JPS58128209A - Controlling method of roll rotating speed of hot stretch reducer - Google Patents

Controlling method of roll rotating speed of hot stretch reducer

Info

Publication number
JPS58128209A
JPS58128209A JP57010473A JP1047382A JPS58128209A JP S58128209 A JPS58128209 A JP S58128209A JP 57010473 A JP57010473 A JP 57010473A JP 1047382 A JP1047382 A JP 1047382A JP S58128209 A JPS58128209 A JP S58128209A
Authority
JP
Japan
Prior art keywords
wall thickness
rotation speed
roll rotation
outer diameter
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57010473A
Other languages
Japanese (ja)
Other versions
JPS6150686B2 (en
Inventor
Shinzo Sasaki
佐々木 信三
Kiyoshi Okumura
奥村 精
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP57010473A priority Critical patent/JPS58128209A/en
Publication of JPS58128209A publication Critical patent/JPS58128209A/en
Publication of JPS6150686B2 publication Critical patent/JPS6150686B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/48Tension control; Compression control
    • B21B37/52Tension control; Compression control by drive motor control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/78Control of tube rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B17/00Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling
    • B21B17/14Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling without mandrel, e.g. stretch-reducing mills

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE:To obtain a rolling finished pipe having the outside diameter and wall thickness of target sizes with good accuracy by determining coeffts. of tension, setting the patterns of roll rotating speeds in accordance with the coeffts. of tension and controlling the roll rotating speeds. CONSTITUTION:In a control device 38, the coeffts. of tension are predicted from the actually measured outside diameter and wall thickness of a base pipe obtained from an outside diameter meter 31 and a wall thickness meter 32 and the target outside diameter and wall thickness of a rolling finished pipe inputted from an external computer or the like, and in accordance with the predicted coeffts. of tension, the patterns of roll rotating speeds are set and the roll rotating speeds are controlled. The coeffts. of tension are determined from the actually measured outside diameter and wall thickness of the rolling finished pipe inputted from an outside meter 34 and a wall thickness meter 36, and according to the deviations between the actually measured coeffts. of tension and the predicted coeffts. of tension, the patterns of the roll rotating speeds are corrected by learning.

Description

【発明の詳細な説明】 本発明は、ホットストレッチレデューサのロール回転数
制御方法に係り、特に、マンドレルミル圧延による継目
無鋼管の製造に用いるに好適な、母管を絞り圧延して、
目標寸法の外径及び肉厚を有する圧延仕上管とするため
のホットストレッチレデューサのロール回転数制御方法
の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling the roll rotation speed of a hot stretch reducer, and is particularly suitable for use in manufacturing seamless steel pipes by mandrel mill rolling.
The present invention relates to an improvement in a method for controlling the roll rotation speed of a hot stretch reducer in order to obtain a finished rolled pipe having an outer diameter and wall thickness of target dimensions.

継目無鋼管等の継目無管を製造する方法の一つに、第1
図に示す如く、まず、素材としての丸ビレットio’6
、回転炉床式の加熱炉12で加熱し。
One of the methods for manufacturing seamless pipes such as seamless steel pipes is the first method.
As shown in the figure, first, the round billet io'6 as a material.
, heated in a rotating hearth type heating furnace 12.

次いで、マンネスマン効果を利用したピアサ14で穿孔
し、更に、穿孔後の中空素管16に、マンドレルバ−1
8を挿入した後、中空素管16をマンドレルバ−18と
共にマンドレルミル20に送り込んで延伸圧延し、圧延
後、マンドレルバ−18を母管22から引き抜いて、母
管22を再加熱炉24で再加熱した後、ホットストレッ
チレデューサ26により絞り圧延して外径圧下と若干の
肉厚調整を施して、所要の製品寸法を有する圧延仕上管
28とし、更に、クーリングベッド30で放冷する、マ
ンドレルミル圧延によるものがある。
Next, a hole is punched with a piercer 14 that utilizes the Mannesmann effect, and a mandrel bar 1 is then inserted into the hollow tube 16 after the hole has been punched.
8, the hollow tube 16 is sent to the mandrel mill 20 together with the mandrel bar 18 and stretched and rolled. After rolling, the mandrel bar 18 is pulled out from the main tube 22, and the main tube 22 is reheated in the reheating furnace 24. After that, the hot stretch reducer 26 performs reduction rolling to reduce the outer diameter and slightly adjust the wall thickness, resulting in a finished rolled tube 28 having the required product dimensions.Then, the finished tube 28 is left to cool on a cooling bed 30, followed by mandrel mill rolling. There are some reasons.

このマンドレルミル圧延におけるホットストレッチレデ
ューサ26においては、マンドレルミル20で延伸圧延
後、再加熱炉24で再加熱された母管22を、絞り圧延
して、目標寸法の外径及び肉厚を有する圧延仕上管28
としているが、このホットストレッチレデューサ26で
母管22を圧延する場合、圧下率に、対をなすロール間
隙の設定距離とロール間の引張り力とにより定まる。こ
のうち、多段のロールの外径がすべて等しく、ロール間
の設定距離も一旦設定したのちは不変であるとすれば、
圧下率は、ロールの回転数のみにより制御されつる。
In the hot stretch reducer 26 in this mandrel mill rolling, the main pipe 22 that has been elongated in the mandrel mill 20 and reheated in the reheating furnace 24 is reduced and rolled to have an outer diameter and wall thickness of target dimensions. Finishing pipe 28
However, when rolling the main pipe 22 with this hot stretch reducer 26, the rolling reduction rate is determined by the set distance between the pair of rolls and the tensile force between the rolls. Among these, if the outer diameters of the multistage rolls are all the same and the set distance between the rolls does not change once set, then
The rolling reduction rate is controlled only by the number of rotations of the rolls.

したがって従来は、例えば、特公昭51−43469号
で示される如く、連続多段絞り圧延機(ホットストレッ
チレテユーサ)により、管ヲ絞り圧延する際の圧延長さ
制御方法において、まず、所望の管の圧延後の長さを設
定し、圧延されるべき母管の長爆ヲ実測し、次いで予め
実験的に求めておいた、圧延前後の長さの関数であるロ
ール回転数パターンの関係式、およびこの回転数パター
ンの関数であるロール回転数分布の関係式を用いて、上
記設定値および実測値から、上記ロール回転数パターン
、ロール回転数分布を順次設定し、このロール回転数分
布により、上記圧延されるべき母管に対する上記圧延後
の各対のロール回転数を設定し、もってこの母管の圧延
長さを自動的に制御するようにして、所定重量且つ所定
長さの管を製造するようにしており、更に、母管重量の
実績値を取り入れて、目標肉厚の精度向上を図る考え方
も示されている。
Therefore, conventionally, as shown in Japanese Patent Publication No. 51-43469, in a rolling length control method for reducing and rolling a tube using a continuous multi-stage reducing mill (hot stretch retender), first, the length of the desired tube is adjusted. The length after rolling was set, the length of the main tube to be rolled was actually measured, and then the relational expression of the roll rotation speed pattern, which was a function of the length before and after rolling, which had been experimentally determined in advance, was calculated. Using the relational expression of the roll rotation speed distribution which is a function of this rotation speed pattern, the above roll rotation speed pattern and roll rotation speed distribution are sequentially set from the above set values and actual measured values, and the above roll rotation speed distribution is set according to the roll rotation speed distribution. The number of rotations of each pair of rolls after rolling for the main pipe to be rolled is set, and the rolling length of the main pipe is thereby automatically controlled to produce a pipe of a predetermined weight and a predetermined length. Furthermore, there is also an idea of incorporating the actual value of the main pipe weight to improve the accuracy of the target wall thickness.

このように、母管の実績重量或いは母管長さの実績値を
もとにした圧延長の制御方式は公知であるが、同時に母
管外径のばらつきを考慮に入れた圧延長の制御方式は提
案されていない。
As described above, a control method for rolling extension based on the actual weight of the main pipe or the actual value of the main pipe length is known, but there is also a control method for rolling extension that takes into account variations in the outer diameter of the main pipe. Not proposed.

一般に、継目無鋼管の製造工程において、ホットストレ
ッチレデューサの前工程であるマンドレルミルによって
製造される母管には数チに及ぶ外径の変動があり、この
外径の変動の影響を無視した場合においては、圧延仕上
管の仕上肉厚にばらつきを生じ、目標肉厚精度を得るこ
とができない場合がある。即ち、今、基準寸法(断面積
電、外径D11、肉厚t。)の母管から、目標寸法(外
径り8、肉厚t、)k有する圧延仕上管を得るべく絞り
圧延を行なうに際して、第2図に示す如く、母管の外径
が変化した場合(実線A)成るいは、肉厚が変化した場
合(破線B)のいずれにおいても、目標寸法を有する圧
延仕上管を得るための延伸比(圧延仕上官長さ/母管長
さ)の変化傾向にはほとんど差が見られない。然るに、
今、同一基準寸法の母管から同一の目標寸法を有する圧
延仕上管を得るべく絞り圧延を行な5VC際して、母管
の外径D0は一定とし、肉厚だけが変化して、断面積が
Sl、Sy (S I> So > St )に変化し
たと仮定した場合、ロール回転数パターンは、第3図に
示す如く変化させる必要がある。一方、同一の基準寸法
の母管から同一の目標寸法を有する圧延仕上管ケ得るべ
く絞り圧延を行なうに際して、母管の肉厚tllは一定
とし、外径だけが変化して、断面積が先程と同じ<Sl
、Syに変化したと仮定した場合の、ロール回転数パタ
ーンは、第4図に示す如く変化させる必要があり、断面
積の変化に対する回転数パターンの変化の傾向は、第3
図における場合とは逆になる。従って、従来のように、
母管の断面積だけを評価して、外径変化の影響を無視し
たロール回転数パターンでは、圧延仕上管の肉厚変動を
完全に防止することはできなかった。
Generally, in the manufacturing process of seamless steel pipes, the outer diameter of the main tube manufactured by the mandrel mill, which is the pre-process of the hot stretch reducer, varies over several inches, and if the influence of this outer diameter variation is ignored. In some cases, variations occur in the finished wall thickness of the finished rolled tube, making it impossible to obtain the target wall thickness accuracy. That is, now, reduction rolling is performed to obtain a rolled finished tube having target dimensions (outer diameter 8, wall thickness t) from a main tube having standard dimensions (cross-sectional area, outer diameter D11, wall thickness t). At this time, as shown in Fig. 2, whether the outer diameter of the main tube changes (solid line A) or the wall thickness changes (broken line B), a rolled finished tube with the target dimensions can be obtained. There is almost no difference in the tendency of change in the drawing ratio (rolling finish length/main tube length). However,
Now, in order to obtain a rolled finished pipe with the same target dimensions from a main pipe with the same standard dimensions, reduction rolling is performed at 5VC, the outer diameter D0 of the main pipe is constant, only the wall thickness changes, and the cross section is Assuming that the area changes to Sl, Sy (SI>So>St), the roll rotation speed pattern needs to be changed as shown in FIG. On the other hand, when carrying out reduction rolling to obtain a rolled finished pipe with the same target dimensions from a main pipe with the same standard dimensions, the wall thickness tll of the main pipe is kept constant, only the outer diameter changes, and the cross-sectional area is Same as <Sl
, Sy, the roll rotation speed pattern needs to be changed as shown in Figure 4, and the tendency of the rotation speed pattern change with respect to the change in cross-sectional area is
This is the opposite of the case in the figure. Therefore, as before,
With a roll rotation speed pattern that evaluates only the cross-sectional area of the main tube and ignores the influence of changes in the outer diameter, it was not possible to completely prevent wall thickness variations in the finished rolled tube.

本発明は、前記従来の欠点を解消するべくなされたもの
で、圧延仕上管の肉厚の変動を確実に防止することがで
き、従って、目標寸法の外径及び肉厚を有する圧延仕上
管を精度よく得ることができるホットストレッチレデュ
ーサのロール回転数制御方法を提供することを第1の目
的とする。
The present invention was made in order to eliminate the above-mentioned conventional drawbacks, and can reliably prevent variations in the wall thickness of a rolled finished tube. A first object of the present invention is to provide a method for controlling the roll rotation speed of a hot stretch reducer that can be achieved with high accuracy.

本発明は、又、ロール回転数パターンの設定誤差に拘ら
ず、良好なロール回転数制御を行なうことができるホッ
トストレッチレデューサのロール回転数制御方法を提供
することを第2の目的とする。
A second object of the present invention is to provide a method for controlling the roll rotation speed of a hot stretch reducer that can perform good roll rotation speed control regardless of the setting error of the roll rotation speed pattern.

本発明は、母管を絞り圧延[2て、目標寸法の外径及び
肉厚を有する圧延仕上管とするだめのホットストレッチ
レデューサのロール回転数制御方法において、母管の外
径及び肉厚と圧延仕上管の外径及び肉厚から引張係数を
求め、該引張係数に基づいてロール回転数パターンを設
定してロール回転数を制御するようにして、前記第1の
目的を達成したものである。
The present invention provides a method for controlling the roll rotation speed of a hot stretch reducer in which a main pipe is reduced and rolled [2] to obtain a rolled finished pipe having an outer diameter and wall thickness of target dimensions. The first objective is achieved by determining the tensile coefficient from the outer diameter and wall thickness of the finished rolled pipe, and setting the roll rotational speed pattern based on the tensile coefficient to control the roll rotational speed. .

又、同じ(ホットストレッチレデューサのロール回転数
制御方法において、ホットストレッチレデューサ入側で
、母管の外径及び肉厚と圧延仕上管の目標外径及び肉厚
から引張係数を予測し、該予測引張係数に基づいてロー
ル回転数パターンを設定してロール回転数を制御すると
共に、ホットストレッチレデューサ出側で、圧延仕上管
の外径及び肉厚を実測して、これから引張係数を求め、
該実測引張係数と前記予測引張係数の偏差に応じて、前
記ローン回転数パターンを学習により修正するようにし
て、前記第2の目的を達成したものである。
In addition, in the same method (in the hot stretch reducer roll rotation speed control method, the tensile coefficient is predicted from the outer diameter and wall thickness of the main pipe and the target outer diameter and wall thickness of the rolled finished pipe on the inlet side of the hot stretch reducer, and the The roll rotation speed is controlled by setting a roll rotation speed pattern based on the tensile coefficient, and at the exit side of the hot stretch reducer, the outside diameter and wall thickness of the rolled finished pipe are actually measured, and the tensile coefficient is determined from this.
The second object is achieved by correcting the lawn rotational speed pattern by learning according to the deviation between the measured tensile coefficient and the predicted tensile coefficient.

以下図面を参照して、本発明の実施例を詳細に説明する
Embodiments of the present invention will be described in detail below with reference to the drawings.

本実施例は、第5図に示す如く、従来と同様のホットス
トレッチレゾ豆−サ26の入側及び出側に、それぞれ、
外径計31.34、肉厚計32.36を設けると共に、
制御装置38において、前記外径計31及び肉厚計32
出力から求められる母管の実測外径n+F (長手方向
平均値、他のデータも同様)及び肉厚t、−と、外部計
算機等から入力される圧延仕上管の目標外径D1及び肉
厚tlから引張係数XI1moを予測し、該予測引張係
数X 13moに基づいてロール回転数パターンを設定
してロール回転数を制御すると共に、前記外径計34及
び肉厚計36から入力される圧延仕上管の実測外径D1
及び肉厚tl* がら引張係数X7mAk求め、該実測
引張係数XImAと前記予測引張係数X1moの偏差S
[応じて、前記ロール回転数パターンを学習により修正
するようにしたものである。
In this embodiment, as shown in FIG.
In addition to providing an outer diameter gauge of 31.34 and a wall thickness gauge of 32.36,
In the control device 38, the outer diameter gauge 31 and the wall thickness gauge 32
Actual outer diameter n+F (longitudinal average value, same for other data) and wall thickness t, - of the main pipe obtained from the output, and target outer diameter D1 and wall thickness tl of the rolled finished pipe input from an external computer, etc. The tensile coefficient XI1mo is predicted from the predicted tensile coefficient X13mo, and a roll rotation speed pattern is set based on the predicted tensile coefficient Actual outer diameter D1 of
and wall thickness tl*, calculate the tensile coefficient X7mAk, and calculate the deviation S between the measured tensile coefficient XImA and the predicted tensile coefficient X1mo.
[Accordingly, the roll rotation speed pattern is modified by learning.

以下第6図を参照して、前記制御装置38の動作を詳細
に説明する。
The operation of the control device 38 will be explained in detail below with reference to FIG.

前記制御装置38は、まず、前記外径計31及び肉厚計
32出方の母管の実測外径DI、*及び肉厚toと、外
部計算機から入力されるホットストレッチレデューサ2
6出側における圧延仕上管の目標外径り3、及び目標肉
厚t1ヲ取り込んで、次式ここで、ψ1、ψtは、それ
ぞれ径方向、接線方向の対数歪を、又、εmに平均肉厚
外径比を表わし、次の(2)〜(4)式にて算出される
値である。
The control device 38 first inputs the actual measured outer diameter DI, * and wall thickness to of the main tube at the exit side of the outer diameter gauge 31 and wall thickness gauge 32, and the hot stretch reducer 2 input from an external computer.
6 Taking in the target outer diameter 3 and target wall thickness t1 of the rolled finished pipe on the exit side, ψ1 and ψt are the logarithmic strain in the radial direction and tangential direction, respectively, and εm is the average wall thickness. It represents the thickness/outside diameter ratio and is a value calculated using the following equations (2) to (4).

ψ、=1!、jllj ・・・・・・・・・・・・(2
)1 D l、*t ak ψt”lnD、 −t、  ・・・・・・・・・・・・
(3)を−“t am= −、(懇情γ+が士−7)・・・・・・・・・
(4)次いで、算出された予測引張係数X  に、次A
m。
ψ,=1! , jllj ・・・・・・・・・・・・(2
)1 D l, *t ak ψt"lnD, -t, ......
(3) is −“t am= −, (kindness γ+gashi−7)・・・・・・・・・
(4) Next, the calculated predicted tensile coefficient
m.

式に示す如く、学習補正係数K(初期値は0)を加える
ことによって、設定引張係数X/m8を決定し、該設定
引張係数X1maに応じて、予め実験等により決定され
ている、第7図に示すようなロール回転数パターンのい
ずれかを選択して、スタンド毎にロール回転数を設ずす
る。
As shown in the formula, the set tensile coefficient X/m8 is determined by adding the learning correction coefficient K (initial value is 0), and according to the set tensile coefficient Select one of the roll rotation speed patterns shown in the figure to set the roll rotation speed for each stand.

XA’ms −Xlmo 十K  ・・・・・・・・・
・・・(5)このように設定されたロール回転数パター
ンを用いてホットストレッチレデューサ26のロール回
転数を制御し、絞り圧延を実施する。
XA'ms -Xlmo 1K ・・・・・・・・・
...(5) The roll rotation speed of the hot stretch reducer 26 is controlled using the roll rotation speed pattern set in this way, and reduction rolling is performed.

通常は、前記のようにして凸−ル回転数パターンを選択
することにより、良好なロール回転数制御が行なわれる
ものであるが、再加熱温度の変化、あるいは摩耗等によ
るロール表面状況の変化といった圧延条件の変動により
、ロール回転数パターンに設定誤差が存在する場合もあ
る。そのような場合には、更に、前記外径計34及び肉
厚計36から圧延仕上管の実測外径り、及び肉厚t、を
取り込み、これらの値を、前出(1)式乃至(4)式の
目標外径り、及び肉厚t1代りに用いることによって、
実測引張係数XIJmAを算出する。
Normally, good roll rotation speed control is achieved by selecting the convex roll rotation speed pattern as described above, but changes in the reheating temperature or changes in the roll surface condition due to wear, etc. Due to variations in rolling conditions, there may be setting errors in the roll rotation speed pattern. In such a case, the actual outside diameter and wall thickness t of the rolled finished pipe are taken in from the outside diameter gauge 34 and the wall thickness gauge 36, and these values are calculated using the equations (1) to (1) above. 4) By using in place of the target outer diameter and wall thickness t1 in the equation,
Calculate the measured tensile coefficient XIJmA.

このようにして求められる実測引張係数X1mAを、そ
のまま次回の設定のための設定引張係数XA’msとす
ることも考えられるが、本実施例においては、設定精度
を高めるため、次のようにして実測引張係数X11TI
Aと予測引張係数XAmoの偏差Sを学習するようにし
ている。
It is also possible to use the measured tensile coefficient X1mA obtained in this way as the set tensile coefficient XA'ms for the next setting, but in this example, in order to improve the setting accuracy, the following method is used. Actual tensile coefficient X11TI
The deviation S between A and the predicted tensile coefficient XAmo is learned.

即ち、まず次式に示す如く、実測引張係数X11flえ
と予測引張係数の偏差Sを求める。
That is, first, as shown in the following equation, the deviation S between the measured tensile coefficient X11fl and the predicted tensile coefficient is determined.

S=X1mA−Xlmo  ・・・・・・・・・・−(
6)次いで、次式に示す如く、曲材の学習補正係数Kn
−1と、(6)式により算出された偏差Sを用いて、次
材のための学習補正係数KnTh決定する。
S=X1mA-Xlmo ・・・・・・・・・・-(
6) Next, as shown in the following equation, the learning correction coefficient Kn of the curved material
-1 and the deviation S calculated by equation (6) is used to determine the learning correction coefficient KnTh for the next material.

Kn=α、 −Kn−1+αt・S −−−−−−−−
−<7)α、±α2−1   ・・・・・・・・・・・
・(8)ここで、係数α1、α2の値は、学習補正のた
めの重み付は係数であり、例えばα、=α、=Q、5と
することができる。
Kn=α, −Kn−1+αt・S −−−−−−−
-<7) α, ±α2-1 ・・・・・・・・・・・・
(8) Here, the values of coefficients α1 and α2 are weighted coefficients for learning correction, and can be set to α, =α, =Q,5, for example.

このようにして決定された学習補正係数Knを用いて、
前出(5)式1(より再び設定引張係数XA’msを求
め、次材のロール回転数パターンを選択して。
Using the learning correction coefficient Kn determined in this way,
Calculate the set tensile coefficient XA'ms again from Equation 1 (5) above, and select the roll rotation speed pattern of the next material.

ロール回転数制御を実施する。Perform roll rotation speed control.

なお前記実施例においては、母管の外径及び肉厚合一外
径計31及び肉厚計32&用いて実測するようにしてい
たが、母管の外径及び肉厚を求める方法はこれに限定さ
れず、例えば母管の外径を、前工程であるマンドレルミ
ルの諸設定仙より予測したり、或いは、母管の肉厚を、
実測管材重量いは実測管材重量と実測母管長より算出し
たりすることも可能である。
In the above embodiment, the outer diameter and wall thickness of the main tube were actually measured using the outer diameter gauge 31 and the wall thickness gauge 32. For example, the outer diameter of the main tube can be predicted from various settings of the mandrel mill, which is a previous process, or the wall thickness of the main tube can be predicted, without limitation.
It is also possible to calculate from the actually measured pipe material weight or the measured pipe material weight and the measured main pipe length.

又、前記実施例においては、ホットストレッチレデュー
サ26出側の圧延仕上管の夕l径及び肉厚を外径計34
及び肉厚計36により実測するようにしていたが、圧延
仕上管の外径及び肉厚をホットストレッチレデューサ2
6の出側で求める方法はこれに限定されず、例えば、圧
延仕上管の肉厚を、母管或いは管材の秤量結果と実測伸
し長さより算出することも可能である。
In the above embodiment, the outer diameter and wall thickness of the rolled finished pipe on the outlet side of the hot stretch reducer 26 are measured using the outer diameter gauge 34.
The outside diameter and wall thickness of the rolled finished pipe were measured using the hot stretch reducer 2.
The method of determining the exit side of step 6 is not limited to this, and for example, the wall thickness of the rolled finished pipe can be calculated from the weighing result of the main pipe or pipe material and the measured elongation length.

以上説明した通り、本発明によれば、ホットストレッチ
レデュ、−サのロール回転数を適切に制御することがで
き、従って、目標寸法の外径及び肉厚を有する圧延仕上
管を精度よく得ることができる。又、ロール回転数パタ
ーンの設定誤差を学習により補正することができる等の
優れた効果を有する。
As explained above, according to the present invention, it is possible to appropriately control the number of roll rotations of the hot stretch reducer, thereby obtaining a rolled finished pipe having the outer diameter and wall thickness of the target dimensions with high accuracy. be able to. Further, it has excellent effects such as being able to correct setting errors in the roll rotation speed pattern through learning.

【図面の簡単な説明】[Brief explanation of the drawing]

第1(2)は、従来のマンドレルミル圧延の圧延工程を
示す工程図、第2図は、母管の外径、肉厚の釡°化率に
対する延伸比仮化率の関係を示す線図、第3図は、母管
の外径が一定で肉厚だけが変化した場合の適切なロール
回転数パターンを示す線図、第4図に、同じ(、肉厚が
一定で外径だけが変化した場合の適切なロール回転数パ
ターンを示す線図、第5図は、本発明に係る、ホットス
トレッチレデューサのロール回転数制御方法の実施例が
採用された、ポットストレッチレデューサの周・辺を示
すブロック線図、年6図は、前記実施例における制御装
置の動作を示−r流れ図、第7図は、前記実施例で用い
られている引張係数と回転数パターンの関係を示す線図
である。 26・・・ホットストレッチレデューサ、31.34・
・・外径計、32.36・・・肉厚計、38・・・制御
波@。 代理人   高  矢     論 (ほか1名) 第 4 図 スタンド番号
Fig. 1 (2) is a process diagram showing the rolling process of conventional mandrel mill rolling, and Fig. 2 is a diagram showing the relationship between the outer diameter of the main tube, the kettle-forming ratio of the wall thickness, and the draw ratio. , Figure 3 is a diagram showing the appropriate roll rotation speed pattern when the outer diameter of the main tube is constant and only the wall thickness changes, and Figure 4 shows the same (, when the outer diameter is constant and only the outer diameter is changed). FIG. 5 is a diagram showing an appropriate roll rotation speed pattern when the roll rotation speed changes. FIG. Figure 6 is a flowchart showing the operation of the control device in the embodiment, and Figure 7 is a diagram showing the relationship between the tensile coefficient and rotational speed pattern used in the embodiment. Yes. 26...Hot stretch reducer, 31.34.
...Outer diameter gauge, 32.36...Thickness gauge, 38...Control wave @. Agent Takaya Ron (and 1 other person) Figure 4 Stand number

Claims (2)

【特許請求の範囲】[Claims] (1)母管を絞り圧延して、目標寸法の外径及び肉厚を
有する圧延仕上管とするためのホットストレッチレデュ
ーサのロール回転数制御方法において、母管の外径及び
肉厚と圧延仕上管の外径及び肉厚から引張係数を求め、
該引張係数に基づいてロール回転数パターンを設定して
ロール回転数を制御するようにしたことを特徴とするホ
ットストレッチレデューサのロール回転数制御方法。
(1) In a method for controlling the roll rotation speed of a hot stretch reducer for reducing and rolling a main pipe to obtain a rolled finished pipe having an outer diameter and wall thickness of target dimensions, the outer diameter and wall thickness of the main pipe and the rolled finish are Find the tensile coefficient from the outside diameter and wall thickness of the pipe,
A method for controlling the roll rotation speed of a hot stretch reducer, characterized in that the roll rotation speed is controlled by setting a roll rotation speed pattern based on the tensile coefficient.
(2)母管を絞り圧延して、目標寸法の外径及び肉厚を
有する圧延仕上管とするためのホットストレッチレデュ
ーサのロール回転数制御方法において、ホットストレッ
チレデューサ入側で、母管の外径及び肉厚と圧延仕上管
の目標外径及び肉厚から引張係数を予測し、該予測引張
係数に基づいてロール回転数パターンを設定してロール
回転数を制御すると共に、ホットストレッチレデューサ
出側で、圧延仕上管の外径及び肉厚を実測して、これか
ら引張係数を求め、該実測引張係数と前記予測引張係数
の偏差に応じて、前記ロール回転数パターンを学習によ
り修正するようにしたことを特徴とするホットストレッ
チレデューサのロール回転数制御方法。
(2) In a method for controlling the roll rotation speed of a hot stretch reducer for reducing and rolling a main pipe to obtain a rolled finished pipe having an outside diameter and wall thickness of target dimensions, the outside of the main pipe is The tensile coefficient is predicted from the diameter and wall thickness and the target outer diameter and wall thickness of the rolled finished pipe, and the roll rotational speed pattern is set based on the predicted tensile coefficient to control the roll rotational speed. Then, the outer diameter and wall thickness of the finished rolled pipe are actually measured, the tensile coefficient is calculated from this, and the roll rotation speed pattern is corrected by learning according to the deviation between the measured tensile coefficient and the predicted tensile coefficient. A method for controlling the roll rotation speed of a hot stretch reducer, characterized in that:
JP57010473A 1982-01-26 1982-01-26 Controlling method of roll rotating speed of hot stretch reducer Granted JPS58128209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57010473A JPS58128209A (en) 1982-01-26 1982-01-26 Controlling method of roll rotating speed of hot stretch reducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57010473A JPS58128209A (en) 1982-01-26 1982-01-26 Controlling method of roll rotating speed of hot stretch reducer

Publications (2)

Publication Number Publication Date
JPS58128209A true JPS58128209A (en) 1983-07-30
JPS6150686B2 JPS6150686B2 (en) 1986-11-05

Family

ID=11751109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57010473A Granted JPS58128209A (en) 1982-01-26 1982-01-26 Controlling method of roll rotating speed of hot stretch reducer

Country Status (1)

Country Link
JP (1) JPS58128209A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62124007A (en) * 1985-11-20 1987-06-05 Kawasaki Steel Corp Stretching length control method for stretch reducer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55147408A (en) * 1979-05-08 1980-11-17 Toshiba Corp Screw-down learning method of sizer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55147408A (en) * 1979-05-08 1980-11-17 Toshiba Corp Screw-down learning method of sizer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62124007A (en) * 1985-11-20 1987-06-05 Kawasaki Steel Corp Stretching length control method for stretch reducer
JPH0471606B2 (en) * 1985-11-20 1992-11-16 Kawasaki Steel Co

Also Published As

Publication number Publication date
JPS6150686B2 (en) 1986-11-05

Similar Documents

Publication Publication Date Title
JPS58128209A (en) Controlling method of roll rotating speed of hot stretch reducer
JP3081729B2 (en) Temperature control method in thermomechanical treatment of seamless steel pipe
JPH0256964B2 (en)
JPS6357122B2 (en)
JPH0221324B2 (en)
JPH04154916A (en) Method for operating seamless pipe manufacturing plant
JPS60261614A (en) Thickness controlling method of seamless pipe
JPS59209414A (en) Pipe end thinning rolling method
JP2748852B2 (en) How to control the extension length of a seamless tube
JPS58110108A (en) Stretch reducing method for seamless pipe
JPS59104207A (en) Method for controlling elongation length of steel pipe in mandrel mill
JPS6111128B2 (en)
JPS60127014A (en) Control method of elongating length in drawing mill of pipe stock
JPS6115761B2 (en)
JPS6021114A (en) Method for controlling wall thickness of steel pipe with reducing mill
JPH04238608A (en) Method for controlling length of rolling on stretch reducer
JPS5978704A (en) Rolling method which prevents flawing on outside and inside surfaces in mandrel mill
JPS6188913A (en) Rolling control method of reeling mill
JPS60199514A (en) Draw rolling method of pipe
JPH105832A (en) Method for controlling rolling for tandem rolling mill
JPS60234710A (en) Method for controlling number of revolution of roll of stretch reducer for steel pipe
JP2001071012A (en) Method for controlling number of revolution to minimize squarish internal surface
JPH07100520A (en) Dimension controlling method in tube drawing mill
JPS6128408B2 (en)
JPS61140317A (en) Control method of rolling of mandrel mill