JPS58127825A - Grout injection work for ground - Google Patents

Grout injection work for ground

Info

Publication number
JPS58127825A
JPS58127825A JP830582A JP830582A JPS58127825A JP S58127825 A JPS58127825 A JP S58127825A JP 830582 A JP830582 A JP 830582A JP 830582 A JP830582 A JP 830582A JP S58127825 A JPS58127825 A JP S58127825A
Authority
JP
Japan
Prior art keywords
ground
grout
water glass
injection
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP830582A
Other languages
Japanese (ja)
Inventor
Shunsuke Shimada
俊介 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP830582A priority Critical patent/JPS58127825A/en
Publication of JPS58127825A publication Critical patent/JPS58127825A/en
Pending legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/12Consolidating by placing solidifying or pore-filling substances in the soil

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Agronomy & Crop Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

PURPOSE:To make easier the exchange of a quick-setting grout and a permeable grout by a method in which a mixture of water glass and a reactant is injected into the ground through one of paths of an injection pipe, and carbon dioxide gas is blown into the other of the paths so as to quickly harden the grout. CONSTITUTION:An injection pipe consists of an outer tube 1 with a check valve 10, an inner tube 2 with a check valve 4 and a closing valve 8, and upper and lower discharge ports 7 and 6. The ground is bored by sending water through the outer tube 1 and then a mixture liquid of water glass and a reactant is charged from the outer tube 1, whereupon the mixture liquid pushes and opens the check valve 10 and is injected into the ground through the lower discharge port 6. Then, carbon dioxide gas is blown into the inner tube 2, whereupon the check valve 4 and the closing valve 8 are pushed up, the carbon dioxide gas is blown into the mixture liquid to form a quick-setting grout, and the grout is injected into the ground through the upper discharge port 7.

Description

【発明の詳細な説明】 本発明は複合グラウト工法に関し、特に軟弱あ軟弱地盤
は通常、粗粒土層と細粒土層とが互層になって形成され
た軟弱な地盤であるか、このような地盤は該地盤内に固
結剤を°注入して均質に固結することが必要である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a composite grouting method. It is necessary to inject a solidifying agent into the ground to solidify it homogeneously.

又、最近の建設工事における環境保全、水質保全の問題
から、注入した水ガラスグラウトが圧入範囲外へ逸脱す
ることなく、注入した地点で確実に固結することが公害
防止の点から望まれている0従来、公知の軟弱地盤の固
結法としては次の問題点があった0即ち、ロッド注入工
法は通常主材と反応材をロッド上端部で合流して注入す
るが、ボーリングロッドと地盤との間にすき間か生じ、
このすき間から固結剤が地表面に噴出したり、又粗い層
を通して注入液が逸脱してしまうため、細粒土層部分へ
の固結や所定範囲の固結が困難であり、ゲル化時間を短
かくすると注入管内でゲル化してしまう。
In addition, due to environmental conservation and water quality conservation issues in recent construction work, it is desired from the perspective of pollution prevention that the injected water glass grout solidify reliably at the injection point without deviating outside the injection range. Previously known methods of consolidating soft ground had the following problems. Namely, in the rod injection method, the main material and the reactive material are usually merged at the upper end of the rod and then injected, but the boring rod and the ground A gap arises between
Because the consolidation agent sprays onto the ground surface through these gaps, and the injected liquid escapes through the rough layer, it is difficult to consolidate into the fine-grained soil layer or within a specified area, and it takes a long time to gel. If it is shortened, it will gel inside the injection tube.

又、最近A液として水ガラスを、B液としてゲル化反応
剤を用いて地盤中に設置された二重管の先端部で合流し
て生ずる瞬結性グラウ)1−地盤中に圧入して固結する
瞬結グラウト工法が行われている。これによればゲル化
時間が短いためロッド周辺にそってグラウトが地上部に
噴出するのは防止出来るが、ゲル化時間が短いため粗い
層や弱い層を脈状にしか固結しえず土粒子間に浸透させ
ることは、出来ない。このため注入のさい高い注入圧力
がか\るため地盤の変位がいちぢるしくなる。
In addition, recently, water glass was used as liquid A and a gelatinizing agent was used as liquid B to produce instant-setting glass, which was produced by merging at the tip of a double pipe installed in the ground. The instant setting grout method is used. According to this method, since the gelation time is short, it is possible to prevent the grout from spewing out above the ground along the periphery of the rod. It is not possible to penetrate between particles. For this reason, high injection pressure is applied during injection, making the displacement of the ground difficult.

又掘削に当って湧水土砂の崩壊が生じやすい。一方、エ
ステル等を反応剤として用いる溶液型水ガラスグラウト
は、ゲル化時間を非常に長く定めることができるため、
細粒土層にまで均質に注入可能であるが、浸透性が良い
反面、地盤の大きな空隙や粗粒土層部分が存在すると、
注入したグラウトがその部分に集中し、逸脱して細い層
に浸透しない可能性がある。このため、二重管ダブルパ
ツカー工法等に適用し、地盤中に固定した外管に内管を
挿入してセメントベントナイトグラウトを注入したあと
に、このような浸透性のよいグラウトをくり返し注入す
るという方法がとられている0この方法は非常にすぐれ
た効果を発揮するが、多くの工程からなっているだめ施
工に手間がかかり、かつ注入管を工事が完了後も地盤中
に残しておくといった問題がある0 このような問題を解決するために、近年以下の工法、す
なわち、注入管として多重管を用い、該注入管の管路を
通じて注入材を通して浸透性の異なる複数種のグラウト
全地盤中に注入し、しかも前記浸透性の異なる複数種の
グラウトのうち、浸透性の悪いグラウトをまず注入した
のち、浸透性の良いグラウIf前記浸透性の悪いグラウ
トの注入された領域に注入する工法が開発されているが
、本発明は前述の工法をさらに発展せしめたものであっ
て、特にバッカー効果にすぐれ、かつ浸透性の悪いグラ
ウトから浸透性のよいグラウトへの簡便、な切り換えを
可能としたものであるOすでに知られているようにゲル
化時間の長い水ガラスと反応剤の混合液を2重管内へ1
つの管路から送り、他方の管路から反応剤水溶液(急結
用)を送り、これらを2重管先端部で間欠的に合流して
ゲル化時間の短い瞬結性グラウl生成し、このゲル化時
間の短い瞬結性グラウトイ地盤中にバッカー効果を形成
せしめ、さらに前述のゲル化時間の長いグラウト(浸透
性グラウト)で土粒手間浸透をはかる工法は非常に簡便
に混合注入を達成しうるきわめてすぐれた方法である。
Also, during excavation, the spring water soil is likely to collapse. On the other hand, solution-type water glass grout that uses esters etc. as a reactant can have a very long gelation time, so
Although it can be injected homogeneously into fine-grained soil layers, it has good permeability, but if there are large voids in the ground or coarse-grained soil layers,
There is a possibility that the injected grout will concentrate in that area and not deviate and penetrate into the thin layer. For this reason, this method is applied to the double-pipe double patsucar construction method, etc., in which an inner pipe is inserted into an outer pipe fixed in the ground, cement-bentonite grout is injected, and then such highly permeable grout is repeatedly injected. 0This method is very effective, but it is time-consuming and involves many steps, and there are problems in that the injection pipe remains in the ground even after the construction is completed. 0 In order to solve such problems, in recent years, the following method has been used: multiple pipes are used as injection pipes, and multiple types of grout with different permeability are passed through the injection pipes into the entire ground. A method has been developed in which grout with poor permeability is first injected among multiple types of grout with different permeability, and then grout with good permeability is injected into the area where the grout with poor permeability has been injected. However, the present invention is a further development of the above-mentioned construction method, which has a particularly excellent backer effect and enables easy switching from grout with poor permeability to grout with good permeability. As is already known, a mixture of water glass and reactant, which has a long gelation time, is put into a double tube.
A reactant aqueous solution (for rapid setting) is sent from the other pipe, and these are intermittently combined at the tip of the double pipe to produce instant setting gel with a short gelation time. The method of forming a backer effect in the ground using instant-setting grout, which has a short gelation time, and then using the aforementioned grout (permeable grout), which has a long gelation time, to penetrate the soil particles is very simple and allows mixing and injection to be achieved. This is an extremely excellent method.

しかるにこの方法ではゲル化時間を短縮せしめるために
は前記急結用反応剤水溶液を上記浸透性グラウトに合流
しなければならず、このため合流液の水ガラス濃度は低
下するのでゲルの強度も又低下する。一般に、地盤注入
工法において高いバッカー効果を得るためにはゲルの濃
度は高い方がよい事は当然であるが、また、瞬結性グラ
ウトと浸透性グラウトの変換が簡便である事もまた必要
である。
However, in this method, in order to shorten the gelation time, the rapid setting reactant aqueous solution must be combined with the permeable grout, and as a result, the water glass concentration of the combined liquid decreases, and the strength of the gel also decreases. descend. In general, in order to obtain a high backer effect in the ground injection method, it is natural that the gel concentration is higher, but it is also necessary that it be easy to convert between instant setting grout and permeable grout. be.

本発明者は炭酸ガスを水ガラスグラウト中に噴出する事
により (1)  グラウトを容易に瞬結せしめうろこと、(2
)炭酸ガスはガス体であるが故に水ガラスグラウトの水
ガラス濃度に変化を与えないためゲル強度の低下をきた
す心配は全くない事、(3)水ガラスグラウト中の過剰
の水ガラスが炭酸ガスの反応によって完全に珪酸ゲルを
析出するため、そのゲルは過剰水を析出せず、このため
ゲルの強度が大巾に増大す乙′とともに、ゲルの収縮を
生じないためバッカー効果がきわめてすぐれている。
The present inventor has discovered that by spouting carbon dioxide gas into water glass grout, (1) the grout can be easily bonded instantly, (2)
) Since carbon dioxide gas is a gas, it does not change the water glass concentration in water glass grout, so there is no need to worry about a decrease in gel strength. (3) Excess water glass in water glass grout is carbon dioxide gas. Because the silicic acid gel is completely precipitated by the reaction of There is.

という従来の方法で考えられなかった特性を見出し、本
発明を完成した。
The present invention was completed by discovering characteristics that could not be considered using conventional methods.

本発明の目的は瞬結性グラウトと浸透性グラウトの変換
が容易であるのみならず、ゲル強度が増大され、バッカ
ー効果−が優れた地盤注入工法を提供することにある〇 前述の目的を達成するため、本発明によれば、複数の管
路を内蔵した注入管を地盤中に挿入し、この注入管を移
動してステージを変化させながら前記注入管を通じて水
ガラスと反応剤の混合液を前記地盤中に注入する地盤注
入工法において、前記水ガラスと反応剤の混合液を前記
注入管の−づまたは二つの管路を通して地盤中に注入す
る(工程1)とともに前記工程1に対して前記管路とは
別の管路を通して前記混合液に炭酸ガスを吹き込む工程
(工程2)を併用することを特徴とする。
The purpose of the present invention is to provide a ground injection method that not only facilitates the conversion between instant setting grout and permeable grout, but also increases gel strength and has an excellent backer effect. Achieving the above-mentioned purpose Therefore, according to the present invention, an injection pipe having a plurality of built-in pipes is inserted into the ground, and a mixed liquid of water glass and a reactant is injected through the injection pipe while changing the stage by moving the injection pipe. In the ground injection method of injecting into the ground, the mixed solution of water glass and the reactant is injected into the ground through one or two of the injection pipes (step 1), and the It is characterized in that a step (step 2) of blowing carbon dioxide gas into the liquid mixture through a pipe line different from the pipe line is also used.

以下、本発明を具体的に詳述する。たとえば、地盤が上
から砂レキ層、粘土層、砂層の互層からなる場合、上記
注入管を地盤中に挿入し、砂層では工程2によってパッ
カーを形成してから工程1によってステージを上に移向
しながら土粒子間注入する。粘土層においては工程2の
みで早いゲル化時間のグラウトを脈状注入し粘土層全圧
密強化する。
Hereinafter, the present invention will be specifically explained in detail. For example, if the ground consists of alternating layers of sand, clay, and sand from above, insert the injection pipe into the ground, form a packer in the sand layer in step 2, and then move the stage upward in step 1. while injecting soil between particles. In the clay layer, only step 2 involves injecting grout with a fast gelling time in veins to strengthen the entire clay layer.

次に砂礫層では工程2でパッカーを形成してから工程1
によって土粒子間浸透せしめ、この2つの工程をステー
ジを上に移向しながらくり返して地盤を固結する。本発
明は複数の管路を内在した注入管ならすべて用いる事が
出来、本発明は注入管の種類によって制約されるもので
はない。
Next, in the gravel layer, packers are formed in step 2, and then step 1
This allows the soil to penetrate between particles, and these two steps are repeated while moving up the stage to solidify the ground. The present invention can be used with any injection tube that includes a plurality of channels, and the present invention is not limited by the type of injection tube.

第1図は本発明工法にかかる最も基本的な説明図である
。第1図にて1は外管、2は内管、3はメタルクラウン
、4および5は内管逆止弁であり、6は注入管の下部吐
出口である。【は外管によって形成される管路、■は内
管によって構成される管路、I’、I“は外管に配合液
が流入する管路 11は内管に配合液が流入する管路で
ある。本例においては、管路I′から水ガラス水溶液が
、管路I〃から反応剤配合液が管路■′から002が供
給されるようになっている。第1図(a)は送水しなが
ら二重管を用いてポーリングして、所定の深度に二重管
を設置した図である。第1図(b)は管路1’、l“か
らの合流液にCO2を二重管先端部で合流して潜られた
瞬結性グラウトで注入管まわりに瞬結性固結物(I)に
よるパッカーを形成し、かつ管路■′、I〃からの合流
液によるグラウトが逸脱するような粗い層や弱い層に脈
状に圧入して(D+地盤を強化すると共に注入対象領域
を拘束状態にしたものである。第1図(c)は管路■′
からのCO2の輔送を中正し、−上記合流液による浸透
性グラウトを外管を通して地盤中に注入した図である。
FIG. 1 is the most basic explanatory diagram of the construction method of the present invention. In FIG. 1, 1 is an outer tube, 2 is an inner tube, 3 is a metal crown, 4 and 5 are inner tube check valves, and 6 is a lower discharge port of the injection tube. [ is a pipe line formed by the outer pipe, ■ is a pipe line formed by the inner pipe, I', I'' is a pipe line through which the mixed liquid flows into the outer pipe, and 11 is a pipe line through which the mixed liquid flows into the inner pipe. In this example, water glass aqueous solution is supplied from conduit I', reactant mixture solution is supplied from conduit I, and 002 is supplied from conduit ■'. Fig. 1(a) Figure 1(b) shows a double pipe installed at a predetermined depth by polling using a double pipe while water is being supplied. The instant-setting grout that merges and sinks at the tip of the heavy pipe forms a packer of instant-setting solids (I) around the injection pipe, and the grout from the combined liquid from pipes ■′ and I〃 It is injected in a vein-like manner into rough or weak layers that may deviate (D+) to strengthen the ground and constrain the injection target area. Figure 1 (c) shows the pipe ■'
Fig. 12 shows a diagram in which the permeable grout made of the above-mentioned combined liquid was injected into the ground through the outer pipe, after correcting the transport of CO2 from the ground.

浸透性グラウトは注入管のまわりのパッカーを破って瞬
結性グラウトが浸透する事が出来なかった細い土粒子間
に浸透して注入領域(Elを強化すると共に水蜜性を付
与する0第1図(d)は三重管を引き上げて瞬結性グラ
ウトの注入を行い、第1図(e)は更に浸透性のよいグ
ラウトを注入した図である。
The permeable grout breaks the packer around the injection pipe and infiltrates between the thin soil particles that the instant setting grout could not penetrate, strengthening the injection area (El) and imparting water properties (Figure 1). In (d), the triple pipe was pulled up and instant setting grout was injected, and in Fig. 1(e), grout with even better permeability was injected.

第2図は、浸透性の異なる複数種のグラウトの地盤への
吐出孔が注入管の軸方向に異なった個所に位置した多重
管を用いる本発明方法を示す。一般に注入したグラウト
は浸透抵抗の少ない注入管まわりや地表面に向って逸脱
していく傾向があるから、通常上部吐出孔からは浸透性
の悪いグラウトを注入し、地盤を拘束状態にして、つい
で下部吐出孔から浸透性の良いグラウトを注入する事を
基本とし、注入ステージを下から上に移行していく事に
よって浸透性の悪いグラウトを注入した領域に浸透性の
良いグラウtf注入する事が達成される。この際ステー
ジを上げて浸透性の良いグラウトの吐出孔を浸透性の悪
いグラウトの吐出された位置においてもよいし浸透性の
悪いグラウトの吐出された位置の中間においても結果的
には浸透性の良いグラウトは浸透性の悪いグラウトが浸
透しきらなかった部分に浸透し、津透性の悪いグラウト
を注入した領域に浸透性の良いグラウトを注入せしめた
事と同様になるから本質的には同様である。第2図にお
いて二重管をAと表現する。第2図(a)は二重管Aの
一ヒ部の吐出口Bから吐出された浸透性の悪いグラウト
が注入管まわりや上部の要項を固結している状態(1)
の部分)を示す。第2図(b)は下部の吐出口Cから吐
出された浸透性の良いグラウトが注入管まわりや地表面
への逸脱を妨げられて所定の位置で固結する状態(Eの
部分)を示す。第2図(c)は史にステージを上げて浸
透性の悪いグラウトをy+大した図、第2図fd)は浸
透性の良いグラウトを注入した図を示す。第2図(e)
はこの工程をくり返すことを示した説明図である。
FIG. 2 shows the method of the present invention using multiple pipes in which discharge holes for grouts of different permeability into the ground are located at different locations in the axial direction of the injection pipe. In general, injected grout tends to deviate toward the injection pipe or the ground surface where there is less penetration resistance, so grout with poor permeability is usually injected from the upper discharge hole to restrain the ground, and then The basic idea is to inject grout with good permeability from the lower discharge hole, and by moving the injection stage from the bottom to the top, it is possible to inject grout TF with good permeability into areas where grout with poor permeability has been injected. achieved. At this time, the stage can be raised and the discharge hole for grout with good permeability can be placed in the position where grout with poor permeability has been discharged, or it may be placed in the middle of the position where grout with poor permeability has been discharged. Good grout will penetrate into areas where grout with poor permeability has not penetrated, and the result will be the same as injecting grout with good permeability into the area where grout with poor permeability has been injected, so it is essentially the same thing. It is. In FIG. 2, the double tube is expressed as A. Figure 2 (a) shows a state in which grout with poor permeability discharged from the discharge port B of a part of the double pipe A has solidified around the injection pipe and the upper part (1)
). Figure 2 (b) shows a state in which the highly permeable grout discharged from the lower discharge port C is prevented from escaping around the injection pipe or to the ground surface, and solidifies in a predetermined position (section E). . Fig. 2(c) is a diagram in which grout with poor permeability is increased by y+, and grout with good permeability is injected in Fig. 2(c). Figure 2(e)
is an explanatory diagram showing that this process is repeated.

この方法における二重管先端部の構造は注入管側面に吐
出口を有する任意の二重管先端部等を用いる事が出来る
。又三重管を用いて3つの管路のうちの二つの管路を用
いて浸透性グラウトを吐出して他の管路を用いてCO2
を吐出して急結させる方法等をとる事も出来る。
As for the structure of the double tube tip in this method, any double tube tip having a discharge port on the side surface of the injection tube can be used. Also, using a triple pipe, two of the three pipes are used to discharge permeable grout, and the other pipe is used to discharge CO2.
It is also possible to take a method such as discharging the liquid and causing it to set quickly.

第3図、第4図および第5図はいずれも本発明に使用す
る注入管の一具体例であるが、以下、これらの注入管を
用いて本発明にかかる地盤注入工法を具体的に説明する
Figures 3, 4, and 5 are all specific examples of injection pipes used in the present invention, and below, the ground injection method according to the present invention will be specifically explained using these injection pipes. do.

まず、第3図(a)において、外管l(管路)を通じて
送水して地盤をポーリングした後、次いで外管1より水
ガラスと反応剤の混合液を送る。この状態では前記混合
液は外管1を通り、逆止弁10を経て、ボール状の逆止
弁10ヲ押し開け、下部吐出口6から地盤中に注入され
るが、内管2(管路)から炭酸ガスを送ると、炭酸カス
は内管2を通り、逆上弁4を経て、閉束弁8を押し下げ
る0このとき、閉束弁8は第3図(b)に示すように外
管1からの下部通路を閉束するとともに上部通路を開放
し、かつ外管1の上部吐出ロアをも開放し、このため内
管2からの炭酸ガスが外管1からの水ガラスと反応剤の
混合液中に吹き込まれて瞬結性グラウトが形成され、と
の瞬結性グラウトは上部吐出ロアより地盤中に注入され
る。
First, in FIG. 3(a), water is sent through the outer pipe 1 (pipe line) to poll the ground, and then a mixed solution of water glass and a reactant is sent from the outer pipe 1. In this state, the mixed liquid passes through the outer pipe 1, passes through the check valve 10, pushes open the ball-shaped check valve 10, and is injected into the ground from the lower discharge port 6. ), the carbon dioxide scum passes through the inner pipe 2, passes through the reversal valve 4, and pushes down the closing valve 8. At this time, the closing valve 8 is moved outward as shown in Fig. 3(b). The lower passage from the tube 1 is closed, the upper passage is opened, and the upper discharge lower of the outer tube 1 is also opened, so that the carbon dioxide gas from the inner tube 2 flows into the water glass and the reactant from the outer tube 1. The instant setting grout is formed by blowing into the mixed liquid of and, and the instant setting grout is injected into the ground from the upper discharge lower.

次いで、内管2からの炭酸ガスの送流を中止すると、閉
束弁8はスプリング90作用により−L昇して再び第3
図(a)の状態にもどり、この状態で外管1から水ガラ
スと反応剤の混合液(浸透性グラウト)のみの送液を続
けると、1部吐出口6から浸透性グラウトが地盤中に注
入″される。なお、図中、3はメタルクラウンである。
Next, when the flow of carbon dioxide gas from the inner pipe 2 is stopped, the closing valve 8 is raised by -L due to the action of the spring 90 and returns to the third position.
Returning to the state shown in Figure (a), if you continue to feed only the water glass and reactant mixture (permeable grout) from the outer tube 1 in this state, a portion of the permeable grout will flow into the ground from the discharge port 6. Injected. In the figure, 3 is a metal crown.

さらに第4図(a)において、前述と同様に外管1を通
じて送水して地盤をポーリングした後、第4図(b)に
示すように外管1tり水ガラスと反応剤の混合液を送り
、かつ内管2から炭酸ガスを送ると、炭酸ガスは閉束弁
8を押し下げる。このとき閉束弁8は外管1からの下部
通路を閉東するとともに上部通路を閉束弁8の通路II
を経て一ヒ部吐出ロアaから注入管外部に開放し、かつ
外管1の上部吐出ロアをも開放し、このため、内管2か
らの炭酸カスは上部吐出ロアから注入管外に吐出され、
かつ外管1からの水ガラスと反応剤の混合液は通路11
を経て上部吐出ロアaから注入管外に吐出され、両者は
注入管の外部で混合して瞬結性グラウトとなり、地盤中
に注入される。
Furthermore, in FIG. 4(a), after polling the ground by sending water through the outer tube 1 in the same manner as described above, as shown in FIG. , and when carbon dioxide gas is sent from the inner pipe 2, the carbon dioxide gas pushes down the closing valve 8. At this time, the closing valve 8 closes the lower passage from the outer pipe 1 and connects the upper passage to the passage II of the closing valve 8.
After that, the discharge lower part a is opened to the outside of the injection pipe, and the upper discharge lower of the outer pipe 1 is also opened, so that carbon dioxide from the inner pipe 2 is discharged from the upper discharge lower to the outside of the injection pipe. ,
The mixed liquid of water glass and reactant from the outer tube 1 is passed through the passage 11.
The grout is then discharged from the upper discharge lower a to the outside of the injection pipe, and both are mixed outside the injection pipe to form instant setting grout, which is then injected into the ground.

次いで、内管2からの炭酸ガスの送流を中止すると注入
管は前述と同様第4図fa)の状態にもどり、この状態
で外管1がら水ガラスと反応剤の混合液(浸透性グラウ
ト)のみの送液を続けると、下部吐出口6から浸透性グ
ラウトが地盤中に注入される0 次いで、第5図について説明すると、内管2の吐出口に
は伸縮性袋16、例えばゴム製袋がこの吐出口を閉塞す
るように装着されている。さらに内管2は前述の吐出口
のほかに他の吐出口17を有し、この吐出口17はバネ
15ヲ介して逆止弁14で覆われている。また、外管1
は伸縮性袋16よりも下方の先端部に下部吐出口6を有
し、かつ伸縮性袋16よりも上方の位置に上部吐出ロア
を有してなり、この上部吐出ロアには逆止弁12が、相
対する吐出ロアのものとバネ13で連結することによっ
て装着されている。さらに外管1には下部吐出口6のほ
かに先端部付近の側壁にも下部吐出口6bが備えられて
いる。
Next, when the flow of carbon dioxide gas from the inner tube 2 is stopped, the injection tube returns to the state shown in FIG. ), the permeable grout is injected into the ground from the lower outlet 6.Next, referring to FIG. A bag is attached so as to close this outlet. Furthermore, the inner tube 2 has another outlet 17 in addition to the above-mentioned outlet, and this outlet 17 is covered with a check valve 14 via a spring 15. Also, outer tube 1
has a lower discharge port 6 at the tip below the elastic bag 16, and has an upper discharge lower at a position above the elastic bag 16, and a check valve 12 is installed in the upper discharge lower. is attached by being connected to the opposing discharge lower by a spring 13. Furthermore, in addition to the lower outlet 6, the outer tube 1 is provided with a lower outlet 6b on the side wall near the tip.

前述の注入管を用いて本発明工法を実施するにあたり、
まず、第5図(a)に示すように、外管1より水を送入
して地盤をポーリングし、所定の深IWに注入管を挿入
する。水は下部吐出口6がら噴出され、この水圧により
地盤が掘削される。
When carrying out the method of the present invention using the above-mentioned injection pipe,
First, as shown in FIG. 5(a), water is introduced from the outer pipe 1 to poll the ground, and the injection pipe is inserted to a predetermined depth IW. Water is ejected from the lower discharge port 6, and the ground is excavated by this water pressure.

次いで、外管1から水ガラス′と反応剤の混合液を送液
し、かつ内管2aがら炭酸ガスを送流すると、伸縮性袋
1bは膨張して外管1の流路をじゃ閉し、このしや閉に
より下部吐出口6,6bの群と上部吐出ロアとが分離さ
れるとともに内管2がらの炭酸ガスは吐出口17から逆
止弁14ヲ押し開けて外管1に流入され、ここで外管1
がらの水ガラスと反応剤の混合液に吐出口17より噴出
した炭酸ガスが吹き込まれて瞬結性グラウトが形成され
、これが上部吐出ロアより逆止弁12を押し開けて注入
管外部に吐出して地盤中に注入され、注入管まわりの空
隙やその周辺地盤を固結する。(第5図(b))。
Next, when a mixture of water glass' and a reactant is sent through the outer tube 1 and carbon dioxide gas is sent through the inner tube 2a, the elastic bag 1b expands and blocks the flow path of the outer tube 1. By this closing, the group of lower discharge ports 6, 6b and the upper discharge lower are separated, and the carbon dioxide gas in the inner pipe 2 is forced open through the discharge port 17 and the check valve 14, and flows into the outer pipe 1. , where outer tube 1
The carbon dioxide gas ejected from the discharge port 17 is blown into the mixed liquid of water glass and the reactant to form instant setting grout, which pushes open the check valve 12 from the upper discharge lower and is discharged to the outside of the injection pipe. It is injected into the ground to solidify the void around the injection pipe and the surrounding ground. (Figure 5(b)).

次に内管2から炭酸ガスの送入全中止し、外管1から水
ガラスと反応剤の混合液、すなわち、ゲル化時間の長い
浸透性グラウトのみを送入すると、この混合液は外管1
の下部吐出口6,6bより地盤中に注入される。(第5
図(d))。
Next, when the supply of carbon dioxide gas is completely stopped from the inner tube 2 and only the mixed liquid of water glass and the reactant, that is, the permeable grout with a long gelation time, is fed from the outer tube 1, this mixed liquid is 1
It is injected into the ground from the lower discharge ports 6, 6b. (5th
Figure (d)).

本発明における水ガラスと反応剤の混合液(水ガラスグ
ラウト)として任意のグラウトを用いることができるが
、特に以下の例より選ぶことができる。
Although any grout can be used as the mixed liquid of water glass and the reactant (water glass grout) in the present invention, it can be particularly selected from the following examples.

fa)  セメント・水ガラスグラウトあるいは粘土・
水ガラスグラウト。
fa) Cement/water glass grout or clay/
water glass grout.

(bl  水ガラスと溶液性反応剤を含む溶液型水ガラ
スグラウト。
(bl Solution-type water glass grout containing water glass and a solution-based reactant.

なお、上記において水ガラスグラウトの反応剤としては
例えばエステル類(エチルアセテート、エチレングリコ
ールアセテート、トリアセチン、エチレンカーボネート
等)、アルデヒド類(グリオキザール等)、アミド類(
ホルムアミド等)、酸類(リン酸、硫酸等)、塩類(重
炭酸塩、重硫酸塩、リン酸塩、塩化物等)、炭酸ガス、
セメント(ポルトランドセメント、高炉セメント、アル
ミナセメント等)、スラグ、石灰5石こう等のうち少な
くとも一種または複数種を用いることができる。
In addition, as the reactant for water glass grout in the above, for example, esters (ethyl acetate, ethylene glycol acetate, triacetin, ethylene carbonate, etc.), aldehydes (glyoxal, etc.), amides (
formamide, etc.), acids (phosphoric acid, sulfuric acid, etc.), salts (bicarbonate, bisulfate, phosphate, chloride, etc.), carbon dioxide gas,
At least one or more of cement (Portland cement, blast furnace cement, alumina cement, etc.), slag, lime 5 gypsum, etc. can be used.

水ガラスとしてはモル比(5iOz/ MzO) : 
1.5〜5.0の液状水ガラス、無水水ガラス、和水水
ガラス、結晶性水ガラス等、任意のモル比の珪酸アルカ
リ金属塩、あるいは珪酸アルカリ金属塩と珪酸との混合
物が用いられる。
As water glass, molar ratio (5iOz/MzO):
1.5 to 5.0 liquid water glass, anhydrous water glass, hydrous water glass, crystalline water glass, etc., an alkali metal silicate of any molar ratio, or a mixture of an alkali metal silicate and silicic acid is used. .

実験−1 気密容器中で水ガラス水溶液に炭酸ガスを完全に作用せ
しめて炭酸カス量(20℃1気圧)と円1との関係を実
験し、結果を第6図に示した。この実験は5℃、1気圧
の条件下、3号水ガラスの5容量%液1を当りに炭酸ガ
ス(4を作用せしめて行った。
Experiment 1 An experiment was conducted to determine the relationship between the amount of carbon dioxide scum (at 20° C. and 1 atm) and circle 1 by completely exposing a water glass solution to carbon dioxide gas in an airtight container, and the results are shown in FIG. This experiment was conducted under conditions of 5° C. and 1 atm by applying carbon dioxide gas (4) to 1 portion of a 5 volume % solution of No. 3 water glass.

実験−2 水ガラス#度を変化させ、これに(’02i作用せしめ
てゲル化時間が加秒になるPH値を調べた。
Experiment 2 The pH value at which the gelation time increases by changing the degree of water glass and applying ('02i) to it was investigated.

3号水ガラスの例を表−1に示す。Table 1 shows examples of No. 3 water glass.

表−1 実験−3 Zoo CC当り3号水ガラス35CC,40%グリオ
キザール5CC,75%リン酸1.5 ccl  水残
りの配合液を調製し、これをA液とした。これはゲル化
時間がm分、固結砂の一軸圧縮強度6 k’i/dホモ
ゲルの一軸圧縮強度1.5 kf//l−dである。 
さらに、100 Cc当り、75%リン酸8CC,水残
りの配合液を調製し、B液とした。
Table-1 Experiment-3 Zoo CC: 35 CC of No. 3 water glass, 5 CC of 40% glyoxal, 1.5 ccl of 75% phosphoric acid A blended solution with remaining water was prepared, and this was used as Solution A. This means that the gelation time is m minutes, the unconfined compressive strength of the consolidated sand is 6 k'i/d, and the unconfined compressive strength of the homogel is 1.5 kf//ld.
Furthermore, a liquid mixture containing 8 CC of 75% phosphoric acid and remaining water per 100 Cc was prepared and designated as Solution B.

前述のA−B両液を第1図の装置を用いて等量づつ混合
したところ、ゲル化時間が加秒、固結砂ツー軸圧縮強度
が2 kg / ca 、ホモゲルの一軸■、縮豆が0
.3 綽/cdlであった。次いで13液の代りに2を
用い、まずA液を毎分10〕吐出し、これに2を1 a
tm%加℃で150を吐出したところ、そせ流液のゲル
化時間は4秒であり、固結砂−軸1強度は12 kg 
/ cJ 、ホモゲルの一軸圧縮強度はkf// ca
であった。
When the above-mentioned liquids A and B were mixed in equal amounts using the apparatus shown in Fig. 1, the gelation time was increased, the two-axis compressive strength of the consolidated sand was 2 kg/ca, the homogel was uniaxial, and the condensed soybeans were mixed. is 0
.. It was 3 g/cdl. Next, using 2 instead of liquid 13, first dispense liquid A at a rate of 10 per minute, and then add 2 to 1 a minute.
When 150 tm% was discharged at ℃, the gelation time of the rippling liquid was 4 seconds, and the consolidated sand-shaft 1 strength was 12 kg.
/ cJ, the unconfined compressive strength of the homogel is kf//ca
Met.

天いて第5図に示した装置を用い、A液の水カス水溶液
と反応剤水溶液を別々にし、これらを字管で合流して、
外管1に毎分10tの流量で送液し、かつ75%リン酸
量をふやしてゲル化時間を短縮し、一方、CO2の吐出
量を少なくしてA液にC02を混入し、吐出液のゲル化
時間を調べた。
Then, using the apparatus shown in Figure 5, separate the water scum solution of liquid A and the reactant aqueous solution, and combine them in a tube.
The liquid is sent to the outer tube 1 at a flow rate of 10 t/min, and the amount of 75% phosphoric acid is increased to shorten the gelation time.On the other hand, the amount of CO2 discharged is reduced and CO2 is mixed into the A liquid, and the discharged liquid is The gelation time was investigated.

その結果、ゲル化の短縮に散するC02の蓋はA液のゲ
ル化時間と関係があり、A液のゲル化時間が短い程C0
2の吐出量は少なくてすむがA液のゲル化時間が1分以
上の場合ゲル化時間をふ)秒以内に短縮するためにはC
O2の吐出量は毎分10 ノ以−ヒ(20℃l aim
 )必要とする事が判った。
As a result, the cap of C02, which is used to shorten gelation, is related to the gelation time of solution A, and the shorter the gelation time of solution A, the more C0
The discharge amount in step 2 can be small, but if the gelation time of solution A is longer than 1 minute, in order to shorten the gelation time to within seconds, use C.
The amount of O2 discharged is 10 km/min (at 20°C).
) was found to be necessary.

この傾向は水力ラス濃度をA液として水カラスとセメン
トの混合液(配合液ioo cc当り水ガラス25cc
)を用いた場合も同様であった。
This tendency is based on a mixed solution of water glass and cement (25 cc of water glass per iocc of mixed liquid) with the concentration of hydraulic lath as liquid A.
) was used as well.

実験−4 A液として100CC当り、3号水ガラス20cc14
0%グリオキザール5ω、75%リン酸z”s 水残り
、の配合液を調製した。これはゲル化時間が加分、固結
砂の一軸圧縮強度2 kf / crl 、ホモゲルの
一軸圧縮強度0.3#/ctIであった。
Experiment-4 No. 3 water glass 20cc14 per 100CC as liquid A
A mixed solution of 0% glyoxal 5ω, 75% phosphoric acid z"s with the remainder of water was prepared. This has an additional gelling time, an unconfined compressive strength of compacted sand of 2 kf/crl, and an unconfined compressive strength of homogel of 0. It was 3#/ctI.

さらにB液としてリン酸水溶液を100 cc調製し、
A液とB液と同量でA液に合流したが、リン酸濃度をい
かに濃くしても(9)秒以内のゲル化時間をうる事は出
来なかった。
Furthermore, prepare 100 cc of phosphoric acid aqueous solution as B solution,
The same amount of solutions A and B merged into solution A, but no matter how high the phosphoric acid concentration was, it was not possible to obtain a gelation time of less than (9) seconds.

B液の代りにCO2を用い、第1図の装置を用いてA液
を毎分1.Oを吐出し、これにCO2を1 atm20
℃で毎分150を吐出したところ、その合流液のゲル化
時間は8秒で固結砂の一軸圧縮強度は3.5 kg/c
ll、ホモゲルの一軸圧縮強度は1.8蛇/cdであっ
た。
Using CO2 instead of liquid B and using the apparatus shown in Fig. 1, liquid A was added at 1.0 min. Discharge O and add CO2 to it at 1 atm20
150 per minute at ℃, the gelation time of the combined liquid was 8 seconds, and the unconfined compressive strength of the consolidated sand was 3.5 kg/c
ll, the unconfined compressive strength of the homogel was 1.8 h/cd.

これらの実施例を通して以下の事が判った。The following things were found through these examples.

■ 水ガラスにC02を作用させるとアルカリが中和さ
れてPHが低下しゲル化時間が短縮する。
(2) When CO2 is applied to water glass, alkali is neutralized, pH is lowered, and gelation time is shortened.

しかし円1は酸性値までに−tがる事はない。However, yen 1 will not fall to -t to the acidic value.

容量%以下になるとゲル化時間は30秒以内にならない
。従って、C02を吹きこんでゲル化時間を:幻秒以内
にするには、水ガラス濃度は容量%で10%以上である
事を要する。
If the amount is less than % by volume, the gelation time will not be within 30 seconds. Therefore, in order to make the gelation time within phantom seconds by blowing CO2, the water glass concentration needs to be 10% or more by volume.

■ 3号水ガラスの5容置%水溶液Xtに完全にCO2
を反応させた場合、水ガラス中のアルカリを消費せしめ
て水ガラスのシリカ分を不安定な状態にせしめゲル化し
やすいようにするにはC02の量は20C1laimで
12.6〜12.81 k必要とする。ゲル化時間がふ
)秒以内をうるには20 ℃1 aimでCOzを12
.6を以上必要である事が出来る。この値は3号水ガラ
ス水溶液中のNa2Oの閂に対するCO2の量に換算す
ると、N C2(、)の32.761#当り(102の
址が12600を以L1即ちNa2(1の1H当り38
4.6を以上に対応する。本発明者の他の実験によれば
、水・ガラスのモル比がちかつ−(もはマこの関係が成
キン。
■ Completely add CO2 to the 5 volume % aqueous solution Xt in No. 3 water glass.
When reacting, the amount of C02 is required to be 12.6 to 12.81 k in 20C1 laim in order to consume the alkali in the water glass and make the silica content of the water glass unstable and easy to gel. shall be. To obtain a gelation time of less than 2 seconds, COz at 20°C 1 aim is 12
.. It is possible that more than 6 is required. This value is converted into the amount of CO2 for the bar of Na2O in the No. 3 water glass aqueous solution.
4.6 corresponds to above. According to other experiments by the present inventor, the molar ratio of water and glass is different.

する事が判った0この事は水カフス中に含まれるNa2
01kvに対して少なくともCO□を385を以上(2
0℃latmに換算して)になるように水ガラスグラウ
トとCO2の吐出量を調整する事によって瞬結性グラウ
トを得る事が出来る事を意味している。
It was found that the Na2 contained in the water cuffs
CO□ at least 385 or more (2
This means that instant setting grout can be obtained by adjusting the discharge amounts of water glass grout and CO2 so that the temperature becomes 0° C. latm.

しかるに水ガラスに反応剤が混合されている場合はC0
2はより少なくてすむ。上述した実験によれば、3号水
ガラスを5容量%水溶液で反応剤を含みゲル化時間が1
分以上の配合液1/!、30秒以内にゲル化せしめるC
02の量は20℃latmで1を以上であり、この事は
Na2Oの32.761 kg当りCO2の量が100
0 を以上を要する事になる。
However, if the reactant is mixed with water glass, C0
2 requires less. According to the experiment described above, a 5% by volume aqueous solution of No. 3 water glass containing a reactant and a gelation time of 1
Mixed liquid for more than 1/minute! , C that gels within 30 seconds
The amount of CO2 is more than 1 at 20℃ latm, which means that the amount of CO2 per 32.761 kg of Na2O is 100
It will require more than 0.

即ちNa201Aii’に対して少なくともCO2を3
0.6を以上必要とする。
That is, at least 3 CO2 for Na201Aii'
0.6 or more is required.

以上より水ガラスと反応剤の混合液にCO2を噴出せし
めてゲル化時間(資)秒以内の瞬結性グラウトを得るた
めには水ガラス濃度の配合量は10容普%以上とし、か
つCO2はNa201kLiに対し20℃1atm合液
にCO2を合流した場合、反応剤配合液を合流する場合
に比べ、水ガラスの濃IWは不要なため強度も高く、ゲ
ル化時間が短く、又水ガラスと反応剤混合液中の止まり
の水ガラスが002で完全に反応するため脱水しにさ≦
ツカー効果のすぐれた瞬結性グラウトヲ潜る事が判る。
From the above, in order to obtain instant setting grout within a gelation time of seconds by injecting CO2 into the mixed solution of water glass and reactant, the water glass concentration should be 10% by volume or more, and CO2 For Na201kLi, when CO2 is added to a 1atm mixture at 20°C, the strength is higher, gelation time is shorter, and the strength is higher because concentrated IW of water glass is not required, compared to when combining reactant mixture liquid. The remaining water glass in the reactant mixture reacts completely with 002, so it is difficult to dehydrate it.
It can be seen that the instant-setting grout with excellent Tsuka effect can be absorbed.

実施例−1 第5図に示す注入管を用いて砂レキ層と粘土層とからな
る地盤にて試映注入を行った。上部吐出ロアと下部吐出
口6の間隔は50 ctnである。
Example 1 Using the injection pipe shown in FIG. 5, test injection was performed on the ground consisting of a sandy layer and a clay layer. The distance between the upper discharge lower and the lower discharge port 6 is 50 ctn.

A液(50を当り) 【3液(50を当り) A液、B液を1=1で合流するとゲル化時間は1分間秒
になる。
Solution A (per 50) [3 solutions (per 50) When solutions A and B are combined in a ratio of 1=1, the gelation time will be 1 minute and 2 seconds.

外管1の上端にY字管によりA液、Bi’に送りこんで
合流させて毎分20tの吐出量で一トからトへ75mづ
つのステージで各ステージ毎に100tうつ注入した。
Liquid A and Bi' were fed into the upper end of the outer tube 1 through a Y-tube and merged, and 100 t was injected from one stage to the other in stages of 75 m each at a discharge rate of 20 t/min.

粘土層ではCO2を20℃latmに換算して毎分50
tの吐出量で内管路2より外管1のA・B合流液中噴出
した0この場合のゲル化時間は10秒になる。砂レキ層
では各ステージにCO2を噴出しながら上部吐出口より
へ〇B合流液を100を注入してのちC02の噴出を中
止し、下部吐出口よりA−B合流液’i 100 を注
入する事をステージ毎にくり返した。掘削調査したとこ
ろ、粘土層は脈状に密に圧縮強化しており、砂レキ層は
はソ直径1mの固結性がえられた0比較のためにCO2
を用いないA−8合流液のみの注入を行ったが、掘削調
査では周辺に不均質な固結体が部分的に形成されている
だけであった。
In the clay layer, CO2 is converted to 20℃ latm at 50% per minute.
The gelling time in this case is 10 seconds, which is ejected from the inner pipe line 2 into the combined liquid A and B in the outer pipe 1 with a discharge amount of t. In the sand layer, while ejecting CO2 to each stage, inject 100 of 〇B combined liquid from the upper discharge port, then stop spouting C02, and inject A-B combined liquid 'i 100 from the lower discharge port. This was repeated for each stage. An excavation survey revealed that the clay layer was densely compressed and strengthened in the form of veins, and the sand layer had solidity with a diameter of 1 m.For comparison, CO2 was used.
Although only the A-8 combined liquid was injected without using the A-8 condensate, the excavation survey revealed that a heterogeneous solid body was only partially formed in the surrounding area.

実施例−2 砂質地盤で第3図の注入管を用いて試験注入を行った。Example-2 Test injection was performed in sandy ground using the injection pipe shown in Figure 3.

注入管の上部吐出ロアと下部吐出口6の間隔は側副であ
るoA液は実験例−3のものと同じである。ステージは
下から上へ50crnの間隔でとり、A液吐出量は10
t/J分CO2の吐出量は加℃latmに換算して10
0 t/$とした0最下部に注入管を設置後、A液を吐
出すると同時にCO2も噴出し、上部吐出口からA液を
100を注入後、C02の噴出を中止し、下部吐出口か
らA液を1001注入し、注入管を引きLげ次のステー
ジに移す事をくり返した。注入中注入液の逸脱はみられ
なかった。注入後掘削したところは’(1,5mの直径
を有する固結性が得られた。掘削採取試料の一軸圧縮強
度は5〜7 kf / crl f)示した。
The distance between the upper discharge lower and the lower discharge port 6 of the injection tube was the same as that of Experimental Example-3 for the side oA liquid. The stages are arranged at intervals of 50 crn from bottom to top, and the amount of A liquid discharged is 10 crn.
The amount of CO2 discharged per t/J is converted to 10 °C latm.
After installing the injection pipe at the bottom of the 0 t/$, ejecting liquid A and ejecting CO2 at the same time. After injecting 100 g of liquid A from the upper outlet, stop ejecting CO2 and start from the lower outlet. 1,001 times of solution A was injected, the injection tube was pulled out, and the process was repeated to move to the next stage. No deviation of the injectate was observed during the injection. The area excavated after injection obtained consolidation with a diameter of 1,5 m. The unconfined compressive strength of the excavated sample showed 5-7 kf/crl f).

比較のために002の噴出をせずに圧入して掘削したと
ころ、固結体の直径は0.3 m〜2mの範囲でばらつ
いており、掘削採取試料の一軸圧縮強度は2〜5 kf
 / crliを示した。又注入中庄人液の逸脱がみら
れた。
For comparison, when 002 was press-fitted and excavated without ejection, the diameter of the solid body varied in the range of 0.3 m to 2 m, and the unconfined compressive strength of the excavated sample was 2 to 5 kf.
/ crli was shown. In addition, deviation of the injected Nakasho human fluid was observed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(c)および第2図(at〜(e)はそ
れぞれ、本発明工法の基本的原理を示した説明図であり
、第3図(al、(b)、第4図(、I)、(
Figures 1 (a) to (c) and Figures 2 (at to (e)) are explanatory diagrams showing the basic principle of the construction method of the present invention, respectively, and Figures 3 (al, (b), 4 Figure(,I),(

【))、
および第5図(、J)、(b)、(C)はそれぞれ、本
発明に使用する注入管の具体例およびこの注入管を71
いた本発明り法の具体例であり、第6図は水ガラス溶液
のPHと炭酸ガス量との関係を示したグラフである。 1・・・外管、2・・・内管、3・・メタルクラウン、
4、5.10.12.14・・・逆止弁、6,6b・・
・下部吐出口、7.7a・・・上部吐出口 特許出願人 島 1)俊 介 AJJ、7目 ((L)           じ) (C) )!j1(支) (d)        、e。 弄21 (ばl・ン                    
        (4?)−】リフ響 (C) 湛2目 (d)          (e) 箋3閣 Cαラ         (、e ) )t!ciワ Cα) (C)
[)),
5(, J), (b), and (C) respectively show a specific example of the injection tube used in the present invention and this injection tube.
FIG. 6 is a graph showing the relationship between the pH of the water glass solution and the amount of carbon dioxide gas. 1...Outer tube, 2...Inner tube, 3...Metal crown,
4, 5.10.12.14...Check valve, 6,6b...
・Lower outlet, 7.7a... Upper outlet Patent applicant Shima 1) Shunsuke AJJ, 7th ((L) ji) (C) )! j1 (branch) (d), e. Fuck 21 (Bal・n
(4?) -] Riff sound (C) Tank 2nd eye (d) (e) 3rd cabinet Cα (, e ) ) t! ciwa Cα) (C)

Claims (1)

【特許請求の範囲】[Claims] (1)  複数の管路を内蔵した注入管を地盤中に挿入
し、この注入管を移動してステージを変化させながら前
記注入管を通じて水ガラスと反応剤の混合液を前記地盤
中に注入する地盤注入工法において、前記水ガラスと反
応剤の混合液を前記注入管の一つまたは二つの管路を通
して地盤中に注入するとともに前記工程に対して前記管
路とは別の管路を通して前記混合液に炭酸ガスを吹き込
む工程を併用することを特徴とする地盤注入工法。 (2、特許請求の範囲第1項に記載の工法において、前
記水ガラスと反応剤の四合液を地盤中に注入する工程に
対して、前記混合液に炭酸ガスを吹き込む工程を部分的
に併用することを特徴とする地盤注入工法。
(1) Insert an injection pipe with a plurality of built-in pipes into the ground, and inject the mixed liquid of water glass and reactant into the ground through the injection pipe while changing the stage by moving this injection pipe. In the ground injection method, the mixed liquid of the water glass and the reactant is injected into the ground through one or two of the injection pipes, and at the same time, the mixing is carried out through a pipe different from the pipe for the process. A ground injection method characterized by the combined use of a process of injecting carbon dioxide gas into the liquid. (2. In the construction method described in claim 1, the step of injecting carbon dioxide gas into the mixed solution is partially performed in the step of injecting the mixed solution of water glass and the reactant into the ground. A ground injection method that is characterized by being used in combination.
JP830582A 1982-01-22 1982-01-22 Grout injection work for ground Pending JPS58127825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP830582A JPS58127825A (en) 1982-01-22 1982-01-22 Grout injection work for ground

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP830582A JPS58127825A (en) 1982-01-22 1982-01-22 Grout injection work for ground

Publications (1)

Publication Number Publication Date
JPS58127825A true JPS58127825A (en) 1983-07-30

Family

ID=11689435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP830582A Pending JPS58127825A (en) 1982-01-22 1982-01-22 Grout injection work for ground

Country Status (1)

Country Link
JP (1) JPS58127825A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4624606A (en) * 1985-03-12 1986-11-25 N.I.T. Co., Ltd. Foundation improvement process and apparatus thereof
US4971480A (en) * 1989-01-10 1990-11-20 N.I.T. Co., Ltd. Ground hardening material injector
JPH0497012A (en) * 1990-08-14 1992-03-30 Kyokado Eng Co Ltd Chemical grout injection work
KR100736715B1 (en) 2006-09-27 2007-07-09 한우선 A quick hardening method of the soil
CN104499487A (en) * 2014-12-25 2015-04-08 周志宏 Double-liquid stirring grouting system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS522013A (en) * 1975-06-24 1977-01-08 Kyokado Eng Co Composite grouting method
JPS55111522A (en) * 1979-02-19 1980-08-28 Kyokado Eng Co Ltd Method of grouting to ground and its apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS522013A (en) * 1975-06-24 1977-01-08 Kyokado Eng Co Composite grouting method
JPS55111522A (en) * 1979-02-19 1980-08-28 Kyokado Eng Co Ltd Method of grouting to ground and its apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4624606A (en) * 1985-03-12 1986-11-25 N.I.T. Co., Ltd. Foundation improvement process and apparatus thereof
US4971480A (en) * 1989-01-10 1990-11-20 N.I.T. Co., Ltd. Ground hardening material injector
JPH0497012A (en) * 1990-08-14 1992-03-30 Kyokado Eng Co Ltd Chemical grout injection work
KR100736715B1 (en) 2006-09-27 2007-07-09 한우선 A quick hardening method of the soil
CN104499487A (en) * 2014-12-25 2015-04-08 周志宏 Double-liquid stirring grouting system

Similar Documents

Publication Publication Date Title
CN101245600B (en) Construction method for generating horizontal reinforcing body by high-pressure-double-liquid rotary spray technique
CN101235636B (en) Device for fast concreting soft soil ground foundation by high-pressure injecting double-liquor slurry
US4043830A (en) Method of consolidating poor quality soils
CN103912003B (en) The method of water and hole is moved on a kind of simple and efficient shutoff stratum
CA1197862A (en) Apparatus and process for foamed cementing
JPS58127825A (en) Grout injection work for ground
JPS625955B2 (en)
JPS6117970B2 (en)
KR100855306B1 (en) Foundation reinforcement method for which silica sol production unit was used
JPS5939007B2 (en) Composite grouting method
CN110469347A (en) The double slurries grouting methods of rich water tunnel
CN204825911U (en) Biliquid type high pressure jet machine
JPS6358972B2 (en)
JPS5814894B2 (en) Ground injection method and injection equipment
JPS6342043B2 (en)
JPS6354843B2 (en)
CN114016900B (en) Cement slurry hole sealing and wall protecting process for gravel soil layer drilling
JPS6223995B2 (en)
JPS5824568B2 (en) Composite injection method and injection pipe used for it
JPS6364567B2 (en)
JPS629155B2 (en)
JPH0565649B2 (en)
CN115596475A (en) High-water-pressure grouting treatment method for deep-buried roadway of large-water deposit
JP3998240B2 (en) Cutting fluid for high pressure injection method and high pressure injection method using the same
JPS6364569B2 (en)