JPS58124922A - Pressure sensor - Google Patents

Pressure sensor

Info

Publication number
JPS58124922A
JPS58124922A JP683682A JP683682A JPS58124922A JP S58124922 A JPS58124922 A JP S58124922A JP 683682 A JP683682 A JP 683682A JP 683682 A JP683682 A JP 683682A JP S58124922 A JPS58124922 A JP S58124922A
Authority
JP
Japan
Prior art keywords
pressure sensor
core
pressure
present
sensitivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP683682A
Other languages
Japanese (ja)
Inventor
Chiaki Tanuma
千秋 田沼
Katsunori Yokoyama
勝徳 横山
Toshiro Yanagisawa
柳沢 俊郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP683682A priority Critical patent/JPS58124922A/en
Publication of JPS58124922A publication Critical patent/JPS58124922A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/12Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress
    • G01L1/127Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress by using inductive means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/12Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress
    • G01L1/125Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress by using magnetostrictive means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To obtain a titled sensor of high sensitivity by molding part or the whole of a core with a pressure transmitting medium. CONSTITUTION:An energizing winding 24 and an output winding 25 are wound around a core 22 consisting of a magnetostrictive material and a coating layer or embedding layer 23 of a pressure transmitting medium is applied thereon.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明け、圧力センサーに関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a pressure sensor.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

磁歪効果を利用した磁性圧力変換器で、小型コアを用い
た圧力センサーは、熱硬化性プラスチック、プレストレ
ストコンクリート等の材料中に埋め込み、それらが硬化
する際に、このような材料中に発生する内部応力を測定
することができることが知られている。
This is a magnetic pressure transducer that uses the magnetostrictive effect, and the pressure sensor that uses a small core is embedded in materials such as thermosetting plastics and prestressed concrete, and when they harden, the internal pressure that occurs in such materials It is known that stress can be measured.

これらの内部応力の測定は、材料中に埋め込まれたコア
の存在による重大な副作用ガしに行なわれる。四に材料
の放射線照射膨張及び収縮等により、これらの材料にお
きる付加的内部応力がすぐに、これらのコアを用いて測
定し得る。
These internal stress measurements are made due to the significant side effect of the presence of a core embedded in the material. Fourth, the additional internal stresses that occur in these materials, such as due to radiation expansion and contraction of the materials, can be readily measured using these cores.

第1図は既知の磁性圧力変換装置の例であシ、磁歪材料
よりなるコア12に寸いた励磁捲線14(1次コイル)
を介して接続した信号発生器1!によって励起されるコ
ア12及び出力捲線15(2次コイル)を有するマイク
ロ変換器4一応力ia+定に用いる方法を示す回路図の
概略図であ2゜励磁捲線(1次コイル)及び出力捲線(
2次コイル)のターン数は適宜選択でき、2次コイルの
ターン数をふやすことにより−J(3大きな出力が得ら
れる。ある種の応用においては、この事の出力信号に付
随する雑音を消すという利点がある。典型的応用例にお
いては、圧力センサー13はエポキシ樹脂内に埋め込壕
れ、硬化期間にエポキシ樹脂内に発生する内部応力は、
コア12に1いた出力捲線15(2次コイル)に誘起さ
れた出力信号を監視することによって観測される。出力
慴号は増幅器16に供給され、従来のエレクトロメータ
17等で表示する。
FIG. 1 shows an example of a known magnetic pressure transducer, in which an excitation winding 14 (primary coil) is arranged around a core 12 made of magnetostrictive material.
Signal generator connected via 1! Schematic illustration of a circuit diagram illustrating the method used to determine the stress ia+ of a microtransducer 4 with a core 12 and an output winding 15 (secondary coil) excited by 2° excitation winding (primary coil) and an output winding (secondary coil).
The number of turns in the secondary coil can be selected as appropriate; by increasing the number of turns in the secondary coil, -J(3) greater output can be obtained. In some applications, this can eliminate the noise associated with the output signal. In a typical application, the pressure sensor 13 is embedded within the epoxy resin, and the internal stress generated within the epoxy resin during curing is
This is observed by monitoring the output signal induced in the output winding 15 (secondary coil) located in the core 12. The output signal is fed to an amplifier 16 and displayed on a conventional electrometer 17 or the like.

このような応用例は、注型絶縁物の樹脂注型時に液状か
ら固体状にいたる過程及び高温から室温に冷却される過
程におGる硬化収縮の内部応力の解析に用いられる。
Such an application example is used to analyze the internal stress caused by curing shrinkage during the process of changing from a liquid state to a solid state and during the process of cooling from a high temperature to room temperature during resin casting of a cast insulator.

一方、これらの注型絶縁物はその内部にコイルや導体、
鉄心等を埋め込んで樹脂で一体化された構造をとる場合
が多い。このため機器の運転、停止に伴い絶縁層内に温
度分布が生じ樹脂と埋込物の熱膨張係数や弾性率の差に
より熱応力を発生する。このよう左向部応力や熱応力の
大きさが絶縁物の強度以上になると絶縁層に剥離や亀裂
が発生するため、とれらの内部応力や熱応力の大きさ及
び分布の測定に用いられる。
On the other hand, these cast insulators have coils, conductors,
In many cases, it has a structure in which an iron core or the like is embedded and integrated with resin. For this reason, temperature distribution occurs within the insulating layer as the equipment starts and stops, and thermal stress is generated due to the difference in coefficient of thermal expansion and modulus of elasticity between the resin and the embedded material. If the magnitude of the leftward stress or thermal stress exceeds the strength of the insulator, peeling or cracking will occur in the insulating layer, so it is used to measure the magnitude and distribution of internal stress and thermal stress.

従来、このような圧力センサーの感度向上の手段として
は、磁歪材料の改良が試みられている。
Conventionally, attempts have been made to improve magnetostrictive materials as a means of improving the sensitivity of such pressure sensors.

すなわち、樹脂内部応力測定の精度の向上には、高感度
ガ圧力センサーが必要であり、圧力センサーのコアに用
いられるフェライト材料の磁歪量等の材料定数を改善す
ることにより、感度向上がなされてきた。
In other words, a highly sensitive gas pressure sensor is required to improve the accuracy of resin internal stress measurement, and sensitivity has been improved by improving the material constants such as the amount of magnetostriction of the ferrite material used in the core of the pressure sensor. Ta.

しかしながら、このような手法には限界があり、感度、
精度とも十分なものとはいえず、より感度の高い圧力セ
ンサーが望まれている。
However, such methods have limitations, such as sensitivity,
The accuracy is not sufficient either, and a pressure sensor with higher sensitivity is desired.

〔発明の目的〕[Purpose of the invention]

本発明は、前述した従来の圧力センサーの問題点を改良
したもので、高感度々圧力センサーを提供することを目
的とする。
The present invention improves the problems of the conventional pressure sensor described above, and aims to provide a high-sensitivity pressure sensor.

〔発明の概要〕[Summary of the invention]

本発明は、磁歪材料からカフコアに励磁捲線及び出力捲
線を有する圧力センサーにおいて、コアの一部ないし全
体が圧力伝達媒体でモールドされていることを特徴とす
る圧力センサーである。
The present invention is a pressure sensor having a cuff core made of magnetostrictive material and having an excitation winding and an output winding, characterized in that the core is partially or entirely molded with a pressure transmission medium.

本発明に用いる圧力伝達媒体としては、プラスチック、
シリコーンゴム及びガラス等が挙げられるが、他の圧力
伝達媒体でもよい。
The pressure transmission medium used in the present invention includes plastics,
Examples include silicone rubber and glass, but other pressure transmission media may also be used.

又、本発明において、モールドとは、被覆又は一部もし
くけ全体に埋め込みを施すことを意味する。
Furthermore, in the present invention, molding means covering or partially embedding the entire structure.

被覆層又は埋め込み層の厚さは、0.05〜3.5閣で
あればよいが、0.1〜0.5閣の埋め込みを施すこと
が好ましい。
The thickness of the covering layer or the embedding layer may be 0.05 to 3.5 mm, but preferably the thickness is 0.1 to 0.5 mm.

すなわち、本発明け、従来の圧力センサーのコア並びに
励磁捲線及び出力捲線を含む検知部分の一部ないし全体
が圧力伝達媒体で被覆又は埋め込せれるととによシ、従
来のものよシ感度を高められた圧力センサーである。
That is, according to the present invention, if a part or the whole of the sensing portion including the core and excitation winding and output winding of the conventional pressure sensor is coated or embedded with a pressure transmission medium, the sensitivity is higher than that of the conventional pressure sensor. It is an enhanced pressure sensor.

以下、実施例により本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail with reference to Examples.

〔発明の実施例〕[Embodiments of the invention]

第1図に、従来の圧力センサーの概略を示す。 FIG. 1 shows an outline of a conventional pressure sensor.

磁歪材料よりなるコア12には、例えば4ターンの励磁
捲線14及び8ターンの出力捲線15が設けられている
。この励磁捲線14は信号発生器11に接続されており
、出力捲線15は交流増幅器16を介してエレクトロメ
ータ(電位計)17に接続され圧力を検出する。尚、こ
の時、出力捲線15のターン数を増加させると、よシ大
きな出力電圧が得られ、ある種の応用においては、出力
信号に付随する雑音を消失させる利点がある。
The core 12 made of magnetostrictive material is provided with, for example, a four-turn excitation winding 14 and an eight-turn output winding 15 . The excitation winding 14 is connected to a signal generator 11, and the output winding 15 is connected to an electrometer 17 via an AC amplifier 16 to detect pressure. In this case, increasing the number of turns in the output winding 15 can provide a larger output voltage, which in some applications has the advantage of eliminating noise associated with the output signal.

第2図に、本発明の圧力センサーの概略を示す。FIG. 2 schematically shows the pressure sensor of the present invention.

磁歪材料より々るコア22(外径1.3■、内径0.7
制、厚さ0.5111111 )、励磁捲線24、出力
捲線25、信号発生器21、交流増幅器26及びエレク
トロメータ(電位計)27、並びに検知方法は、従来の
圧力センサーと同様である。磁歪材料よシなるコア22
には、圧力伝達媒体の被覆層又は埋め込み層23が施さ
れている。本実施例においては、圧力伝達媒体として、
エポキシ樹脂を用いたが、他のプラスチック又はシリコ
ーンゴム及びガラス等の他の圧力伝達媒体を用いても同
様の効果が得られる。エポキシ樹脂としては、エマーソ
ン・エンド・カミング社製のスタイキャストナ2651
−MMを用いた。
Core 22 made of magnetostrictive material (outer diameter 1.3 mm, inner diameter 0.7
The excitation winding 24, the output winding 25, the signal generator 21, the AC amplifier 26, the electrometer 27, and the detection method are the same as those of conventional pressure sensors. Core 22 made of magnetostrictive material
is provided with a covering layer or buried layer 23 of pressure transmission medium. In this example, as the pressure transmission medium,
Although epoxy resin was used, similar effects can be obtained using other pressure transmitting media such as other plastics or silicone rubber and glass. The epoxy resin is Stycastna 2651 manufactured by Emerson & Cuming.
-MM was used.

被覆を施したもの(部分的モールド型)の被覆層の厚さ
は約0.25 tanであシ、埋め込みを施したもの(
完全モールド型)の埋め込み層の厚さは、0.2〜0.
5+nmであった。前記部分的モールド型において、エ
ポキシ樹脂はコア22の中心部及び外側に十分に被覆を
施しだ。エポキシ樹脂は、室温において24時間で硬化
させた。従来及び本発明の圧カセ汁−の感度特性の比較
を第3図に示す。図において、曲線aは従来の圧力セン
サーの、曲線すは本発明の部分的モールド型の圧力セン
サーの、曲線Cは本発明の完全モールド型の圧力センサ
ーのそれぞれの感度特性を表わす。これらの感度特性は
、一定の励磁条件のもとで、シリコーン油中でO〜50
0〜/−の静水圧圧力を印加した時に、出力捲線25に
誘起される出力電圧を表わす。
The thickness of the coating layer for the coated type (partially molded type) is approximately 0.25 tan, and for the embedded type (partially molded type).
The thickness of the buried layer (completely molded) is 0.2 to 0.
It was 5+nm. In the partial mold, the epoxy resin is fully coated on the center and outside of the core 22. The epoxy resin was cured for 24 hours at room temperature. FIG. 3 shows a comparison of the sensitivity characteristics of the conventional pressure casserole juice and the present invention. In the figure, curve a represents the sensitivity characteristic of a conventional pressure sensor, curve A represents the sensitivity characteristic of the partially molded pressure sensor of the present invention, and curve C represents the sensitivity characteristic of the fully molded pressure sensor of the present invention. These sensitivity characteristics vary from O to 50 in silicone oil under certain excitation conditions.
It represents the output voltage induced in the output winding 25 when a hydrostatic pressure of 0 to /- is applied.

図から明らかなように、本発明の圧力センサーは、従来
の圧力センサーと比較し、約5倍の感度を示した。特に
完全モールド型の圧力センサーは、部分的モールド型の
圧力センサーに比較し1、よシ一層良好力感度を示した
As is clear from the figure, the pressure sensor of the present invention exhibited approximately five times the sensitivity as compared to the conventional pressure sensor. In particular, fully molded pressure sensors exhibited much better force sensitivity than partially molded pressure sensors.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、単に圧力伝達媒体で従来の圧力センサ
ーをモールドするだけで高感度々圧力センサーを提供で
きる。特に、典型的応用例である樹脂内部応力測定の高
精度化が可能となる。
According to the present invention, a highly sensitive pressure sensor can be provided by simply molding a conventional pressure sensor with a pressure transmission medium. In particular, it is possible to improve the accuracy of resin internal stress measurement, which is a typical application example.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の磁性圧力変換装置の概略図、第2図は
、本発明の圧力センサーを用いた磁性圧力変換装置の概
略図、第3図は、従来の圧力センサーと本発明の圧力セ
ンサーの感度の比較を示す図である。 第3図において、曲線aは従来の圧力センサーの、曲線
すけ本発明の部分的モールド型の圧力センサーの、曲線
Cは本発明の完全モールド型の圧力センサーのそれぞれ
の感度特性を表わす。 11.21・・・信号発生器、12.22・・・コア、
13・・・圧力センサー、14.24・・・励磁捲線、
15.25・・・出力捲線、16.26・・・交流増幅
器、17.27・・・エレクトロメータ(電位計)、2
3・・・被覆層又は埋め込み層(モールド層)。 第3図 圧力  (Kg /cm2)
Fig. 1 is a schematic diagram of a conventional magnetic pressure transducer, Fig. 2 is a schematic diagram of a magnetic pressure transducer using a pressure sensor of the present invention, and Fig. 3 is a schematic diagram of a conventional pressure sensor and a pressure transducer of the present invention. FIG. 3 is a diagram showing a comparison of sensor sensitivities. In FIG. 3, curve a represents the sensitivity characteristics of the conventional pressure sensor, curve C represents the sensitivity characteristics of the partially molded pressure sensor of the present invention, and curve C represents the sensitivity characteristics of the fully molded pressure sensor of the present invention. 11.21... Signal generator, 12.22... Core,
13...Pressure sensor, 14.24...Excitation winding,
15.25... Output winding, 16.26... AC amplifier, 17.27... Electrometer (potential meter), 2
3...Covering layer or embedding layer (mold layer). Figure 3 Pressure (Kg/cm2)

Claims (1)

【特許請求の範囲】[Claims] 磁歪材料からなるコアに励磁捲線及び出力捲線を有する
圧力センサーにおいて、コアの一部ないし全体が圧力伝
達媒体でモールドされていることを特徴とする圧力セン
サー。
1. A pressure sensor having a core made of a magnetostrictive material and having an excitation winding and an output winding, the core being partially or entirely molded with a pressure transmission medium.
JP683682A 1982-01-21 1982-01-21 Pressure sensor Pending JPS58124922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP683682A JPS58124922A (en) 1982-01-21 1982-01-21 Pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP683682A JPS58124922A (en) 1982-01-21 1982-01-21 Pressure sensor

Publications (1)

Publication Number Publication Date
JPS58124922A true JPS58124922A (en) 1983-07-25

Family

ID=11649315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP683682A Pending JPS58124922A (en) 1982-01-21 1982-01-21 Pressure sensor

Country Status (1)

Country Link
JP (1) JPS58124922A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60253766A (en) * 1984-04-04 1985-12-14 ゼネラル・エレクトリツク・カンパニイ Heat transfer system, and device and method for controlling said system, and air-conditioning system containing related mechanism detecting and indicating condition of liquid reduction of said system and specific small-sized pressure switch and control method and device thereof
EP0432122A2 (en) * 1989-12-04 1991-06-12 SKF Nova AB Hub bearing unit for vehicles

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3717039A (en) * 1969-08-04 1973-02-20 Int Technical Ind Method and means for amplifying the stress and strain in a stress-sensitive component

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3717039A (en) * 1969-08-04 1973-02-20 Int Technical Ind Method and means for amplifying the stress and strain in a stress-sensitive component

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60253766A (en) * 1984-04-04 1985-12-14 ゼネラル・エレクトリツク・カンパニイ Heat transfer system, and device and method for controlling said system, and air-conditioning system containing related mechanism detecting and indicating condition of liquid reduction of said system and specific small-sized pressure switch and control method and device thereof
EP0432122A2 (en) * 1989-12-04 1991-06-12 SKF Nova AB Hub bearing unit for vehicles
EP0432122A3 (en) * 1989-12-04 1992-07-29 Skf Nova Ab Hub bearing unit for vehicles

Similar Documents

Publication Publication Date Title
US8461677B2 (en) Magnetic field sensors and methods for fabricating the magnetic field sensors
US8286497B2 (en) Strain sensor
US6639401B2 (en) Contactless, transformer-based measurement of the resistivity of materials
JPS58124922A (en) Pressure sensor
US2667068A (en) System for measuring the prestress of concrete tanks
JP2000292506A (en) Magnetic impedance element
JPS631528B2 (en)
JP3148423B2 (en) Defect detection method for fiber reinforced plastic members
US11495399B2 (en) Packaging technique for inductive conductivity sensors
JPH06155583A (en) Method for adhesion of fiber reinforced plastic member and method for detection of adhesion inferiority
JPH08222426A (en) Coil structure of superconducting magnet
JPS6131066B2 (en)
RU94721U1 (en) MAGNETIC FIELD SENSOR
JPS631527B2 (en)
SU1182286A1 (en) Load gauge
JPS62182630A (en) Dynamic quantity detection element and its preparation
CA3146695A1 (en) Packaging technique for inductive conductivity sensors
JPH0763627A (en) Dynamic amount sensor
Vedrine et al. Measurement of thermo-mechanical properties of NbTi windings for accelerator magnets
RU2044311C1 (en) Method of inspection of ferromagnetic articles
Goktepe et al. Variation of the localised flux densities in the amorphous toroidal transducer core
JPH05326294A (en) Mold transformer winding
Ling et al. Investigation of magnetic degradation of wound cores due to adhesive bonding
JPH04131920U (en) Temperature detection device for molded transformer
JPH04295735A (en) Torque detecting method