JPS58125373A - High speed submerged arc welding method - Google Patents

High speed submerged arc welding method

Info

Publication number
JPS58125373A
JPS58125373A JP592782A JP592782A JPS58125373A JP S58125373 A JPS58125373 A JP S58125373A JP 592782 A JP592782 A JP 592782A JP 592782 A JP592782 A JP 592782A JP S58125373 A JPS58125373 A JP S58125373A
Authority
JP
Japan
Prior art keywords
welding
electrode
submerged arc
electrodes
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP592782A
Other languages
Japanese (ja)
Other versions
JPH0150507B2 (en
Inventor
Haruo Fujita
藤田 治男
Sumichika Haseba
長谷場 純親
Masahiro Obara
昌弘 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP592782A priority Critical patent/JPS58125373A/en
Publication of JPS58125373A publication Critical patent/JPS58125373A/en
Publication of JPH0150507B2 publication Critical patent/JPH0150507B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/18Submerged-arc welding
    • B23K9/186Submerged-arc welding making use of a consumable electrodes
    • B23K9/188Submerged-arc welding making use of a consumable electrodes making use of several electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)

Abstract

PURPOSE:To obtain good beads free from undercuts at a high speed in submerged arc welding with multiple electrodes by using a grouped electrode element array consisting of plural pieces of wires for at least a part of electrodes. CONSTITUTION:In a submerged arc welding method with multiple electrodes, a conventional electrode 1 is used for a preceding electrode and a grouped electrode array 11 consisting of plural pieces of wires arranged in a weld line direction is adapted to succeeding electrodes. By such combination, advantage is taken of the heat source characteristics of the array 11, whereby even in welding at a high speed, the advancing of a position 7 where solidification starts in the toe of beads is prevented and the good beads free from undercuts are formed. If the arrays 11 are adapted for all the electrodes, the welding is accomplished at much higher speed.

Description

【発明の詳細な説明】 本発明は、高速度でしかもアンダーカット発生のない良
好なビードを得るための潜弧溶接法に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a submerged arc welding method for obtaining a good bead without undercutting at high speed.

従来潜弧溶接法は、高速度、高能率な溶接法として各方
面で利用されているが、一般にその溶接速度はせいぜい
3m/min 以下である。その理由は、溶接速度を増
大させると、溶接ビード止端部に構造物の疲労強度を著
しく低下させる切欠き状の欠陥であるアンダーカットが
発生するためである。
Conventional submerged arc welding has been used in various fields as a high-speed, highly efficient welding method, but generally the welding speed is at most 3 m/min or less. The reason for this is that when the welding speed is increased, an undercut, which is a notch-like defect that significantly reduces the fatigue strength of the structure, occurs at the toe of the weld bead.

本発明者らは、この潜弧溶接法におけるアンダ−カット
発生現象に関して詳細な研究を行なった結果、次のよう
な過程を経てアンダーカットが発生することを明らかに
した。すなわち、従来の多電極潜弧溶接法における母材
の溶融からと一部の形成に至るまでの過8を、アンダー
カットの発生のない場合と発生している場合とを比較し
ながら、第1図に模式的に示すが、同図(a)に示すア
ンダーカットの発生のない低速度域では、溶融池の止端
部において凝固が開始する位置7(以下ビード止端部凝
固開始位置と称す)が、電極1,2のアークにより一旦
くぼまされた溶融金属3が、後方で再び母材5表面まで
盛り上る位置6(以下溶融金属後退距離と称す)より、
相対的に後方に位置するため、溶融金属はアークによっ
て堀られたつは8が凝固を開始する前に満たすことがで
き、アンダーカットのない良好なピードが形成される。
The present inventors conducted a detailed study on the undercut generation phenomenon in this submerged arc welding method, and as a result, it became clear that undercut occurs through the following process. In other words, the process from the melting of the base metal to the formation of a part of the base metal in the conventional multi-electrode submerged arc welding method was compared with cases where undercuts did not occur and cases where undercuts did occur. As schematically shown in the figure, in the low speed range where undercut does not occur as shown in Figure (a), solidification starts at the toe of the molten pool (hereinafter referred to as the bead toe solidification start position). ) is from position 6 (hereinafter referred to as molten metal retreat distance) where the molten metal 3, which has been once depressed by the arc of the electrodes 1 and 2, swells up to the surface of the base material 5 at the rear.
Because of its relative rearward position, the molten metal can fill the trench dug by the arc before it begins to solidify, resulting in a good pead with no undercuts.

とこ゛ろが溶接速度の増大にともない、同図(b)に示
すアンダーカットの発生する状況になると、溶融金属後
退位置6は、アーク力によって溶融池内で後退するのに
対して、電極1.2の周囲に同心円状に形成されたアー
ク熱源10(同図斜線部)の溶接線に直交する方向への
熱源の広がりが大きいため、高速度化に伴ないアーク熱
源の溶融能力が減少し、ついにはアーク熱源幅程度しか
溶融できなくなる結果、ビード止端部凝固開始位置7は
溶融池内を前進する。このため、ついには溶融金属後退
位置6は、ビード止端部凝固開始位置字より後方に位置
するようになる。ここに至って溶融池のビード止端部で
は、アークによって堀られたつぼ8は、溶融金属によっ
て満たされる以前に凝固を開始するため、凝固壁9が発
生し、再び溶融金属3が盛り上りつつある時に、側方へ
のぬれを防げる結果、凝固壁9がそのまま残り、切り欠
き状のアンダーカットが発生するに至るのである。
However, as the welding speed increases, when the undercut occurs as shown in FIG. Since the arc heat source 10 (shaded area in the figure) formed in a concentric circle around the welding line has a large spread in the direction perpendicular to the welding line, the melting ability of the arc heat source decreases as the speed increases, and finally As a result, the bead toe solidification start position 7 moves forward in the molten pool. As a result, the molten metal retreat position 6 is located at the rear of the bead toe solidification start position. At this point, at the bead toe of the molten pool, the pot 8 excavated by the arc starts to solidify before it is filled with molten metal, so a solidified wall 9 is generated, and the molten metal 3 is rising again. Sometimes, as a result of preventing lateral wetting, the solidified wall 9 remains as it is, resulting in a notch-like undercut.

そこで、本発明者らは上記の知見に基づき、アンダーカ
ットの発生を防止し、高速度でしかも良好なピード全得
るためには、ビード止端部凝固開始位置が、溶融金属後
退位置よりも相対的に後方に位置せしめれば良いという
ことを見出し、その問題を解決するだめの手段として本
発明をなしたものである。
Therefore, based on the above findings, the present inventors have determined that in order to prevent the occurrence of undercuts and obtain a good peed at high speed, the solidification start position of the bead toe should be relative to the molten metal retreat position. The inventors discovered that it would be better to position it at the rear, and devised the present invention as a means to solve this problem.

すなわち1本発明は多電極潜弧溶接法におし)て。That is, the present invention is based on a multi-electrode submerged arc welding method.

少なくともその一部の電極に、溶接線方向C二配夕1j
された複数個のワイヤから成る集団電極子列1jを用い
ることを特徴とする高速潜弧溶接法であって。
At least some of the electrodes have a welding line direction C2 direction 1j
This is a high-speed submerged arc welding method characterized by using a collective electrode array 1j consisting of a plurality of wires.

溶接線方向に長く、しかも溶接線(二直交する方向に、
幅の狭い線状熱源を用いること(二よって、ビード止端
部凝固開始位置を、溶融金属後退位置よりも相対的に後
方に維持することを可能とし、これによりアンダーカッ
トの発生を防止し、高速溶接を可能にしたものである。
It is long in the direction of the welding line, and the welding line (in two orthogonal directions,
By using a narrow linear heat source (2), it is possible to maintain the solidification start position of the bead toe relatively behind the molten metal retreat position, thereby preventing the occurrence of undercuts, This enables high-speed welding.

なおここに言う集団電極子列とは、211m+φ以下の
溶接ワイヤを、ワイヤ中心間距離ff:ll″fF3w
r以下として単一アークを維持しつつ、ワイヤ径に対す
る集団電極子列の先頭ワイヤ中心と、最後尾ワイヤ中心
間距離(以下配列長さと称す)との比を。
Note that the collective electrode array referred to here refers to welding wires of 211 m + φ or less, with a distance between wire centers ff:ll″fF3w
While maintaining a single arc as less than or equal to r, the ratio of the distance between the center of the leading wire of the collective electrode array and the center of the trailing wire (hereinafter referred to as array length) to the wire diameter.

およそ7以上になる様に溶接線方向(二配夕I した溶
接ワイヤ列のことを意味する。
Refers to a row of welding wires arranged in a welding line direction (two rows I) so that the number of welding wires is approximately 7 or more.

以下本発明を図面葡参照しながら詳細(二説明する。The present invention will be explained in detail below with reference to the drawings.

第2図および第3図は本発明の高速潜弧溶接法の態様例
を示すもので1本発明の溶接法では、多電極潜弧溶接法
の少なくともその一部の電極に、溶接線方向に配列され
た複数個のワイヤから成る集団電極子列11を用いなが
ら溶接する。同図に示すように、集団電極子列11によ
り形成されるアーク熱源12Fi、同図における一連の
同心円状の斜線部に示されるように溶接線方向に長く、
シかも溶接線に直交する方向に幅の狭い熱源形状になる
ため、この熱源特性は、従来のアーク熱源と同人熱量で
あっても、熱源前半部の熱量が有効に後半部に重畳され
る結果、高速度溶接においても溶融幅拡大効果があり、
ビード止端部凝固開始位置7は、溶融池内を前進するこ
となく、溶融金属後退位置6よりも相対的に後方に維持
される。
2 and 3 show embodiments of the high-speed submerged arc welding method of the present invention.1 In the welding method of the present invention, at least some of the electrodes of the multi-electrode submerged arc welding method are Welding is performed using a collective electrode array 11 consisting of a plurality of arranged wires. As shown in the figure, an arc heat source 12Fi formed by the collective electrode array 11 is long in the welding line direction as shown by a series of concentric diagonal lines in the figure.
In addition, the heat source has a narrow width in the direction perpendicular to the weld line, so even if the heat source is similar to that of a conventional arc heat source, the heat in the first half of the heat source is effectively superimposed on the second half. , has the effect of widening the fusion width even in high-speed welding,
The bead toe solidification start position 7 is maintained relatively rearward than the molten metal retreat position 6 without advancing in the molten pool.

この効果により、第1図(a)に示した従来の多電極潜
弧溶接での低速度溶接の場合と同様に、溶融金属はアー
クによって堀られたつぼが凝固を開始する前に満たすこ
とができ、アンダーカットのない良好なビードが高速度
溶接においても形成される。
This effect allows the molten metal to fill the pot excavated by the arc before it begins to solidify, as in the case of low-speed welding in conventional multi-electrode submerged arc welding shown in Figure 1(a). A good bead without undercuts can be formed even during high speed welding.

上記のように高速度溶接においても、ビード止端部凝固
開始位置を溶融金属後退位置よりも相対的に後方に維持
する熱源特性を得るためには、集団電極子列としては、
ワイヤ径2.OMφ以下で、ワイヤ径に対する配列長さ
の比がおよそ7以上であることが望ましい。すなわち、
ワイヤ径およびワイヤ径に対する配列長さの比は、溶融
池のビード止端部凝固開始位置に関して、それぞれ溶接
速度に対する依存性およびビード止端部凝固開始位置の
絶対値を支配する因子の一つであって、ワイヤ径に関し
ては、2.0龍φよりも太いワイヤ径の場合には、ビー
ド止端部凝固開始位置は溶接速度の高速化に伴ない前進
し、アンダーカット発生の原因となるのに対して、2.
0龍φ以下では溶IM速度にほとんど影響されることが
なくなり、高速度化に対してピード止端部凝固開始位置
の前進が防止できる。
As mentioned above, even in high-speed welding, in order to obtain heat source characteristics that maintain the solidification start position of the bead toe relatively behind the molten metal retreat position, the collective electrode array must be
Wire diameter 2. It is desirable that the ratio of the array length to the wire diameter be approximately 7 or more, with OMφ or less. That is,
The wire diameter and the ratio of the array length to the wire diameter are among the factors that control the dependence on welding speed and the absolute value of the solidification start position of the bead toe of the molten pool, respectively. Regarding the wire diameter, if the wire diameter is larger than 2.0 mm, the solidification start position of the bead toe will move forward as the welding speed increases, causing undercuts. For 2.
Below 0 dragon φ, it is hardly affected by the melt IM speed, and it is possible to prevent the solidification start position of the peed toe from advancing even when the speed increases.

またワイヤ径に対する°配列長さの比に関しては。Also regarding the ratio of ° array length to wire diameter.

多電極潜弧溶接で、l磁極当りに通常通電される電流範
囲内において、この比が7程度よりも小さくなると、集
団電極子列としてのアーク電流密度が高くなりすぎ、ア
〜り熱源が母材内部へ深く侵入する結果、熱源の表面ビ
ードの溶融幅拡大効果がうすれ、ビード止端部凝固開始
位置が前進するようになるためである。
In multi-electrode submerged arc welding, if this ratio is smaller than about 7 within the current range that is normally applied per magnetic pole, the arc current density as a collective electrode array becomes too high, and the arc heat source becomes the main source. This is because, as a result of penetrating deeply into the material, the effect of expanding the melting width of the surface bead of the heat source is weakened, and the solidification start position of the bead toe moves forward.

さらに、集団電極子列内のワイヤ中心間距離は、ワイヤ
どうしが接触しない範囲で、はぼ8n以下であることが
好ましい。ここで上限を設けたのは、ワイヤ中心間距離
がほぼ8諺より大きくなると。
Furthermore, the distance between the centers of the wires in the collective electrode array is preferably about 8n or less, as long as the wires do not touch each other. The upper limit is set here when the distance between the wire centers is greater than approximately 8 points.

単一アークとみなせるアーク発生状況であったものが、
それぞれのワイヤで単独に別離した状態でアークが発生
するために、集団電極子列としての熱源特性を失うばか
りではなく、それぞれのワイヤのアークによるアへフカ
によって、ワイヤ間に溶融金属がはさみ込まれ、ビード
の蛇行等の不安定現象が現われるためである。
What was an arc occurrence situation that could be considered a single arc,
Since the arc occurs in each wire separately, it not only loses its heat source characteristics as a collective electrode array, but also the molten metal gets caught between the wires due to the arc caused by the arc of each wire. This is because, in rare cases, unstable phenomena such as bead meandering occur.

この集団電極子列への電源の供給は、必ずしも−電源か
らの供給である必要はなく、特に直流の場合には、それ
ぞれのアーク相互間の干渉が著しくなるため、溶接条件
によってはビード不整が発生することもあるため、目的
に応じて直流と交流を交互に配列するか、またはスコツ
ト結線等のアーク干渉が少ない結線方式の交流を用いる
方が望ましい。
The power supply to this collective electrode array does not necessarily have to be from a power source, and especially in the case of direct current, the interference between each arc becomes significant, so bead irregularities may occur depending on the welding conditions. Therefore, it is preferable to alternately arrange direct current and alternating current depending on the purpose, or to use an alternating current connection method with less arc interference, such as Scott connection.

また多電極潜弧溶接への集団電極子列の適用は、第2図
のように従来の電極lとの組合せの場合でも、少なくと
も最終的に表面ビード形成に最も影響を与える最後尾の
電極に、集団電極子列11を適用すれば、十分に前述し
たような集団電極子列の熱源特性が生かされ、高速度の
溶接においても。
Furthermore, the application of collective electrode arrays to multi-electrode submerged arc welding, even when used in combination with conventional electrodes 1 as shown in Figure 2, applies at least to the last electrode, which ultimately has the greatest effect on surface bead formation. If the collective electrode array 11 is applied, the heat source characteristics of the collective electrode array as described above can be fully utilized, even in high-speed welding.

ビード止端部凝固開始位置7の前進が防止され。The bead toe solidification start position 7 is prevented from advancing.

アンダーカットのない良好なビードが形成される。A good bead with no undercuts is formed.

さらに第3図に示すように、すべての電極に集団電極子
列11を適用した場合には、先行電極の熱源特性に後行
電極の熱源特性が重畳される結果。
Furthermore, as shown in FIG. 3, when the collective electrode array 11 is applied to all electrodes, the heat source characteristics of the trailing electrode are superimposed on the heat source characteristics of the leading electrode.

ビード止端部凝固開始位置7は、溶融池間でより後方に
位置するようになり、多電極の一部に集団電極子列會適
用する場合よりも、一層高速度の溶接が可能になる。
The bead toe solidification start position 7 is located further back between the molten pools, and welding at a higher speed is possible than when a collective electrode array is applied to a part of a multi-electrode.

以上のような熱源特性は、集団電極子列によらなくても
帯状電極の長軸方向を溶接線方向に設定することによっ
ても同様な効果が期待されるが。
The heat source characteristics described above can be expected to have similar effects by setting the long axis direction of the strip electrode in the direction of the welding line, without relying on the collective electrode array.

しかしながら帯状電極では、集団電極子列で実現される
ような安定なアーク発生状況にはならず。
However, the band-shaped electrodes do not provide the stable arc generation situation that is achieved with collective electrode arrays.

電極内をアークが発生し易い場所を求めて走査するため
にアークの安定性が悪く、高速度溶接においては、ビー
ド蛇行の不安定現象が問題となって、本発明方法のよう
な効果は得られない。
Since the electrode is scanned for locations where arcs are likely to occur, arc stability is poor, and in high-speed welding, unstable bead meandering becomes a problem, and the method of the present invention is not as effective. I can't do it.

次に本発明を2電極潜、弧溶接に適用して実施した結果
を説明する。
Next, the results of applying the present invention to two-electrode latent and arc welding will be described.

実施例1 2電極潜弧溶接法の後行熱源に1本発明による集団電極
子列を゛第2図の要′領で適用した実施例を示す。
Embodiment 1 An embodiment is shown in which a collective electrode array according to the present invention is applied to the trailing heat source of a two-electrode submerged arc welding method in the manner shown in FIG. 2.

集団電極子列としては、1.6mφのワイヤを溶接線方
向に、ワイヤ中心間距離を6mで4本配列し、ワイヤ径
に対する配列長さの比’tillとして溶接を行なった
。この溶接条件および溶接結果を第1表に示す。
As a group electrode array, four wires of 1.6 mφ were arranged in the direction of the welding line with a distance between wire centers of 6 m, and welding was performed with the ratio of the array length to the wire diameter as 'till. The welding conditions and welding results are shown in Table 1.

第  1  表 なお、ここで電極間距離とは1本発明方法においては先
行電極のワイヤ中心と、後行の集団電極子りqの先頭ワ
イヤ中心間距離を指し、従来法にあっては、先行、後行
両電極中心間距離を指すものである。
Table 1 Note that the interelectrode distance here refers to the distance between the wire center of the leading electrode and the leading wire center of the trailing collective electrode q in the method of the present invention; , refers to the distance between the centers of both trailing electrodes.

本発明による集団電極子列番用いることによって、従来
法で位得られなかった高速度での良好な溶接が可能にな
った。
By using the collective electrode array number according to the present invention, it has become possible to perform good welding at high speeds that were not possible with conventional methods.

実施例2 2電極潜弧溶接法において、先行電極および後行電極の
両者に本発明による集団電極子列を第3図の要領で適用
した実施例を示す。
Example 2 An example will be shown in which the collective electrode array according to the present invention is applied to both the leading electrode and the trailing electrode in the manner shown in FIG. 3 in a two-electrode submerged arc welding method.

先行の集団電極子列としては1.2Mφのワイヤを溶接
線方向にワイヤ中心間距離を4mで3本紀列し、ワイヤ
径に対する配列長さの比を10として、後行の集団電極
子列は実施例1と同条件で溶接を行なった。この溶接条
件および溶接結果を第2表に示す。
As the preceding collective electrode array, three 1.2Mφ wires were arranged in the direction of the welding line with a distance between wire centers of 4 m, and the ratio of the array length to the wire diameter was set to 10. Welding was performed under the same conditions as in Example 1. The welding conditions and welding results are shown in Table 2.

第  2  表 なおここで電極間距離とは、本発明方法においては先行
集団電極子列最後尾のワイヤ中心と、後行集団電極子列
の先頭のワイヤ中心間距離を指し、従来法にあっては実
施例1の場合と同様のことを意味するものである。
Table 2 Here, the inter-electrode distance in the method of the present invention refers to the distance between the center of the wire at the end of the leading collective electrode column and the center of the wire at the beginning of the trailing collective electrode column; means the same thing as in Example 1.

本発明方法によって、従来法での限界速度に比較して、
はぼ2倍の高速度においてもアンダーカットの発生のな
い良好なピードを得ることが可能になった。
By the method of the present invention, compared to the limit speed of the conventional method,
It is now possible to obtain a good peed without undercutting even at a speed that is twice as high.

以上の実施例は、いずれも先行電極および後行電極から
なる2電極潜弧溶接について説明したが、本発明による
溶接熱源は、2電極に対する適用に限定されるものでは
なく、2電極以上の複数電極の一部普たはすべての電極
に置きかえて、同様に適用することができる。
In the above embodiments, two-electrode submerged arc welding consisting of a leading electrode and a trailing electrode was explained, but the welding heat source according to the present invention is not limited to application to two electrodes, but multiple electrodes of two or more. It can be similarly applied by replacing some or all of the electrodes.

また配列方法としては、溶接線方向に直線的に配列する
ことに限定して説明したが、開先精度またはそのならい
精度が不良な場合等には、ワイヤ径の範囲内でちどり状
にずらして配列することもできる。
In addition, the explanation was limited to arranging the wires linearly in the direction of the welding line, but if the groove accuracy or the tracing accuracy is poor, the arrangement method may be staggered within the range of the wire diameter. It can also be arranged.

本発明方法によれば、アンダーカットのない良好なピー
ドを高速度の溶接で得ることが可能となり、溶接能率向
上の点ではなはだ有効である。
According to the method of the present invention, it is possible to obtain a good pead without undercuts by high-speed welding, and it is extremely effective in improving welding efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の多電極溶接法の説明図で、(a)は低速
度でアンダーカットの発生しない場合の(1)は平面図
(2)のA −A’矢視図、(3)はB −B’矢視図
、(4)はC−σ矢視図、(b)は高速度においてアン
ダーカットが発生している場合の(1)は平面図(2)
のA −A’矢視図、(3)はB−ピ矢視図、(4)は
c −c’矢視図、第2図及び第3図は1本発明による
高速潜弧溶接矢視図、(b)は平面図である。 l・・・先行電極     2・・・後行電極3・・・
溶融池      4・・・凝固ピード5・・・母材 
      6・・・溶融金属後退位置7・・・ビード
止端部凝固開始位置 8・・・アークによって堀られたつは 9・・・凝固壁 10・・・従来法によるアーク熱源 11・・・集団電極子列 12・・・集団電極子列によるアーク熱源第7図(a) 第7図Cb) 第2図 第3面 手 続 補 正 書(自発) 昭和57年4ル1 日 特許庁長官 島 1)春樹 殿 l事件の表示 昭和57年特許願第5927号2発明の
名称 高速壱弧溶接法 3補正をする者 事件との関係 特許出願人任 所  
東京都千代田区大手町2丁目6番3号名 称  (66
5)  新日本製鐵株式食紅代表者 武  1)   
豊 4代 理 人 住 所  東京都中央区日本橋3丁目3番3号21社 (づ 5補正命令の日付 昭和  年  月  日(発送日)
6補正により増加する発明の数 7補正の対象 明#I暑の発明の詳細な説明の欄8補正
の内容 1 明細書2貞13行目の「距離」を「位置」に改める
。 2 明細書8頁17行目の「浴融油量」を「浴ml池内
]に改める。
Figure 1 is an explanatory diagram of the conventional multi-electrode welding method, where (a) is a low speed and no undercut occurs, (1) is a plan view, (2) is a view taken along arrows A-A', and (3) is a B-B' arrow view, (4) is a C-σ arrow view, (b) is a plan view when undercut occurs at high speed (1) is a plan view (2)
, (3) is a B-p arrow view, (4) is a c-c' view, and Figures 2 and 3 are a high-speed submerged arc welding view according to the present invention. FIG. 3B is a plan view. l... Leading electrode 2... Trailing electrode 3...
Molten pool 4... Solidification speed 5... Base material
6... Molten metal retreat position 7... Bead toe solidification start position 8... The groove dug by the arc 9... Solidified wall 10... Conventional arc heat source 11... Collective electrode Child row 12...Arc heat source by collective electrode row Figure 7 (a) Figure 7 Cb) Figure 2, Section 3 Proceedings Amendment (self-motivated) April 1, 1980 Commissioner of the Japan Patent Office Shima 1 ) Indication of the Haruki Tono case 1982 Patent Application No. 5927 2 Title of the invention High-speed arc welding method 3 Person making the amendment Relationship to the case Patent applicant's office
2-6-3 Otemachi, Chiyoda-ku, Tokyo Name (66)
5) Nippon Steel Corporation Food Coloring Representative Takeshi 1)
Toyota 4th generation Osamu Address: 21, 3-3-3 Nihonbashi, Chuo-ku, Tokyo (Date of amended order: Showa 1920, Month, Day (shipment date))
6 Number of inventions increased by amendment 7 Subject of amendment Column 8 Detailed explanation of invention of Ming #I Heat 8 Contents of amendment 1 Change "distance" in line 13 of specification 2 to "position". 2. "Bath molten oil amount" on page 8, line 17 of the specification has been changed to "bath ml pond".

Claims (1)

【特許請求の範囲】[Claims] 多電極潜弧溶接法において、少なくともその一部の電極
に、溶接線方向に配列された複数個のワイヤからなる集
団電極子列を用いることを特徴とする高速潜弧溶接法。
A high-speed submerged arc welding method characterized in that, in the multi-electrode submerged arc welding method, a collective electrode array consisting of a plurality of wires arranged in the welding line direction is used for at least some of the electrodes.
JP592782A 1982-01-20 1982-01-20 High speed submerged arc welding method Granted JPS58125373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP592782A JPS58125373A (en) 1982-01-20 1982-01-20 High speed submerged arc welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP592782A JPS58125373A (en) 1982-01-20 1982-01-20 High speed submerged arc welding method

Publications (2)

Publication Number Publication Date
JPS58125373A true JPS58125373A (en) 1983-07-26
JPH0150507B2 JPH0150507B2 (en) 1989-10-30

Family

ID=11624519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP592782A Granted JPS58125373A (en) 1982-01-20 1982-01-20 High speed submerged arc welding method

Country Status (1)

Country Link
JP (1) JPS58125373A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02258168A (en) * 1988-08-31 1990-10-18 Kawasaki Steel Corp Method and apparatus of arc welding and flux cored wire
US5140140A (en) * 1990-11-15 1992-08-18 Pollack Alex J Method and apparatus of submerged arc welding with electrodes in tandem

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4837348A (en) * 1971-09-14 1973-06-01

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4837348A (en) * 1971-09-14 1973-06-01

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02258168A (en) * 1988-08-31 1990-10-18 Kawasaki Steel Corp Method and apparatus of arc welding and flux cored wire
US5140140A (en) * 1990-11-15 1992-08-18 Pollack Alex J Method and apparatus of submerged arc welding with electrodes in tandem

Also Published As

Publication number Publication date
JPH0150507B2 (en) 1989-10-30

Similar Documents

Publication Publication Date Title
US4214141A (en) Multiple electrode submerged arc welding method
US2620423A (en) Method of electric welding
JPS5868468A (en) Electrode tandem type submerged arc welding method
JPS58125373A (en) High speed submerged arc welding method
JPH0221911B2 (en)
JPS59110474A (en) Arc welding method
JPH0453617B2 (en)
US3763345A (en) Method of electronic beam welding
JPH10109171A (en) Submerged arc welding method of high current density
JPH0429470B2 (en)
JPS5823189B2 (en) Daiden Ryuu MIG Arkuyousetsuhou
JPS5841946B2 (en) Thick plate welding method in MIG welding
JPS6247110B2 (en)
JPS58168479A (en) Multielectrode submerged arc welding method
JP3300193B2 (en) Single-sided submerged arc welding method
JPH0429469B2 (en)
SU889351A1 (en) Nonconsumable elestrode
JPS5492536A (en) Submerged arc welding method
JPH07112635B2 (en) Solid wire
SU1712093A1 (en) Method of welding with three-phase arc
JPS5913575A (en) Two electrode metal active gas welding method
JPH0471782A (en) Submerged arc welding method at high speed
JPS6157112B2 (en)
SE445812B (en) PROCEDURE FOR PREPARING A T-JOINT
JPS6239078B2 (en)