap A3 has nine prongs to allow infrared rays to enter the infrared detector (5) from the surface electrode (6) side. is made of a silicon or germanium plate several 100 μm thick that has high transmittance for infrared rays with a wavelength of 2 to 15 μm. ! 1
A flat first fixed to the lower surface of the infrared transmitting C body 4)
In the first opposing body, ■, ■... are made of infrared opaque materials such as aluminum, gold, silver, etc., and linear traps are extended in the direction parallel to the paper surface as shown in Figure 5a. A plurality of first infrared opaque parts, punishment, @...Fi refusal first
This is the first infrared transmitting part located between the infrared non-transmissive part (to), the end, . . . . The width W of the first infrared non-transmissive portions (C), (to)... is 1 μm to 2 μm, the thickness Dtlo is 1 to 100 μm, and the width t of the first infrared transparent portion - 1 forehead... is the same size as the upper width W. (To) is the first infrared transmitting body c! in the storage body 0!
A second infrared transmitting body disposed to closely face each other, the transmitting body has a wavelength of 2 to 1, similar to the first infrared transmitting body Q4.
Thickness of several 100 μm with high transmittance for 5 μm infrared rays
It is made of silicon or germanium plates. (To)
is a planar second opposing body fixed to the upper surface of the 91!2 infrared transmitting body (to) to face the opening e3, more specifically, to be parallel to and close to the first opposing body @. , in the IN2 opposing body, the first infrared non-transmissive part (to), (to) is made of the same material as the paper made of the same material as shown in FIG. A plurality of nine second infrared non-transmissive portions extending linearly, 00, Clυ
. . . are second infrared transmitting portions located in the shadows of the second infrared non-transmitting portions (2), (7), . Then, the width W' and the thickness D' of the infrared non-transmissive part ■, (to)...
The width t' of the infrared transmitting section 01), 6υ... is the first infrared non-transmissive section (to), (to), etc., respectively.
The dimensions are the same as the width W and thickness D of * and the width t of the first infrared transmitting parts @, @....

(33は2枚の圧電板を張り合わせて形成された圧電振
動体、即ちバイモルフで、該バイモルフは直方体形状分
有しその長さt1幅W、厚み&は夫々的30−15箇、
0.5諺であり、水晶、ロッシェル塩、酒石峻エチレン
、ジアミン、酒石峻カリ、第一リン酸カリ、第一リン峻
アンモン、硫酸リチウム、チタン酸パリクム、a峻グリ
シンなどの単結晶や、チタン峻パリクム系磁器、ジルコ
ン酸・チタン酸鉛系磁器、ニオブ酸系磁器などの磁器材
料からなっているうそして、上記)(イモルフc(6は
赤外線入射方向に垂直な方向、即ち横方向に長くなるよ
うにして左端(3Δが上記ヘッダQ4)K設けられ九絶
縁台(至)に固定され、右l111c3イに上記第2赤
外線透過体(至)が装着されている。(ロ)及び(至)
はF記ヘッダIに絶縁材(ト)、07)を介して植設さ
れた第6、第4リード端子、(至)及び(至)は第4図
にも示す如く上記バイモルフc33の左端4の両面に形
成された第1、第、2振動電極で、該第1、第2ri幼
電極は夫々上記4IIJ5、第4リード端子(ロ)、(
至)に接続されているう而して、上記第1、第2振動電
極(至)、(至)闇に第6、第4リード端子(ロ)、(
へ)を介して所定の交流信号を印加すると、上記パイモ
ルyQ3Fi交流信号の同波数に応じて撓んで第2赤外
線透過体(至)を紙面に垂直な入方向に周期的に振II
亡しめるうこの場合、バイモルフ6zは長さtが上述の
如き長い寸法を何していることによりバイモルフl:3
2の右端C(/は大きく振動し、従って上記第2対向体
1は第5図に詳細に示す如く第2赤外線非透過部(至)
、(至)・・・が上記第1対向体(至)の第1赤外線透
過部罰、(財)・・・に重なる部分(破線I)及び第1
赤外線非透過部(至)、(2)・・・K重なる部分(実
線J)に周期的に位置するように大きく振動する。そし
て、この様な状態において、上記第2対向体@は第1対
向体@に対して常に平行状態を保持しているっ ここK、上記バイモルフ(至)が第2図に破線で示す如
く赤外線入射方向に長くなるように配置されていると、
赤外線検出器自体が必然的に赤外線入射方向に大きくな
り、従って断る赤外線検出器の取付スペースの赤外線入
射方向寸法が小さい場合赤外線検出器の取付けが困難で
ある。そして、このような場合、第2対向体@は第6図
に示す如く第1対向体Q!!9に対して平行でない位置
に振動してしまう。
(33 is a piezoelectric vibrating body formed by pasting two piezoelectric plates together, that is, a bimorph, and the bimorph has a rectangular parallelepiped shape, and its length t1 width W, thickness & are 30-15 parts, respectively.
0.5, and single crystals such as quartz, Rochelle salt, ethylene tartaric acid, diamine, potassium tartaric acid, potassium monophosphate, ammonium monophosphate, lithium sulfate, palicum titanate, and glycine It is made of porcelain materials such as titanium paricum porcelain, zirconate/lead titanate porcelain, and niobate porcelain. The left end (3Δ is the header Q4) is provided so as to be longer in the direction, and is fixed to the nine insulating stand (to), and the second infrared transmitting body (to) is attached to the right l111c3. (b) and (to)
are the 6th and 4th lead terminals implanted in the header I marked F through an insulating material (g), 07), (to) and (to) are the left end 4 of the bimorph C33 as shown in FIG. The first, second, and second vibrating electrodes are formed on both surfaces of the 4IIJ5, the fourth lead terminal (b), and the first and second ri young electrodes, respectively.
The first and second vibrating electrodes (to) are connected to (to), and the sixth and fourth lead terminals (b) are connected to (to).
When a predetermined alternating current signal is applied through the Pymol yQ3Fi AC signal, the second infrared transmitting body is deflected in accordance with the same wave number of the above AC signal and periodically shakes the second infrared transmitting body in the input direction perpendicular to the plane of the paper.
In this case, bimorph 6z becomes bimorph l:3 due to the length t of the long dimension as described above.
2, the right end C (/) vibrates greatly, so that the second opposing body 1 has a second infrared non-transmissive portion (to) as shown in detail in FIG.
, (to)... overlaps with the first infrared transmitting portion of the first opposing body (to), (damage)... (dashed line I) and the first
Infrared non-transmissive part (to), (2)...K greatly vibrate so as to be periodically located in the overlapping part (solid line J). In this state, the second opposing body always maintains a parallel state with respect to the first opposing body, and the bimorph receives infrared rays as shown by the broken line in Figure 2. If it is arranged so that it becomes long in the direction of incidence,
The infrared detector itself inevitably becomes larger in the infrared incident direction, and therefore, if the size of the installation space for the infrared detector in the infrared incident direction is small, it is difficult to install the infrared detector. In such a case, the second opposing body @ is the first opposing body Q! as shown in FIG. ! It vibrates in a position that is not parallel to 9.

しかるに、上記赤外線検出器(4)では、上記ノ(イモ
ルア(至)は第2対向体(2)を第1対向体(ホ)に対
して平行状態に保ちながら振動せしめるべく横方向に長
く更に入方向に振動するように配置されており、従って
赤外線入射方向の寸法を小さくできる。
However, in the above-mentioned infrared detector (4), the above-mentioned (imolar) is further extended in the lateral direction in order to vibrate the second opposing body (2) while keeping it parallel to the first opposing body (e). It is arranged so as to vibrate in the infrared incident direction, so the size in the infrared incident direction can be reduced.

尚、上記振動がなされると、上記赤外線検出体(5)に
は赤外線検出器(4)外部の被検出体からの赤外線が同
期的に入射し、即ち赤外線検出体(5)K入射する赤外
線が周期的に変化し、従って上記赤外線検出体(5)は
断る変化量に応じた電荷を発生するつこの電荷は被検出
体の温&七室温との温度差に基づいている。
Incidentally, when the above-mentioned vibration is made, infrared rays from an object to be detected outside the infrared detector (4) are synchronously incident on the infrared detecting body (5), that is, infrared rays that are incident on the infrared detecting body (5) K. changes periodically, and therefore the infrared detector (5) generates a charge according to the amount of change.The charge is based on the temperature difference between the temperature of the object to be detected and the room temperature.

第7図は本発明他の実施例赤外線検出器(4)を示す。FIG. 7 shows an infrared detector (4) according to another embodiment of the present invention.

同図において、上記実施例と同一部分には同一符号を記
してその説明を省略するっ 顛はアルミニウムなどからなり上記赤外線検出体(5)
及びインピーダンス変換回路αυの部分を覆う高さCが
約5mのシールド体、lは該シールド体の検出体(5)
上方に位置する部分に?設され九関口で、該開口には上
記第1対向体(ハ)がjlX着されている。そして、上
記シールド体顛はノくイモルアc33の振動によって赤
外線検出体(5)及びインピーダンス変換回路αυにノ
イズが+1!導されるのを防いでいるつ更K、バイモル
フ62の右端dKは上記第2対向体(至)が直接取着さ
れている。而して、(6)はテア0ンなどの樹脂からな
る支持台で、該支持台には上記第2対向体四の遊端〆を
摺動自在に支持する溝(4漕が刻設されている。
In the same figure, the same parts as those in the above embodiment are denoted by the same reference numerals, and the explanation thereof will be omitted.
and a shield body with a height C of about 5 m that covers the impedance conversion circuit αυ, l is the detection body (5) of the shield body
In the part located above? There are nine openings, and the first opposing body (c) is attached to the opening. Then, the above-mentioned shield body generates +1 noise in the infrared detector (5) and the impedance conversion circuit αυ due to the vibration of the imora C33! The second opposing body (to) is directly attached to the right end dK of the bimorph 62, which prevents the bimorph from being guided. (6) is a support made of resin such as Tear-One, and the support has grooves (4 rows) carved therein to slidably support the free end of the second opposing body 4. ing.

第8図は上記赤外線検出器(4)、(41を含む回路を
示し、赤外線検出器(4)又は(41内のインピーダン
ス変換回路αυは1010〜1011gの高入力抵抗1
44゜FET(電界効果トクンジスタ)−及び約10K
gの出力抵抗罎にて形成されている。
FIG. 8 shows a circuit including the infrared detectors (4) and (41), and the impedance conversion circuit αυ in the infrared detectors (4) and (41) has a high input resistance of 1010 to 1011 g.
44°FET (field effect transistor) - and about 10K
It is formed by an output resistor of g.

そして、上記赤外線検出器(4)又は(4)は第1リー
ド端子aeKて直流電圧が供給され、第2リード端子へ
?)から被検出体の温度と室温との温度差に応じた交流
信号が出力される。−ηは室温測定を行なうダイオード
、咽は無安定マルチバイブレータからなり同期的パルス
を発振する発振器、四は上記パルスに基づいて上記バイ
モルフ(至)を振動せしめる(mませる)丸めの交流信
号を出力する駆動回路、6G@1)k)は直流増幅器、
輪はフイルク増幅器、(64は同期検波器で、上記赤外
線検出器(4)又F!(45からの交流信号と上記発振
器−からのパルスとの同期をと沙、被検出体の温度が室
温より高い場合はその温度差に応じた正の直流信号を出
力し、被検出体の温度が室温より低い場合はその温度差
に6じた負の直流信号を出力する。−)Vi上記同期検
波器−の出力とダイオード(4ηの出力とを合成(加算
)する合成回路で、該回路は被検出体の温度に応じた信
号を出力する。(Aは断る温度を所望回路へ出力する丸
めの出力端子である。
Then, the infrared detector (4) or (4) is supplied with a DC voltage through the first lead terminal aeK, and is supplied with a DC voltage to the second lead terminal? ) outputs an AC signal corresponding to the temperature difference between the temperature of the object to be detected and the room temperature. -η is a diode that measures the room temperature, throat is an oscillator made of an astable multivibrator that oscillates synchronous pulses, and 4 outputs a rounded AC signal that causes the bimorph to vibrate based on the pulses. drive circuit, 6G@1) k) is a DC amplifier,
The ring is a Filck amplifier (64 is a synchronous detector, which synchronizes the AC signal from the infrared detector (4) or F! (45) with the pulse from the oscillator, so that the temperature of the detected object is room temperature. If the temperature of the object to be detected is higher than the room temperature, a positive DC signal corresponding to the temperature difference is output, and if the temperature of the object to be detected is lower than the room temperature, a negative DC signal corresponding to the temperature difference is output.-) ViThe above synchronous detection This is a synthesis circuit that combines (adds) the output of the detector and the output of the diode (4η), and this circuit outputs a signal according to the temperature of the detected object. (A is a rounding circuit that outputs the temperature to be rejected to the desired circuit. It is an output terminal.

以上の説明から明らかな如く、本発明によれば、入射赤
外線変化量に応じて電荷を発生する赤外線検出体、該検
出体を収納する収納体、被検出体からの赤外線管上記検
出体へ入射せしめるべく上記収納体に9投された開口、
赤外線透過部及び赤外線非透過部を共に有し互いに平行
にして上記開口に対向すべく配置された平面状の一対の
対向体、該対向体の内の一方の対向体をその赤外線非透
過部が上記他方の対向体の赤外線透過部及び赤外線非透
過部に同期的に交互に重畳するように振動せしめる圧電
振動体を備え、該圧電振動体は上記一方の対向体を上記
平行状態を保持しなから振動せしめるべく配置したから
、赤外線検出体に入射する赤外線を変化せしめるための
チョッパ及びモータ等が不要となり、よって赤外線検出
器自体を小型化できると共に、赤外線検出体に入射する
赤外線はむらなく周期的に変化するため高精度の下に赤
外線検出を行なうことができる。更に1赤外線検出器の
赤外線入射方向の寸法を小さくでき、従って赤外線検出
器を赤外線入射方向の寸法が小さいスペースに取付ける
場合、赤外線検出器を容易に収着することができるっ
As is clear from the above description, according to the present invention, there is provided an infrared detector that generates a charge according to the amount of change in incident infrared rays, a storage body that stores the detector, and an infrared tube from an object to be detected that is incident on the detector. 9 openings were thrown into the above storage body in order to
A pair of planar opposed bodies having both an infrared transmitting part and an infrared non-transmitting part and arranged parallel to each other to face the opening, one of the opposed bodies having an infrared non-transmitting part; A piezoelectric vibrating body is provided to vibrate the infrared transmitting portion and the infrared non-transmitting portion of the other opposing body so as to be synchronously and alternately superimposed, and the piezoelectric vibrating body maintains the one opposing body in the parallel state. Since the arrangement is arranged so that the infrared rays incident on the infrared detecting body vibrate, there is no need for a chopper or a motor to change the infrared rays incident on the infrared detecting body.Therefore, the infrared detector itself can be miniaturized, and the infrared rays incident on the infrared detecting body are evenly distributed with a periodicity. Since the infrared rays change over time, it is possible to perform infrared detection with high precision. Furthermore, the dimensions of the infrared detector in the infrared incident direction can be made small, so when the infrared detector is installed in a space with small dimensions in the infrared incident direction, the infrared detector can be easily sorbed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a及びbは夫々従来の赤外線検出機構の側面図及
び平面図、第2図は本発明実施例赤外線検出器の断面図
、第6図鳳及びbは夫々同要部平向図、第4図は第2図
において矢印■方向から見九図、第5図は第2図におけ
るV−V線断面図、第6図は第5図に対応する比較のた
めの赤外線検出器の断面図、第7図は本発明能の実施例
赤外線検出器の断面図、第8図は第2図及び第7図の赤
外線検出器を含む回路図である。 (5)・・・赤外線検出体、αの・・・収納体、(至)
・・・開口、(ハ)・・・第1対向体、(至)、圀・・
・第1赤外線非透過部、額、■・・・第1赤外線透過部
、(至)・・・第2対向体、(至)、(至)・・・第2
赤外線非透過部、3υ、6υ・・・第2赤外線透過部、
(33・・・バイモルフ。
1A and 1B are a side view and a plan view of a conventional infrared detection mechanism, FIG. 2 is a sectional view of an infrared detector according to an embodiment of the present invention, and FIGS. 6A and 6B are plan views of the same essential parts, respectively. Figure 4 is a cross-sectional view taken along the line V-V in Figure 2, Figure 6 is a cross-sectional view of an infrared detector for comparison corresponding to Figure 5, as seen from the direction of arrow ■ in Figure 2. 7 are sectional views of an infrared detector according to an embodiment of the present invention, and FIG. 8 is a circuit diagram including the infrared detectors of FIGS. 2 and 7. (5)...Infrared detector, α...storage body, (to)
...Aperture, (c)...First opposing body, (to), field...
・First infrared non-transmissive part, forehead, ■...First infrared transmissive part, (To)...Second opposing body, (To), (To)...Second
Infrared non-transmissive part, 3υ, 6υ... second infrared transparent part,
(33...bimorph.

Claims (1)

【特許請求の範囲】[Claims] (1)入射赤外線変化量Kt3じて電荷を発生する上記
収納体に?設され九開口、赤外線透過部及び赤外線非透
過部を共に有し互いに平行にして上記開口に対向すべく
配置された平面状の一対の対向体、該対向体の内の一方
の対向体をその赤外線非透過部が上記他方の対向体の赤
外線透過部及び赤外IN非透過部に同期的に交互に重畳
するように振動せしめる圧電振動体を備え、該圧電振動
体は上記一方の対向体を上記平行状態を保持しながら振
動せしめるべく配置したことを特徴とする赤外線検出器
(1) Does the amount of change in incident infrared radiation Kt3 cause the above-mentioned storage body to generate electric charge? a pair of planar opposing bodies, each having nine openings, an infrared transmitting part and an infrared non-transmitting part, and arranged parallel to each other to face the opening; The piezoelectric vibrating body vibrates so that the infrared non-transmissive part is synchronously and alternately superimposed on the infrared transmissive part and the infrared IN non-transparent part of the other opposing body, and the piezoelectric vibrator vibrates the one opposing body. An infrared detector characterized in that it is arranged to vibrate while maintaining the parallel state.
JP57012432A 1981-08-20 1982-01-27 Infrared detector Granted JPS58129226A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP57012432A JPS58129226A (en) 1982-01-27 1982-01-27 Infrared detector
US06/407,582 US4485305A (en) 1981-08-20 1982-08-12 Infrared detector with vibrating chopper
GB08223932A GB2105033B (en) 1981-08-20 1982-08-19 Infrared ray detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57012432A JPS58129226A (en) 1982-01-27 1982-01-27 Infrared detector

Publications (2)

Publication Number Publication Date
JPS58129226A true JPS58129226A (en) 1983-08-02
JPH0262810B2 JPH0262810B2 (en) 1990-12-26

Family

ID=11805122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57012432A Granted JPS58129226A (en) 1981-08-20 1982-01-27 Infrared detector

Country Status (1)

Country Link
JP (1) JPS58129226A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60100635U (en) * 1983-12-15 1985-07-09 三洋電機株式会社 infrared sensor
JPS60100636U (en) * 1983-12-15 1985-07-09 三洋電機株式会社 infrared sensor
JPS60128317A (en) * 1983-12-15 1985-07-09 Sanyo Electric Co Ltd Infrared sensor
JPH01177847U (en) * 1988-02-12 1989-12-19
US5001657A (en) * 1986-06-24 1991-03-19 Minolta Camera Kabushiki Kaisha Radiation thermometer
KR100377806B1 (en) * 1999-11-02 2003-03-29 학교법인주성학원 Module of pyroelectric type infrared sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5554418A (en) * 1978-10-17 1980-04-21 Matsushita Electric Ind Co Ltd Pyroelectric type temperature sensor
JPS5619417A (en) * 1979-07-27 1981-02-24 Toshiba Corp Pyroelectric detector
JPS56160628A (en) * 1980-05-14 1981-12-10 Sanyo Electric Co Ltd Infrared detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5554418A (en) * 1978-10-17 1980-04-21 Matsushita Electric Ind Co Ltd Pyroelectric type temperature sensor
JPS5619417A (en) * 1979-07-27 1981-02-24 Toshiba Corp Pyroelectric detector
JPS56160628A (en) * 1980-05-14 1981-12-10 Sanyo Electric Co Ltd Infrared detector

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60100635U (en) * 1983-12-15 1985-07-09 三洋電機株式会社 infrared sensor
JPS60100636U (en) * 1983-12-15 1985-07-09 三洋電機株式会社 infrared sensor
JPS60128317A (en) * 1983-12-15 1985-07-09 Sanyo Electric Co Ltd Infrared sensor
JPH0313707Y2 (en) * 1983-12-15 1991-03-28
JPH0414290B2 (en) * 1983-12-15 1992-03-12 Sanyo Electric Co
US5001657A (en) * 1986-06-24 1991-03-19 Minolta Camera Kabushiki Kaisha Radiation thermometer
JPH01177847U (en) * 1988-02-12 1989-12-19
KR100377806B1 (en) * 1999-11-02 2003-03-29 학교법인주성학원 Module of pyroelectric type infrared sensor

Also Published As

Publication number Publication date
JPH0262810B2 (en) 1990-12-26

Similar Documents

Publication Publication Date Title
GB1254037A (en) Ultrasonic transducer employing suspended piezoelectric plate
JPS58129226A (en) Infrared detector
US4542294A (en) Infrared detector and method of producing the same
US4631406A (en) Infrared ray detector
JPS622246B2 (en)
US3749854A (en) Ultrasonic wave microphone
JPH0216858B2 (en)
JPH0156367B2 (en)
JPH0230740Y2 (en)
JP4665877B2 (en) Actuator, optical scanner, and image forming apparatus
JPH0127069Y2 (en)
JPH0334668Y2 (en)
JPS5937431A (en) Infrared detector
JPH037890B2 (en)
JPH0313707Y2 (en)
JPH0234592Y2 (en)
JPH051793Y2 (en)
JPH0142726Y2 (en)
JPH0238894B2 (en)
JPH0425485B2 (en)
JPH05835Y2 (en)
JPS5973742A (en) Infrared ray detecting device
JPH11108951A (en) Piezoelectric element
JPH051799Y2 (en)
JPH0414290B2 (en)