JPS58129171A - Method of controlling solar-heat utilizing absorption refrigerator - Google Patents

Method of controlling solar-heat utilizing absorption refrigerator

Info

Publication number
JPS58129171A
JPS58129171A JP1162082A JP1162082A JPS58129171A JP S58129171 A JPS58129171 A JP S58129171A JP 1162082 A JP1162082 A JP 1162082A JP 1162082 A JP1162082 A JP 1162082A JP S58129171 A JPS58129171 A JP S58129171A
Authority
JP
Japan
Prior art keywords
temperature
low
heat source
water
auxiliary heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1162082A
Other languages
Japanese (ja)
Inventor
日比野 陽三
亀島 鉱二
奈良 安晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1162082A priority Critical patent/JPS58129171A/en
Publication of JPS58129171A publication Critical patent/JPS58129171A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は太陽熱で加熱した低温水を主熱源とし、蒸気お
るいは燃料を補助熱源とする吸収冷凍機の制御方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling an absorption refrigerator that uses low-temperature water heated by solar heat as a main heat source and steam or fuel as an auxiliary heat source.

従来の制御方法を第1図および第2図を用いて説明する
。第1図は低温水および補助熱源の投入のオンオフ制御
の場合の冷水温度Tとそれに厄じて決めるオンオフ制御
動作S、との関係を示すものである。このオンオフ制御
動作S、は王に温度スイッチあるいはリレーを用いて実
現している。
A conventional control method will be explained using FIGS. 1 and 2. FIG. 1 shows the relationship between the cold water temperature T and the on/off control operation S that is determined based on the cold water temperature T in the case of on/off control of inputting low temperature water and an auxiliary heat source. This on/off control operation S is realized by using a temperature switch or a relay.

第1図において、点線は低温水の投入のオンオフ動作を
、ま九実線は補助熱源の投入のオンオフ動作を示す。こ
のオンオフ動作においては低温水を主熱源として使用す
べきであるが、蒸気あるいは燃料を主熱源として使用す
る方法を踏襲している。
In FIG. 1, the dotted line indicates the on/off operation for inputting low temperature water, and the solid line indicates the on/off operation for inputting the auxiliary heat source. This on/off operation should use low-temperature water as the main heat source, but it follows the method of using steam or fuel as the main heat source.

その結果低温水の投入のオン動作とオフ動作の切換に相
当の温度幅を設けており、また低温水のオン動作の切換
と補助熱源のオフ動作の切換とを同一温度(例えば1l
r)に設定している。
As a result, a considerable temperature range is provided for switching on and off the input of low-temperature water, and switching on and off of the low-temperature water and switching off the auxiliary heat source are performed at the same temperature (for example, 1 liter).
r).

第2図は低温水と補助熱源との投入を比例制御する場合
の冷水温度Tとそれに応じて決める比例制御動作S、と
の関係を示すものである。この制御動作は主に簡単な電
気回路やICを用いて実現している。この図において1
点線は低温水の投入の比例動作を、また実巌は補助熱源
の投入の比例動作を示している。この制御動作において
は、前述と同様な理由により従来の方法全踏襲する結果
、低温水の投入の比例動作の100%と0%との間に相
当の温度幅を設けており、ま九低温水の比例動作の10
0%と補助熱源の比例動作の0%とを同一温度に設定し
ている。
FIG. 2 shows the relationship between the cold water temperature T and the proportional control operation S determined accordingly when the input of low temperature water and the auxiliary heat source is proportionally controlled. This control operation is mainly realized using simple electric circuits and ICs. In this figure, 1
The dotted line shows the proportional action of adding low-temperature water, and the actual line shows the proportional action of adding the auxiliary heat source. In this control operation, as a result of following all the conventional methods for the same reason as mentioned above, a considerable temperature range is provided between 100% and 0% of the proportional operation of low-temperature water input. 10 of the proportional action of
0% and 0% of the proportional operation of the auxiliary heat source are set to the same temperature.

一方、太陽熱はほとんどコストがかからない。Solar heat, on the other hand, costs almost nothing.

このことを考慮すると、低温水をできるだけ多く投入す
ることが望ましい、しかし、従来の制御方法においては
これを不当に制限する結果となっている。また、低温水
による運転状態と補助熱源に動作を行なっているので、
この差によって投入エネルギーに損失が生ずるのみなら
ず、冷水温度の制御性能を損う結果となっている。
With this in mind, it is desirable to introduce as much cold water as possible, but conventional control methods unduly limit this. In addition, since the operation is performed using low-temperature water and an auxiliary heat source,
This difference not only causes a loss in the input energy, but also impairs the control performance of the chilled water temperature.

本発明は、太陽熱で加熱した低温水を最大限に利用して
補助熱源のエネルギーロスを抑制する太陽熱利用吸収冷
凍機の制御方法を提供することを目的とする。
An object of the present invention is to provide a method for controlling a solar absorption refrigerator that maximizes the use of low-temperature water heated by solar heat to suppress energy loss of an auxiliary heat source.

本発明の特徴とするところは、太陽熱で加熱した低温水
を加熱源とする低温熱源発生器と、太陽熱が不足した場
合に補助熱源を加熱源とする高温発生器および低温発生
器とを備えた吸収冷凍機において、前記低温熱発生器か
らの低温水を冷凍機に全量投入する太陽熱を利用する時
に、その冷水温度の上限(1を、補助熱源を投入開始す
る補助熱源利用時の冷水温度の下限値よりも低く設定し
たところにある。
The features of the present invention include a low-temperature heat source generator that uses low-temperature water heated by solar heat as a heating source, and a high-temperature generator and a low-temperature generator that use an auxiliary heat source as a heating source when solar heat is insufficient. In an absorption chiller, when using solar heat by inputting all the low-temperature water from the low-temperature heat generator into the chiller, the upper limit of the chilled water temperature (1) is the upper limit of the chilled water temperature when using the auxiliary heat source when starting to input the auxiliary heat source. This is where the value is set lower than the lower limit.

以下本発明の実施例を図面t−参照して説明する。Embodiments of the present invention will be described below with reference to FIG.

第3図は本発明の太陽熱利用吸収式冷凍機の制御方法を
示す。第3図は低温水と補助熱源との投入をオンオフ制
御する場合の冷水温度Tとそれに応じて決めるオンオフ
制御動作S、′Jk示すグラフである。この図において
1点4!iiは低温水の投入のオンオフ動作を、実線は
補助熱源の投入のオンオフ動作を示す。本発明において
は、低温水の投入のオン動作とオフ動作の切換の温度幅
T1を最小限に抑えるとともに、低温水のオン動作の切
換と補助熱源のオフ動作の切換との温度に所定の温度幅
T、をもたせたものである。これらの温度幅は。
FIG. 3 shows a method of controlling a solar absorption type absorption refrigerator according to the present invention. FIG. 3 is a graph showing the cold water temperature T and the on/off control operations S and 'Jk determined accordingly when the input of low temperature water and the auxiliary heat source is controlled on and off. 1 point 4 in this figure! ii shows the on/off operation of adding low temperature water, and the solid line shows the on/off operation of adding the auxiliary heat source. In the present invention, the temperature range T1 for switching between the ON operation and OFF operation of low-temperature water supply is minimized, and the temperature range T1 for switching the low-temperature water ON operation and the auxiliary heat source OFF operation is set to a predetermined temperature. It has a width T. What is the range of these temperatures?

冷水温度の制御性能の要求仕様や、冷水@度の検出誤差
、制御動作のハンチング防止のためのヒステリンス、太
陽熱で加熱した低温水の容量等を考慮して決められる。
It is determined by taking into consideration the required specifications for the control performance of cold water temperature, the detection error of cold water@degrees, the hysteresis to prevent hunting in control operations, the capacity of low-temperature water heated by solar heat, etc.

このように設定された冷水温度と制御動作との関係にも
とづいて、主として冷水温度の要求値の最低値付近にお
いて、低温水の投入のオン動作とオフ動作との切換が行
なわれる。
Based on the relationship between the chilled water temperature and the control operation set in this way, switching of low-temperature water injection between an on operation and an off operation is performed mainly around the lowest required value of the chilled water temperature.

し九がって、高い温度の低温水が十分得られる場合ある
いは負荷が少ない場合には、全く補助熱源を用いること
なく、蒸気あるいは燃料を主熱源とする場合と同等の制
御性能を得ることができる。
Therefore, if sufficient high-temperature low-temperature water is available or the load is small, it is possible to obtain control performance equivalent to that obtained when steam or fuel is used as the main heat source without using any auxiliary heat source. can.

ま九、低い温度の低温水しか得られない場合あるいは負
荷が大きい場合には、太陽熱を十分に投入した結果とし
ての運転状態になっているので1次に補助熱を投入する
場合に運転状態が連続的につながっていくので、補助熱
のエネルギーロスが少なくてすむものである。
9. If only low-temperature water can be obtained or the load is large, the operating state will be the result of sufficient solar heat input, so the operating state will change when primary auxiliary heat is input. Since they are connected continuously, there is less energy loss in auxiliary heat.

第4図は低温水と補助熱源との投入を比例制御する場合
の冷水温度Tとそれに応じて決める比例制御動作S、を
示すグラフである。この図において、点線は低温水の投
入の比例動作1km実線は補助熱源の投入の比例動作を
示す1本発明においては、低温水の投入の0%と100
%との間の温度幅T、を最小限に抑えるとともに、低温
水の比例動作の100%に対応する冷水温度と補助熱源
の比例動作の0%に対応する冷水温度との間に所定の温
度幅をも九せたものである。これらの温If@は、前述
したオンオフ制御で述べたと同様な点を考慮して決めら
れている。このように冷水温度を制御動作との関係を設
定することによって、主として冷水温度の要求値の最低
値付近において低温水の投入の比例動作が行なわれる。
FIG. 4 is a graph showing the cold water temperature T and the proportional control operation S determined in accordance with the cold water temperature T when the input of the low temperature water and the auxiliary heat source is controlled proportionally. In this figure, the dotted line shows the proportional operation of low-temperature water input (1 km), and the solid line shows the proportional operation of auxiliary heat source input.1 In the present invention, 0% and 100% of low-temperature water input
%, and a predetermined temperature between the chilled water temperature corresponding to 100% of the proportional operation of the low temperature water and the chilled water temperature corresponding to 0% of the proportional operation of the auxiliary heat source. The width has also been reduced. These temperatures If@ are determined in consideration of the same points as described in the above-mentioned on/off control. By setting the relationship between the cold water temperature and the control operation in this way, the proportional operation of adding low temperature water is performed mainly around the lowest required value of the cold water temperature.

したがって。therefore.

高い温度の低温水が十分得られる場合あるいは負荷が少
ない場合には、全く補助熱源を用いることなく蒸気ある
いは燃料を主熱源とする場合と同等の制御性能を得るこ
とができる。また、低い温度の低温水しか得られない場
合あるいは負荷1が大きい場合には、太陽熱を十分に投
入した結果としての運転状態になっているので、次に補
助熱を投入する場合に運転状態が連続的につながってい
くので、補助熱のエネルギーロスが少なくてすむもので
める。
When sufficient low-temperature water at a high temperature is available or when the load is small, control performance equivalent to that obtained when steam or fuel is used as the main heat source can be obtained without using any auxiliary heat source. In addition, if only low-temperature water is obtained or if load 1 is large, the operating state is the result of sufficient input of solar heat, so the operating state will change when supplementary heat is input next. Since it is connected continuously, there is less energy loss in auxiliary heat.

以上のように、本発明によれば、太陽熱で加熱した太陽
熱f:IIk大限に利用できるので、補助熱源の消費を
極力抑えることができ、大きな省エネルギー効果が得ら
れる。また、太陽熱による低温水の投入による運転状態
と補助熱源の投入による運転状態とを連続的に移行させ
ることができるのでこれに伴うエネルギーロスを抑制す
ることができる。以上の結果として、冷水温度の制御性
能を従来よりも良好に維持することも期待できる。
As described above, according to the present invention, since the solar heat f:IIk heated by solar heat can be utilized to the maximum extent, the consumption of the auxiliary heat source can be suppressed as much as possible, and a large energy saving effect can be obtained. Further, since the operating state due to input of low-temperature water generated by solar heat and the operating state due to input of the auxiliary heat source can be continuously changed, energy loss accompanying this can be suppressed. As a result of the above, it can be expected that the control performance of chilled water temperature can be maintained better than before.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は従来の太陽熱利用吸収冷凍機の制
御方法を示す説明図、第3図および第4図は本発明の太
陽熱利用吸収冷凍機の制御方法の実施例を示す説明図で
ある。 ¥、+  日 篤2 口
FIGS. 1 and 2 are explanatory diagrams showing a conventional method of controlling a solar absorption refrigerator, and FIGS. 3 and 4 are explanatory diagrams showing an embodiment of the method of controlling a solar absorption refrigerator of the present invention. be. ¥, + Niatsu 2 mouths

Claims (1)

【特許請求の範囲】[Claims] 1、太陽熱で加熱した低温水を加熱源とする低温熱源発
生器と、太陽熱が不足し九場合に補熱熱源を加熱源とす
る高温発生器および低温発生器とを備えた吸収冷凍機に
おいて、前記低温熱発生器からの低温水を冷凍機に全量
投入して太陽−を利用する時に、その冷水温度の上限I
Iを、補助熱源を投入開始する補助熱源利用時の冷水温
度の下限値よりも低く設定し九ことt%黴とする太陽熱
利用吸収冷凍機の制御方法。
1. In an absorption refrigerator equipped with a low-temperature heat source generator that uses low-temperature water heated by solar heat as a heating source, and a high-temperature generator and a low-temperature generator that use a supplementary heat source as a heating source in the case of insufficient solar heat, When the entire amount of low-temperature water from the low-temperature heat generator is input into the refrigerator to utilize the sun, the upper limit of the temperature of the cold water is I.
A control method for a solar heat absorption chiller in which I is set lower than the lower limit of the cold water temperature when using an auxiliary heat source to start supplying the auxiliary heat source to reduce moldiness by 9 t%.
JP1162082A 1982-01-29 1982-01-29 Method of controlling solar-heat utilizing absorption refrigerator Pending JPS58129171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1162082A JPS58129171A (en) 1982-01-29 1982-01-29 Method of controlling solar-heat utilizing absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1162082A JPS58129171A (en) 1982-01-29 1982-01-29 Method of controlling solar-heat utilizing absorption refrigerator

Publications (1)

Publication Number Publication Date
JPS58129171A true JPS58129171A (en) 1983-08-02

Family

ID=11782961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1162082A Pending JPS58129171A (en) 1982-01-29 1982-01-29 Method of controlling solar-heat utilizing absorption refrigerator

Country Status (1)

Country Link
JP (1) JPS58129171A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002357370A (en) * 2001-05-31 2002-12-13 Sanyo Electric Co Ltd Control method of absorption refrigerating machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002357370A (en) * 2001-05-31 2002-12-13 Sanyo Electric Co Ltd Control method of absorption refrigerating machine

Similar Documents

Publication Publication Date Title
JP2005061711A (en) Exhaust heat recovering water heater
US4312476A (en) Bivalent heating system
SU1038733A1 (en) Heat power supply station
JP2001012211A (en) Method to operate steam electric power station and steak electric power station to carry out this method
JPS58129171A (en) Method of controlling solar-heat utilizing absorption refrigerator
JPS60224959A (en) Exhaust heat recovery power plant
JP2020153613A (en) Energy supply system
JP2001126741A (en) Energy supply apparatus
JPH01131859A (en) Cold and hot water controller
JP2623056B2 (en) Combined heat and power system
SE543454C2 (en) Thermal Management System, Method of Cooling a Condenser of a Waste Heat Recovery System, and Related Devices
US4114862A (en) Processes and installations for melting pig-iron in a cupola furnace
JPS5851148B2 (en) Power generation device that uses total heat
JPS5916749Y2 (en) Water chiller/heater operation controller
JP3199276B2 (en) Fuel cell generator
JP3258998B2 (en) Operation control method for cogeneration system
JP3010086B2 (en) Cogeneration power plant
JPH10185314A (en) Waste heat input type electric water heater with additional heating function
JPS61153434A (en) Heat pump type hot water supply machine
JPH0399142A (en) Heat storage type gas engine co-generation system
JPH04345766A (en) Heat supplying power generating system for fuel cell power generating plant
JPS58117977A (en) Controller for absorption refrigerator utilizing solar heat
JPH02168573A (en) Fuel battery power generating system
CN115036532A (en) Quick-response vehicle-mounted fuel cell heat management loop and control system
JPH06163065A (en) Fuel cell absorbing type refrigerator connecting system