JPS58123506A - Thick film optical integrated circuit of diffusion type - Google Patents

Thick film optical integrated circuit of diffusion type

Info

Publication number
JPS58123506A
JPS58123506A JP627482A JP627482A JPS58123506A JP S58123506 A JPS58123506 A JP S58123506A JP 627482 A JP627482 A JP 627482A JP 627482 A JP627482 A JP 627482A JP S58123506 A JPS58123506 A JP S58123506A
Authority
JP
Japan
Prior art keywords
optical
refractive index
lenses
plate
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP627482A
Other languages
Japanese (ja)
Inventor
Ritsuo Hasumi
蓮見 律男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP627482A priority Critical patent/JPS58123506A/en
Publication of JPS58123506A publication Critical patent/JPS58123506A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/134Integrated optical circuits characterised by the manufacturing method by substitution by dopant atoms
    • G02B6/1342Integrated optical circuits characterised by the manufacturing method by substitution by dopant atoms using diffusion
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2848Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers having refractive means, e.g. imaging elements between light guides as splitting, branching and/or combining devices, e.g. lenses, holograms

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To make mass production of thick film optical integrated circuits having high scales of integration and uniform perfomance by diffusing a material to be changed of refractive index in a transparent thin plate of a dielectric through a mask thereby forming a refractive index distribution acting equivalently like lenses and optical transmission lines internally. CONSTITUTION:A transparent plastic material 2 of a low refractive index is diffused through a mask in a transparent thin plastic plate 1, whereby a Fresnel lens 3 and lenses 4, 5 are formed. The plate 1 is disposed on a substrate 7 through a clad layer 6, and an optical fiber 8 for inputting and optical fibers 9, 10 for outputting are connected thereto to provide optical branching lines. The light 11 inputted through an optical fiber 8 for inputting propagates through the plate 1, spreads only in the plane direction, and is converted to parallel rays by the lens 3. The rays are separated by the lenses 4, 5 to the ratios of the respective widths thereof and are condensed and outputted to and from the fibers 9, 10.

Description

【発明の詳細な説明】 この発明は厚膜光集積回路の構造に関するものである。[Detailed description of the invention] This invention relates to the structure of a thick film optical integrated circuit.

従来の厚膜光集積回路は、あらかじめレンズやプリズム
をコア層の厚さに加工した物を透明プラスチック等のコ
ア層に埋込んで光学回路を形成していたが、この方法で
は寸法の小さい物の加工が困難であるため集積度の高い
厚膜光集積回路を作れず、また多光学素子の正確な位置
合せが面倒で再現性に乏しい欠点があった。そこでこの
発明は集積度が高く性能が均一な厚膜光集積回路の量産
化を目的としており、そのだめの手段として少なくと本
一方の面よりマスクを通して屈折率全変化させる物質を
透明誘電体薄板に拡散させ、レンズや光伝送路と等画の
作用をする屈折率分布全内部に形成してコア層としてい
る。そしてその周囲の壁面に反射鏡や回折格子などの各
種光学素子や半導体レーザや光電変換素子、さらに入・
出力手段としての光ファイバ等を目的に応じて取付けて
光学回路を構成している。この方法によればマスクの形
状は任意に作れるので非球面レンズのような無収差の物
も容易に得られ、また1m−前後の非常に小さいレンズ
や、フレネルレンズのような特殊な形状の物も製作でき
る。
In conventional thick-film optical integrated circuits, lenses and prisms are pre-processed to the thickness of the core layer and then embedded in a core layer of transparent plastic to form an optical circuit. Because it is difficult to process, it is not possible to create a thick-film optical integrated circuit with a high degree of integration, and accurate alignment of multiple optical elements is troublesome, resulting in poor reproducibility. Therefore, the purpose of this invention is to mass-produce thick-film optical integrated circuits with a high degree of integration and uniform performance.As a means of achieving this, a material that changes the refractive index completely is applied to a transparent dielectric thin plate from at least one side of the book through a mask. The core layer is formed entirely within the refractive index distribution, which acts like a lens or optical transmission path. The surrounding walls are equipped with various optical elements such as reflective mirrors and diffraction gratings, semiconductor lasers, and photoelectric conversion elements, as well as optical elements such as reflectors and diffraction gratings.
An optical circuit is constructed by attaching an optical fiber or the like as an output means depending on the purpose. According to this method, the shape of the mask can be made arbitrarily, so it is easy to obtain aberration-free objects such as aspherical lenses, and it is also possible to obtain objects with no aberrations such as aspherical lenses, as well as very small lenses of around 1 m or with special shapes such as Fresnel lenses. can also be produced.

以下図面に従ってこの発明の説明全行なう。The present invention will be fully explained below with reference to the drawings.

第1図と第2図はこの発明の一実施例でβす、光分岐路
への応用例である。第1図において透明プラスチック薄
板1にはマスクを通して低ノ1パ折率透明プラスチック
材料2を図のような形状に拡散させ、フレネルレンズ3
とレンズ4・5を形成しである。この透明プラスチック
薄板1をクラッド層6を介して基板7上に配置し、入力
用光ファイバ8と出力用光ファイバ9・lO盆接続する
と光分岐路になる。第1図において入力用光ファイバ8
から入力した光11は透明プラスチック薄板1を伝搬し
、平面方向のみ拡がってフレネルレンズ3により平行光
線に変換される。モしてレンズ4・5によりそれぞれの
幅の比に分離されて、出力用光ファイバ9・10にそれ
ぞれ来光されて出力する。厚さ方向は第2図に示すよう
に普通の光導波路構造になっており、透明プラスチック
薄板lの厚さは入力用光ファイバ8のコア径に等し、い
かそれよりやや大きくなるようにしている。透明プラス
チック薄板lの上は低屈折率材料でコーティングしても
よく、複たクラッド層6は空気層を利用して周囲にスペ
ーサを設けて浮かせた構造にすると開口角を大きくでき
る。低屈折率透明プラスチック材料2は透明プラスチッ
ク薄板lの内部に拡赦しであるので、両名の境界は屈折
率が連続して変化しているため光11の一部が反射され
る事がない。従来の埋込構造では個々の光学集子の表面
に反射防止膜を形成する必要があったのと比較すると非
常に有オリであり、素子の果慎度を高めて回路の段数が
多くなるほど無反射による低損失性が役立つ。
FIGS. 1 and 2 show an embodiment of the present invention, which is an example of application to an optical branch path. In FIG. 1, a transparent plastic material 2 with a low refractive index is diffused into the shape shown in the figure through a mask on a transparent plastic thin plate 1, and a Fresnel lens 3 is formed.
and lenses 4 and 5 are formed. This transparent plastic thin plate 1 is placed on a substrate 7 via a cladding layer 6, and an optical branching path is formed by connecting an input optical fiber 8 and an output optical fiber 9 to an 1O2 line. In Fig. 1, input optical fiber 8
The light 11 inputted from the transparent plastic thin plate 1 propagates, spreads only in the plane direction, and is converted into parallel light by the Fresnel lens 3. The light beams are then separated into respective width ratios by lenses 4 and 5, and are sent to output optical fibers 9 and 10, respectively, for output. As shown in Fig. 2, the thickness direction is a normal optical waveguide structure, and the thickness of the transparent plastic thin plate l is equal to or slightly larger than the core diameter of the input optical fiber 8. There is. The top of the transparent plastic thin plate 1 may be coated with a low refractive index material, and the aperture angle can be increased by making the multiple cladding layers 6 float by using an air layer and providing a spacer around the periphery. Since the low refractive index transparent plastic material 2 is spread inside the transparent plastic thin plate 1, part of the light 11 is not reflected because the refractive index changes continuously at the boundary between the two. Compared to the conventional embedded structure, which required an anti-reflection film to be formed on the surface of each optical concentrator, this is very advantageous, and the more conservative the element is, the more the number of circuit stages increases. Low loss due to reflection is helpful.

第3図は別の一実施例であり、光分波器への応用例であ
る。第3図においてガラス薄板]2にはイオン交換法に
より高屈折率成分13が拡散されており、凸レンズ14
と光伝送路15が形成されている。凸レンズ14の外側
にはガラス薄板12の端面に平面回折格子16が密着固
定してあり、両者の組合せにより凹面回折格子の機能を
果たすようにしである。光伝送路15は凸レンズ14の
焦点位置に端があり、他端には人力用光ファイバ11′
7が接続しである。葦た凸レンズ14の別の焦点位置に
は複数本の出力用光ファイバ1B・19・20が接続し
て6:つて、入力用光ファイバ17から人力した光21
が光伝送路15を伝搬し、凸レンズ13と平面回折格子
16によって分光されて各出力用光ファイノく1B−1
9020に波長毎に分波される。この光分波器ではガラ
ス薄板12の外周部は平面でよいから加工費用が安上り
であり、1だ平面回折格子16でよいから凹面回折格子
よりも製造が容易である。凸レンズ14の形状は自由に
設計できるので、収差の無い凹面回折格子と等価の物が
容易に実現できる。
FIG. 3 shows another embodiment, which is an example of application to an optical demultiplexer. In FIG. 3, a high refractive index component 13 is diffused into the thin glass plate 2 by an ion exchange method, and a convex lens 14
An optical transmission line 15 is formed. On the outside of the convex lens 14, a flat diffraction grating 16 is closely fixed to the end face of the thin glass plate 12, and the combination of the two serves as a concave diffraction grating. The optical transmission line 15 has one end at the focal point of the convex lens 14, and the other end has an optical fiber 11' for human power.
7 is connected. A plurality of output optical fibers 1B, 19, and 20 are connected to different focal positions of the reed convex lens 14.
propagates through the optical transmission line 15, is separated by the convex lens 13 and the plane diffraction grating 16, and is divided into various output optical fibers 1B-1.
The signal is demultiplexed into 9020 wavelengths. In this optical demultiplexer, the outer periphery of the thin glass plate 12 can be flat, so the processing cost is low, and since the diffraction grating 16 is a single diagonal plane, it is easier to manufacture than a concave diffraction grating. Since the shape of the convex lens 14 can be freely designed, an aberration-free concave diffraction grating equivalent can be easily realized.

以上のようにこの発明によれば、レンズや光伝送路が容
易に製造可能であり、マスクのノくターンの寸法を変え
る事により自由に寸法を変えられるので非常に小さい物
を多数111I集積できる。lた拡散によって得ら扛る
屈折率分布は屈折率が連続して変化しており、従来の埋
込型のような境界面番こおける光の反射の問題が無くな
る。さらにコア層の材質としてプラスチックやガラスや
各種光学結晶が利用できるので、回路の目的に応じて材
料を選定でき、例えば超音波光変調器にレンズ全拡散に
より直接形成する事も容易に行なえる。この発明を利用
して作られる厚膜光集積回路は、光通信用の送・受信回
路や色彩分析用の光分波器など様々な分野に応用でき、
大型の光学系を厚さ数mayの平面固体回路に集約して
装置の小型化および安定化に役立つ。製造にあたっては
マスクの形状および拡散条件が同一であれば得られる回
路の性能は同一であり、従来の光学系のような熟練を要
Vる微調整が全く不要になる。
As described above, according to the present invention, lenses and optical transmission lines can be easily manufactured, and their dimensions can be changed freely by changing the dimensions of the notches of the mask, so a large number of extremely small objects can be integrated. . In the refractive index distribution obtained by diffusion, the refractive index changes continuously, eliminating the problem of light reflection at the boundary surface as in the conventional buried type. Furthermore, since plastic, glass, and various optical crystals can be used as the material for the core layer, the material can be selected depending on the purpose of the circuit, and it can be easily formed, for example, directly on an ultrasonic optical modulator by full lens diffusion. Thick film optical integrated circuits made using this invention can be applied to various fields such as transmitting/receiving circuits for optical communications and optical demultiplexers for color analysis.
By consolidating a large optical system into a planar solid-state circuit with a thickness of several may, it is useful for downsizing and stabilizing the device. In manufacturing, if the shape of the mask and the diffusion conditions are the same, the performance of the circuit obtained is the same, and there is no need for fine adjustments that require skill as in conventional optical systems.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の平面図であり、第2図は
七の側断面図である。第3図は別の一実施例の平面図で
ある。 1−−一透明プラスチック薄板、2−m−低屈折率透明
プラスチック材料、3−−−フレネルレンズ、4・5−
−−レンズ、6−−−クラツドノー、7−−−基板、8
−一一人力用光ファイバ、9・10−一一出力用光フア
イ)Z、11−m−光、■2−−−ガラス薄板、13−
m−高屈折率成分、14−−一部レンズ、15−一一元
伝送路、16一−一平面回折格子、、 1 ’7−−−
人力用光ファイノく、18・19・20−一一出力用光
ファイノく、21−−一光特許出願人 速見律男 第1図 第 2 図 第3図 ・11゜ 21
FIG. 1 is a plan view of one embodiment of the present invention, and FIG. 2 is a side sectional view of the seventh embodiment. FIG. 3 is a plan view of another embodiment. 1--1 transparent plastic thin plate, 2-m-low refractive index transparent plastic material, 3--Fresnel lens, 4.5-
--Lens, 6---Cladno, 7---Substrate, 8
-1 power optical fiber, 9/10-11 output optical fiber) Z, 11-m-light, ■2--glass thin plate, 13-
m - high refractive index component, 14 - partial lens, 15 - one-dimensional transmission line, 16 - one plane diffraction grating, 1'7---
Optical fiber for human power, 18, 19, 20-11 Optical fiber for output, 21--Ikko patent applicant Ritsuo Hayami Figure 1 Figure 2 Figure 3 11゜21

Claims (1)

【特許請求の範囲】[Claims] 少なくとも一方の面よりマスクを通して屈折率全変化さ
せる物質を透明誘電体薄板に拡散させ、レンズや光伝送
路と等価の作用をする屈折率分布を内部に形成したコア
層の周囲の壁面に、反射鏡や回折格子などの各種光学素
子や半導体レーザや光電変換素子、さらに入・出力手段
としての光ファイバ等を目的に応じて取付けた光学回路
A substance that completely changes the refractive index is diffused into a transparent dielectric thin plate through a mask from at least one side, and reflections are created on the wall surface around the core layer, which has a refractive index distribution inside that acts equivalent to a lens or optical transmission path. Optical circuits equipped with various optical elements such as mirrors and diffraction gratings, semiconductor lasers, photoelectric conversion elements, and optical fibers as input/output means, depending on the purpose.
JP627482A 1982-01-19 1982-01-19 Thick film optical integrated circuit of diffusion type Pending JPS58123506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP627482A JPS58123506A (en) 1982-01-19 1982-01-19 Thick film optical integrated circuit of diffusion type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP627482A JPS58123506A (en) 1982-01-19 1982-01-19 Thick film optical integrated circuit of diffusion type

Publications (1)

Publication Number Publication Date
JPS58123506A true JPS58123506A (en) 1983-07-22

Family

ID=11633826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP627482A Pending JPS58123506A (en) 1982-01-19 1982-01-19 Thick film optical integrated circuit of diffusion type

Country Status (1)

Country Link
JP (1) JPS58123506A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63503095A (en) * 1986-04-04 1988-11-10 ブリティシュ・テレコミュニケーションズ・パブリック・リミテッド・カンパニ optical element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63503095A (en) * 1986-04-04 1988-11-10 ブリティシュ・テレコミュニケーションズ・パブリック・リミテッド・カンパニ optical element

Similar Documents

Publication Publication Date Title
CN1957277B (en) Refractive index distribution type optical member, and production method for refractive index distribution type optical member
US4693544A (en) Optical branching device with internal waveguide
US4130345A (en) Optical coupling apparatus
US4634215A (en) Wavelength multi/demultiplexer
US4878727A (en) Multimode channel waveguide optical coupling devices and methods
US4739501A (en) Optical multiplexer/demultiplexer
JPH03138606A (en) Light branching device
JPH0133801B2 (en)
US5838853A (en) Optical waveguide
US20070297719A1 (en) Integrated Microlens Reflector And Light Coupler
JPS61113009A (en) Optical multiplexer/demultiplexer
CN205427236U (en) Plane single scale intergration wavelength devision multiplex - demultiplexer
GB2143650A (en) Optical coupler
CN111929769A (en) Multichannel wavelength division multiplexing module with compact structure
JPS58123506A (en) Thick film optical integrated circuit of diffusion type
EP0463779A1 (en) Fibre optic waveguide beam splitter
WO2003107055A1 (en) Optical device unit, optical device, and microlens array
JP2002107566A (en) Optical functional module
CN212321900U (en) Multichannel wavelength division multiplexing module with compact structure
JPH0677095B2 (en) Optical device
JP2004070311A (en) Optical device unit and optical device
JPH0450561B2 (en)
KR100621833B1 (en) Optical coupling apparatus and method of manufacture
US6621959B2 (en) Planar waveguide diffractive beam splitter/coupler
JPS5521011A (en) Thin fllm spectral module