JPS58123505A - Method and device for restoring light transmittance of optical fiber bundle for image transmission of endoscope - Google Patents

Method and device for restoring light transmittance of optical fiber bundle for image transmission of endoscope

Info

Publication number
JPS58123505A
JPS58123505A JP57005907A JP590782A JPS58123505A JP S58123505 A JPS58123505 A JP S58123505A JP 57005907 A JP57005907 A JP 57005907A JP 590782 A JP590782 A JP 590782A JP S58123505 A JPS58123505 A JP S58123505A
Authority
JP
Japan
Prior art keywords
light
optical fiber
fiber bundle
light transmittance
image transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57005907A
Other languages
Japanese (ja)
Other versions
JPS6262322B2 (en
Inventor
Takuo Kojima
小島 卓雄
Kuniaki Ishibashi
邦昭 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujinon Corp
Original Assignee
Fujinon Corp
Fuji Photo Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujinon Corp, Fuji Photo Optical Co Ltd filed Critical Fujinon Corp
Priority to JP57005907A priority Critical patent/JPS58123505A/en
Priority to FR8202432A priority patent/FR2500201A1/en
Priority to CA000396344A priority patent/CA1192071A/en
Priority to AT82300813T priority patent/ATE17790T1/en
Priority to DE8282300813T priority patent/DE3268730D1/en
Priority to AU80540/82A priority patent/AU541958B2/en
Priority to US06/349,619 priority patent/US4523806A/en
Priority to GB8204625A priority patent/GB2094021B/en
Priority to EP82300813A priority patent/EP0058574B1/en
Priority to AR288452A priority patent/AR229690A1/en
Publication of JPS58123505A publication Critical patent/JPS58123505A/en
Publication of JPS6262322B2 publication Critical patent/JPS6262322B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/26Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes using light guides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00165Optical arrangements with light-conductive means, e.g. fibre optics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4298Coupling light guides with opto-electronic elements coupling with non-coherent light sources and/or radiation detectors, e.g. lamps, incandescent bulbs, scintillation chambers

Abstract

PURPOSE:To eliminate yellowing and to restore light transmittance by irradiating visible light to optical fiber bundles for image transmission which are yellowed by irradiation of raditions. CONSTITUTION:An optical fiber bundle 40 for image transmission and an optical fiber bundle 41 for light transission are contained in an endscope 35. When the endsocope is used for fluoroscopic observation using an X-ray monitor television, the preceding end part of an insertion part 36 recevies exposure of radiation; therefore, yellowing progresses gradually and interferes observation. A restoring device 48 for light transmission is contained with a light source 50 for releasing energy rays contg. visible light on a short wavelength side, a reflecting mirror 51 and a heat ray absorbing filter 52 in a casing 49, and is connected to an eyepiece lens barrel 38. A xenon lamp, halogen lamp, metal halogen lamp or the like is used as the light source 50.

Description

【発明の詳細な説明】 本発明は内視鏡の像伝達用光学繊維束(イメージガイド
オプチカル7アイパーバンドル)がX線やγ線等の放射
線照射により着色して光透過率が低下した際に、それを
消色して観察に支障がない光透過率#まで回復8せるた
めの方法及び装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an optical fiber bundle for image transmission in an endoscope (Image Guide Optical 7 Eyebundle) that is colored when irradiated with radiation such as X-rays or γ-rays and its light transmittance is reduced. This invention relates to a method and apparatus for erasing the color and restoring the light transmittance to #8, which does not interfere with observation.

内視鏡は外部から観察することが不可能な内部中漬部位
を観察するために用いられるものであり、医療用内視鏡
と工業用内視鏡とに大別することができる。医療用内視
鏡は、冑、十二指腸、大腸等の体腔内を観察するための
ものであり、−!だ工業用内視鏡はエンジン、原子炉環
の機器の内部を観察するためのものである。との内視鏡
は、照明光を伝達するための光伝達用光学繊維束と、観
察対象部の像を伝達するための像伝達用光学繊維束とを
備えており、これらの光学繊維束は屈曲した中空部に沿
って挿入することができるようにするために、両端部だ
けが固着され、中間部では各光学繊維が分離されている
Endoscopes are used to observe internal parts that cannot be observed from the outside, and can be broadly classified into medical endoscopes and industrial endoscopes. Medical endoscopes are used to observe the inside of body cavities such as the helmet, duodenum, and large intestine. Industrial endoscopes are used to observe the inside of engines and reactor ring equipment. The endoscope is equipped with a light transmission optical fiber bundle for transmitting illumination light and an image transmission optical fiber bundle for transmitting an image of the observation target area, and these optical fiber bundles are In order to be able to insert it along a curved hollow, only the ends are fixed, and each optical fiber is separated in the middle.

ところで、特に医療用内視鏡においては、被検者の安全
を確保し、かつ内視鏡の先端部と被検部位との相対位置
を適確に観察するために、放射線による透視観察が行な
われることが多い。また例えば十二指腸観察用内視鏡で
は、内視鏡の処置具案内チャンネルに造影剤狂人チュー
ブを挿入し、このチューブを通して造影剤を膵胆管内に
注入して、膵胆管を放射線撮影するE、RoC,P検査
(Endoscopic Retragrade Ch
olongiopancreato −graphy)
にも用いられる。このように医療用内視鏡にあっては放
射線装置と併用される機会が多いため、光学繊維束の先
端部はゴ′Aパ等の保護チューブを透過した放射線によ
って被爆を受ける。
Incidentally, particularly in medical endoscopes, fluoroscopic observation using radiation is performed in order to ensure the safety of the examinee and to accurately observe the relative position between the tip of the endoscope and the examined part. Often. For example, in an endoscope for observing the duodenum, a contrast agent tube is inserted into the treatment instrument guide channel of the endoscope, and the contrast agent is injected into the pancreaticobiliary duct through this tube to perform radiographic imaging of the pancreaticobiliary duct. , P test (Endoscopic Retragrade Ch
olongiopancreato-graphy)
Also used for As described above, since medical endoscopes are often used in combination with radiation equipment, the distal end of the optical fiber bundle is exposed to radiation transmitted through a protective tube such as a goggle.

一般に、光学ガラスは、放射線で被爆されると、着色し
て光透過率が低下する。この着色の原因としては、着色
中心(Co1or Center)が考えられる。
Generally, when optical glass is exposed to radiation, it becomes colored and its light transmittance decreases. A possible cause of this coloring is a coloring center (Color Center).

すなわち、放射線は主として光学ガラス中の原子に属す
る電子と相互作用を起し、その電子を原子から遊離させ
る。この遊離した電子は更に他の原子の電子と衝突して
これを遊離させる。こうして電子が遊離したあとには、
正の電荷をもつ正孔が残るが、との正孔の大部分は遊離
電子と貴結合する。しかしその一部は光学ガラス中の構
造欠陥に捕えられて着色中心を形成する。との着色中心
にある電子又は正孔は、束縛力が弱いために、放射線の
照射前の結晶の基礎吸収帯よりも長い波長の光を吸収し
、そのために可視域に吸収帯ができ、光学ガラスは着色
する。
That is, the radiation mainly interacts with electrons belonging to atoms in the optical glass, and liberates the electrons from the atoms. These liberated electrons further collide with electrons of other atoms to liberate them. After the electrons are liberated in this way,
Although positively charged holes remain, most of the holes with and are bound to free electrons. However, some of it is trapped by structural defects in the optical glass and forms colored centers. Because the binding force of the electrons or holes at the center of the coloring is weak, they absorb light with a wavelength longer than the basic absorption band of the crystal before irradiation with radiation, which creates an absorption band in the visible range, resulting in optical Glass is colored.

この放射線による着色は、コアガラスとクラッドガラス
とによって形成されており、その線径がミクロン単位の
光学繊維を数千ないし数万本集末′11 した像伝達用光学繊維束においても発生する。したがっ
て、放射線装置と併用される内視鏡は、置型なる放射線
被爆によって400〜550nmの短波長領域において
光吸収が増加し、黄褐色に着色する。この黄褐色に着色
する現象は「黄変」と称されており、保護チューブに入
れたままで放射線照射をした場合に、数Rで黄変が発生
する。この黄変によって、光透過率が低下するため、像
伝達用光学繊維束においては、約20R程度の放射線照
射を受けると、観察に支障が生じる。この黄変が進んだ
内視鏡は、像伝達用光学繊維束の変換が行ガわれるが、
この像伝達用光学繊維束は高価であす、シかも内視鏡の
製造と同程度の交換作業が必要であるため、像伝達用光
学、繊維束の交換はかなりの費用がかかる。
This coloring due to radiation also occurs in an optical fiber bundle for image transmission which is made up of a core glass and a clad glass, and is made up of thousands to tens of thousands of optical fibers each having a wire diameter of microns. Therefore, when an endoscope is used in conjunction with a radiation device, light absorption increases in the short wavelength region of 400 to 550 nm due to stationary radiation exposure, and the endoscope becomes yellowish brown in color. This yellowish-brown coloring phenomenon is called "yellowing," and if the material is irradiated with radiation while still in the protective tube, yellowing occurs within a few R. This yellowing lowers the light transmittance, and therefore, when the optical fiber bundle for image transmission is irradiated with radiation of about 20R, observation becomes difficult. In endoscopes with advanced yellowing, the optical fiber bundle for image transmission is changed, but
This optical fiber bundle for image transmission is expensive, and replacement work is required to the same extent as manufacturing an endoscope, so replacing the optical fiber bundle for image transmission is quite expensive.

放射線による黄変を防止するには、光学ガラス組成中に
、酸化セリウムを混入すれば良いことが知られている。
It is known that in order to prevent yellowing due to radiation, it is sufficient to mix cerium oxide into the optical glass composition.

しかし、酸化セリウムを混入すると、ガラス自体が黄味
を帯びるために光透過率が多少低下する。光学レンズ、
プリズム等においては、厚みが薄いので光透過率が低下
しても観察には影響がないが、線径が10〜50μで全
長が700〜1200inの光学繊維にあっては、減衰
率が高いためにその影響は大きく、もはや実用に供する
ことができなくなる。この理由から、従来の像伝達用光
学繊維束は、素材ガラス中に酸化セリウムが混入されて
いない。
However, when cerium oxide is mixed, the light transmittance decreases to some extent because the glass itself becomes yellowish. optical lens,
For prisms, etc., the thickness is thin, so even if the light transmittance decreases, it will not affect observation, but for optical fibers with a wire diameter of 10 to 50 μ and a total length of 700 to 1200 inches, the attenuation rate is high. The impact is so great that it can no longer be put to practical use. For this reason, in the conventional optical fiber bundle for image transmission, cerium oxide is not mixed into the raw glass.

別の黄変対策としては、像伝達用光学繊維束が放射線を
受けないようにする目的で、像伝達用及び光伝達用光学
繊維束を収納した金属製螺管に鉛。
Another measure against yellowing is to use lead in the metal spiral tube that houses the optical fiber bundles for image transmission and light transmission in order to prevent the optical fiber bundles for image transmission from being exposed to radiation.

セリウム等の物質層を設ける技術が実公昭58−480
25号公報に記載されている。この技術は放射線被爆量
を少なくするという点では効果があるが、しかし金塊製
螺管の隙間からは放射線がそのまま透過するだめ、やは
り黄変が生じる。
The technology to provide a layer of material such as cerium was developed in 1986-480.
It is described in Publication No. 25. Although this technique is effective in reducing the amount of radiation exposure, yellowing still occurs because the radiation passes through the gaps in the gold bullion spiral tube.

本発明者は黄変した像伝達用光学繊維束に可視光を照射
したところ、黄変を消色することができることを知った
。史に波長域を変えて照射したところ、短波長細の可視
光は、消色効果が顕著であることを見い出して本発明を
完成した。
The inventor of the present invention discovered that yellowing can be erased by irradiating a yellowed image transmission optical fiber bundle with visible light. When irradiation was performed in different wavelength ranges, it was discovered that visible light with short wavelengths had a remarkable decolorizing effect, and the present invention was completed.

したがって本発明は、放射線照射によって光透過率が低
下した像伝達用光学繊維束を消色して光透過率を回復さ
せる方法及び装置を提供するととを目的とするものであ
る。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method and apparatus for decolorizing and restoring the light transmittance of an optical fiber bundle for image transmission whose light transmittance has decreased due to radiation irradiation.

本発明の別の目的は、消色効果が顕著な方法及び装置を
提供することを目的とするものである。
Another object of the present invention is to provide a method and apparatus that have a remarkable color erasing effect.

本発明の更に別の目的は、消色作業が簡単でコストが安
い方法及び装置を提供することを目的とするものである
Still another object of the present invention is to provide a method and apparatus for easy decoloring work and low cost.

本発明のもう一つの目的は、構造が簡単であり、取扱い
が容易な装置を提供することを目的とするものである。
Another object of the present invention is to provide a device that is simple in structure and easy to handle.

以下、本発明について詳細に説明する。The present invention will be explained in detail below.

第1図に示す装置を用いて、波長と消色効果の関係につ
いて実験を行なった。この第1図において、符号lはキ
セノンランプであり、これから後方に放射された光は放
物線状をした反射ミラー2によって前方に反射され、ま
たキセノンランプlから前方に放射された光は直接に熱
線吸収フィルタ8に入射する。この熱線吸収フィルタ8
を透過した光は、口径が28龍の絞り4と、干渉フィル
タ5とを通って集光レンズ6に入射する。この集光レン
ズ6から出た光は、1本が約10〜20μm径の光学繊
維を集束してなる光学繊維束7の入射端面7aに集光さ
れる。なお集光レンズ6は可視光を効率よく利用するた
めのものであり、必ず設けなければならないものではな
い。この光学繊維束7は、内視鏡の像伝達用として用い
られているものと同一構造をしている。すなわち、両端
部はその一辺が2龍の正方形であり、全長は1250m
mである。また、両端部townは整列積層され、エポ
キシ樹脂で接合されており、可撓性を付与するためにそ
の中間部では分離されている。更にこの光学繊維束7の
外周には、ゴム製の保論チューブ8が被櫟されている。
Using the apparatus shown in FIG. 1, an experiment was conducted on the relationship between wavelength and color erasing effect. In Fig. 1, reference numeral 1 denotes a xenon lamp, and the light emitted backward from it is reflected forward by the parabolic reflecting mirror 2, and the light emitted forward from the xenon lamp 1 is directly reflected as a heat ray. The light enters the absorption filter 8. This heat ray absorption filter 8
The transmitted light passes through an aperture 4 with a diameter of 28 mm and an interference filter 5, and enters a condenser lens 6. The light emitted from the condenser lens 6 is condensed onto the incident end surface 7a of an optical fiber bundle 7, each of which is formed by converging optical fibers each having a diameter of about 10 to 20 μm. Note that the condenser lens 6 is for efficiently utilizing visible light, and does not necessarily have to be provided. This optical fiber bundle 7 has the same structure as that used for image transmission in an endoscope. In other words, both ends are square with two dragons on one side, and the total length is 1250m.
It is m. Further, both end portions town are aligned and laminated and joined with epoxy resin, and are separated at the middle portion to provide flexibility. Further, the outer periphery of the optical fiber bundle 7 is covered with a rubber tube 8.

前記光学繊維束7は、その射・出端面から約300朋の
部分が、管球電圧85KVpで管球電流8’00mAの
X線管で90I(程度照射され、黄変させである。
The optical fiber bundle 7 was irradiated with an X-ray tube at a tube voltage of 85 KVp and a tube current of 8'00 mA to the extent of 90 I (about 90 I), causing yellowing at a portion approximately 300 mm from its exit/output end surface.

第2図はキセノンランプの放射強度を示すものである。FIG. 2 shows the radiation intensity of a xenon lamp.

このキセノンランプは、可視領域880〜:・1ニ ア8Qnmにおいて、t4ぼ平坦な特性を有している。This xenon lamp has a visible range of 880~:・1ni At 8Q nm, t4 has a flat characteristic.

第8図は熱線吸収フィルタと、干渉フィルタの分光特性
を示すものである。熱線吸収フィルタ8は、曲線Aに示
すよう々分光特性を有しており、キセノンランプ1から
放出されたエネルギー線のうちから赤外線をカットする
。光学繊維束7は、エポキシ樹脂で接合されており、こ
のエポキシ樹脂の耐熱温度は約80〜100℃である。
FIG. 8 shows the spectral characteristics of the heat ray absorption filter and the interference filter. The heat ray absorption filter 8 has a spectral characteristic as shown by a curve A, and cuts infrared rays from among the energy rays emitted from the xenon lamp 1. The optical fiber bundle 7 is bonded with an epoxy resin, and the epoxy resin has a heat resistance temperature of about 80 to 100°C.

このエポキシ樹脂は耐熱温度以上に過熱されると、黒化
が生じるだめ、前記熱線吸収フィルタ3で熱的保穫を図
っている。
If this epoxy resin is heated above its heat-resistant temperature, it will blacken, so the heat ray absorption filter 3 is used for thermal protection.

干渉フィルタとしては、特性曲線Bに示すように中心波
長が404nmのものと、特性曲線Cに示すように中心
波長が470nmOものと、特性曲線りに示すように中
心波長が582nmのものとを選択して用いて、波長に
対する光透過率の変化について調べたところ第4図ない
し第6図に示すデータが得られた。
As the interference filters, we selected one with a center wavelength of 404 nm as shown in characteristic curve B, one with a center wavelength of 470 nm as shown in characteristic curve C, and one with a center wavelength of 582 nm as shown in characteristic curve B. When the change in light transmittance with respect to wavelength was investigated using the same method, the data shown in FIGS. 4 to 6 were obtained.

第4図は、第1図の装置において中心波長が404nm
の干渉フィルタを使用して、照射時間を変えて実験した
ときに得られた分光透過率を示すものである。曲線15
はX線照射前の光学繊維束の分光透過率であり、曲11
1i116は90几のX線を先端から300關の部分に
照射して黄変させたものの分光透過率である。この曲線
16で示す分光透過率まで低下した光学繊維束に、0.
25時間。
Figure 4 shows that the center wavelength is 404 nm in the apparatus shown in Figure 1.
This figure shows the spectral transmittance obtained when experimenting with different irradiation times using this interference filter. curve 15
is the spectral transmittance of the optical fiber bundle before X-ray irradiation, and curve 11
1i116 is the spectral transmittance of a portion 300 degrees from the tip that was irradiated with 90 degrees of X-rays to cause yellowing. For the optical fiber bundle whose spectral transmittance has decreased to the level shown by curve 16, 0.
25 hours.

065時間、1時間、2時間、′4時間だけ、中心波長
が404nmの干渉フィルタを透過した可視光を与えた
ところ、曲線17〜21に示す分光透過率までそれぞれ
回復した。
When visible light transmitted through an interference filter with a center wavelength of 404 nm was applied for 065 hours, 1 hour, 2 hours, and 4 hours, the spectral transmittances recovered to those shown in curves 17 to 21, respectively.

第5図は中心波長が470nmの干渉フィルタを用いて
、照射時間を変えて実験したときに得られた分光透過率
を示すものである。この第5図において曲線22〜25
は照射時間を0.25時間、0.5時間、1時間、2時
間としたときの分光透過率を示す。第4図と同様に、曲
線15はX線照射前の分光透過率を示し、曲線16はX
線照射後の分光透過率をそれぞれ示す。
FIG. 5 shows the spectral transmittance obtained in an experiment using an interference filter with a center wavelength of 470 nm and varying the irradiation time. In this figure 5, curves 22 to 25
indicates the spectral transmittance when the irradiation time was 0.25 hours, 0.5 hours, 1 hour, and 2 hours. Similarly to FIG. 4, curve 15 shows the spectral transmittance before X-ray irradiation, and curve 16 shows the spectral transmittance before X-ray irradiation.
The spectral transmittance after ray irradiation is shown.

第6図は中心波長が582nmの干渉フィルタを用いて
実験したときの分光透過率であり、曲線28〜81は照
射時間を0.25時間、0.5時間、1時間、2時間と
したときの分光透過率をそれぞれ示す。
Figure 6 shows the spectral transmittance when experimenting using an interference filter with a center wavelength of 582 nm, and curves 28 to 81 show the irradiation times of 0.25 hours, 0.5 hours, 1 hour, and 2 hours. The spectral transmittance of each is shown.

第7図は、第4図ないし第6図に示す実験結果に基づい
て、450nmの波長の光透過率の回復度をプロットし
たものであり、×−×は中心波長が582nmの干渉フ
ィルタを使用したときのものであり、lh□Δは中心波
長が470nmの干渉フィルタを、〇−−〇は中心波長
が404nmの干渉フィルタを、・−一・は干渉フィル
タを使用しなかったときのものである。ここで縦軸の回
復度はX線照射前の光透過率に対するその時点の光透過
率の比である。この第7図から短波長側の可視光が光透
過率の回復に大きく寄与しており、光 まだ照射時間が長いほど、透過率が回復していることが
分る。なお干渉フィルタを使用しない方が回復度が高い
が、これは後述するように光強度が高いこと、及び88
0〜400nmの波長成分が含まれていることに起因し
ているものである。
Figure 7 plots the degree of recovery of light transmittance at a wavelength of 450 nm based on the experimental results shown in Figures 4 to 6, and x-x indicates the use of an interference filter with a center wavelength of 582 nm. lh□Δ is when an interference filter with a center wavelength of 470 nm is used, 〇--〇 is when an interference filter with a center wavelength of 404 nm is used, and ・-1 is when no interference filter is used. be. Here, the degree of recovery on the vertical axis is the ratio of the light transmittance at that time to the light transmittance before X-ray irradiation. It can be seen from FIG. 7 that visible light on the shorter wavelength side greatly contributes to the recovery of the light transmittance, and the longer the irradiation time, the more the transmittance recovers. Note that the degree of recovery is higher when no interference filter is used, but this is due to the high light intensity and 88
This is due to the fact that it contains wavelength components of 0 to 400 nm.

次に入射光の強度依存性を調べるために、第1図に示す
装置において干渉フイt゛夕の代わりにNDフィルタを
用いて実験した。第8図は450nmにおける光透過率
の回復度と光照射時間との関係を示すものであり、・−
−一・はNDフィルタを使用しないときの特性曲線、〇
−−〇はND4のフィルタを使用して光量を1/4にし
たときの特性曲線、△□△はND4のフィルタを2枚使
用して光量を1/16にしたときの特性曲線。
Next, in order to investigate the intensity dependence of incident light, an experiment was conducted using the apparatus shown in FIG. 1 using an ND filter instead of an interference filter. Figure 8 shows the relationship between the degree of recovery of light transmittance at 450 nm and the light irradiation time.
-1. is the characteristic curve when no ND filter is used, 〇--〇 is the characteristic curve when the light amount is reduced to 1/4 using an ND4 filter, △□△ is the characteristic curve when two ND4 filters are used. Characteristic curve when the light intensity is reduced to 1/16.

×□×はND4のフィルタを2枚とND8のフィルタを
1枚使用して九iをl/128にしたときの特性曲線を
示す。この第8図から光量が大きいほど回復度が高いこ
とが分る。
×□× indicates a characteristic curve when two ND4 filters and one ND8 filter are used and 9i is set to l/128. It can be seen from FIG. 8 that the larger the amount of light, the higher the degree of recovery.

第9図は光照射量(1θgE )に対する回復度の関係
を示すものである。この第9図から光照射量゛と回復度
とは比例しておらす、強い可視光はど回復度が筒いこと
が分る。
FIG. 9 shows the relationship between the degree of recovery and the amount of light irradiation (1θgE). It can be seen from FIG. 9 that the amount of light irradiation and the degree of recovery are proportional, and that the degree of recovery is greater for strong visible light.

以上の実験結果を総合すると、約580nm以下の可視
光は光透過率の回復に効果があり、特に短時間で顕著な
効果を得るには短波長側の可視光が良い。したがって短
波長側の可視光を使用し、かつ強い可視光を光学縁・、
維束に入射すれば、効果的に光透過率を回復させること
ができる。
To summarize the above experimental results, visible light of about 580 nm or less is effective in restoring light transmittance, and visible light on the short wavelength side is particularly good for obtaining a noticeable effect in a short time. Therefore, short wavelength visible light is used, and strong visible light is used at the optical edge.
If the light enters the fiber bundle, the light transmittance can be effectively restored.

なお、注意すべきことは、580nm以下の波長域の可
視光だけを選択して用いる必要はなく、この波長域を含
んでいる可視光を用いればよいのである。しかし、強い
光の場合にはこれに含まれている赤外線が光学繊維束を
接合しているエポキシ樹脂を黒化させるから、これは熱
線吸収フィルタで除く必要がある。
Note that it is not necessary to select and use only visible light in the wavelength range of 580 nm or less, and it is sufficient to use visible light that includes this wavelength range. However, in the case of strong light, the infrared rays contained in this light blacken the epoxy resin that joins the optical fiber bundles, so it is necessary to remove this with a heat ray absorption filter.

第1θ図は光透過率回復装置の一実施例を示すものであ
る。周知のように内視鏡35は、挿入部86、手元操作
部87.接眼レンズ鏡胴88.照明光源装置89から構
成されており、内部に像伝達用光学繊維束40.光伝達
用光学繊維束41が収納されている。前記挿入部86は
、像伝達用光学繊維束40.光伝達用光学繊維束41の
外周に、短管を連結した金lf4製パイプとゴム製の・
くイブとが順次設けられており、可読性が付与されてい
る。
FIG. 1θ shows an embodiment of the light transmittance recovery device. As is well known, the endoscope 35 includes an insertion section 86, a hand operation section 87. Eyepiece lens barrel 88. It consists of an illumination light source device 89, and an optical fiber bundle 40 for image transmission inside. A light transmission optical fiber bundle 41 is housed therein. The insertion portion 86 includes the image transmission optical fiber bundle 40. On the outer periphery of the optical fiber bundle 41 for light transmission, there is a gold LF4 pipe connected with a short tube and a rubber pipe.
The pages are provided sequentially to improve readability.

この挿入部86は、手元操作部87のつまみをまわすこ
とにより、先端を任意の方向に向けることができる。
The tip of the insertion section 86 can be directed in any direction by turning the knob of the hand operation section 87.

照明光源装置89内に設けた光源42から放出された光
は、光伝達用光学繊維束41の入射端41aから内部に
入り、射出端41bから射出する。
Light emitted from the light source 42 provided in the illumination light source device 89 enters the inside of the optical fiber bundle 41 for light transmission from the input end 41a, and exits from the exit end 41b.

この照明光は、照明用窓43を通って射出し、観察対象
部を照明する。
This illumination light is emitted through the illumination window 43 and illuminates the observation target area.

観察対象部からの光は、観察用窓44.対物レンズ45
を経て像伝達用光学繊維束40の入射端40aに結像さ
れる。この像伝達用光学繊維束40の射出端40bに伝
達された像は、接眼レンズ46で拡大される。
The light from the observation target area is transmitted through the observation window 44. Objective lens 45
The image is then formed on the incident end 40a of the image transmission optical fiber bundle 40. The image transmitted to the exit end 40b of the image transmitting optical fiber bundle 40 is magnified by the eyepiece lens 46.

前記内視鏡は、例えばX線モニタテレビを用いた透視観
察に供された場合には、挿入部86の先端部が1回で約
0. II(の放射綾被爆を受けるため、徐々に黄変が
進行し、約24R程度で観察に支障が生じる。そこで、
例えは放射線被爆量が1、ORに達する毎に光透過率回
復装置48を用いて光透過率を回復させるのが望ましい
When the endoscope is used for fluoroscopic observation using, for example, an X-ray monitor television, the distal end of the insertion section 86 is exposed to about 0.00 mm at one time. Due to the radiation exposure of II, yellowing progresses gradually and obstructs observation at about 24R.
For example, it is desirable to restore the light transmittance using the light transmittance recovery device 48 every time the radiation exposure amount reaches 1, OR.

光透過率回復装置l1it48は、グーシンク49内に
短波長側の可視光を含むエネルギー線を放出する光源5
09反射ミラー51.熱線吸収フィルタ52が収納され
ており、接眼レンズ鏡胴8已に連結される。この連結手
段としてケーシング49に)(ヨネット爪53が形成さ
れており、接眼レンズ鏡胴88のバヨネット爪54に係
合する。
The light transmittance recovery device l1it 48 includes a light source 5 that emits energy rays containing visible light on the short wavelength side in the goosink 49.
09 Reflection mirror 51. A heat ray absorption filter 52 is housed therein and connected to the eyepiece barrel 8. As this connecting means, a bayonet claw 53 is formed on the casing 49 and engages with a bayonet claw 54 of the eyepiece lens barrel 88.

前記光源50としては、キセノンランプ、ハロゲンラン
プ、メタルハロゲンランプ等が用いられる。なお、接眼
レンズ鏡胴38を外して、光源50からの可視光を接眼
レンズ46を通さないで直接に像伝達用光学繊維束40
に入射してもよい。さらに対物側に光透過率回復装置を
取り付けて対物側の端面から可視光を入れてもよい。
As the light source 50, a xenon lamp, a halogen lamp, a metal halogen lamp, etc. are used. Note that by removing the eyepiece lens barrel 38, the visible light from the light source 50 is directly transmitted to the optical fiber bundle 40 for image transmission without passing through the eyepiece 46.
It may be input to Furthermore, a light transmittance recovery device may be attached to the objective side to allow visible light to enter from the end face on the objective side.

上記構成を有する本発明は、約580nmの可視光音用
い、黄変した像伝達用光学繊維束を照射するものであり
、光透過率の回復に効果がめる。更に可視光を照射する
だけでよいから、その作業が簡単であり、しかもコスト
が安いという利点がある。
The present invention having the above configuration uses visible light of about 580 nm to irradiate a yellowed image transmission optical fiber bundle, and is effective in restoring light transmittance. Furthermore, since it is only necessary to irradiate visible light, the work is simple and the cost is low.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実験装置の概略図、第2図はキセノンランプの
放射強度を示す特性図、第8図゛は熱線吸収フィルタと
干渉フィルタの分光透過率を示す特性図、第4図は中心
波長が404nmの干渉フィルタを使用したときの分光
透過率の変化を示す特性図、第5図は中心波長が470
nmの干渉フィルタを使用したときの分光透過率の変化
を示す特性図、第6図は中心波長が582nmの干渉フ
ィルタを使用したときの分光透過率の変化を示す特性図
、第7図は450nmの波長における光透過率の(ロ)
後産と光照射時間との関係を示すグラフ、第8図は光量
を変えたときの光照射時間と回復度との関係を示すグラ
フ、第9図は光呻射量と回復度との関係を示すグラフ、
第1θ図は本発明装置の笑施例を示す概略図である。 l・・・キセノンランプ 3・・・熱線吸収フィルタ 4・・・絞り    5・・・干渉フィルタ6・・・集
光レンズ   7・・・光学繊維束40・・・像伝達用
光学繊維束 41・・・光伝達用光学繊維束 1・:: 48・・・光透過率回復装置
Figure 1 is a schematic diagram of the experimental equipment, Figure 2 is a characteristic diagram showing the radiation intensity of the xenon lamp, Figure 8 is a characteristic diagram showing the spectral transmittance of the heat absorption filter and interference filter, and Figure 4 is the center wavelength. A characteristic diagram showing the change in spectral transmittance when using an interference filter with a wavelength of 404 nm.
Figure 6 is a characteristic diagram showing the change in spectral transmittance when using an interference filter with a center wavelength of 582 nm, and Figure 7 is a characteristic diagram showing changes in spectral transmittance when using an interference filter with a center wavelength of 582 nm. (b) of the light transmittance at the wavelength of
A graph showing the relationship between afterbirth and light irradiation time, Figure 8 is a graph showing the relationship between light irradiation time and degree of recovery when the light amount is changed, and Figure 9 is a graph showing the relationship between light irradiation amount and degree of recovery. A graph showing,
FIG. 1θ is a schematic diagram showing a second embodiment of the device of the present invention. l... Xenon lamp 3... Heat ray absorption filter 4... Aperture 5... Interference filter 6... Condensing lens 7... Optical fiber bundle 40... Optical fiber bundle for image transmission 41. ... Optical fiber bundle for light transmission 1:: 48 ... Light transmittance recovery device

Claims (1)

【特許請求の範囲】 (1)観察対象部を照明するだめの光伝達用光学繊維束
と、観察対象部を観察するための像伝達用光学繊維束と
を備えた内視鏡において、前記像伝達用光学繊維束の光
透過率が低下した際に、その端面から約580nm以下
の波長成分を含む可視光を入射させるようにしたことを
特徴とする光透過率回後方法。 (2)前記可視光は、約450nm以下の波長成分を含
むことを特徴とする特許請求の範囲第1項記載の光透過
率回復方法。 (3)約580nm以下の波長成分を含む可視光を放射
する光源と、この光源を収納しており、内視鏡に装着さ
れた際に前記光源を像伝達用光学繊維束の入射端に光学
的に対面させるケーシングとからなることを特徴とする
光透過率回復装置っ(4)  前記光源はキセノンラン
プであることを特徴とする特許請求の範囲第8項記載の
光透過率回復装置。 (5)前記光源はハロゲンランプであることを特徴とす
る特許請求の範囲第3項記載の光透過率回復装置。
[Scope of Claims] (1) An endoscope comprising a light-transmitting optical fiber bundle for illuminating an observation target area and an image-transmitting optical fiber bundle for observing the observation target area, wherein the 1. A method for recovering light transmittance, characterized in that when the light transmittance of a transmission optical fiber bundle decreases, visible light containing a wavelength component of about 580 nm or less is made incident from the end face thereof. (2) The light transmittance recovery method according to claim 1, wherein the visible light includes a wavelength component of about 450 nm or less. (3) A light source that emits visible light containing a wavelength component of about 580 nm or less is housed, and when attached to an endoscope, the light source is optically connected to the input end of the optical fiber bundle for image transmission. (4) The light transmittance recovery device according to claim 8, characterized in that the light source is a xenon lamp. (5) The light transmittance recovery device according to claim 3, wherein the light source is a halogen lamp.
JP57005907A 1981-02-17 1982-01-20 Method and device for restoring light transmittance of optical fiber bundle for image transmission of endoscope Granted JPS58123505A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP57005907A JPS58123505A (en) 1982-01-20 1982-01-20 Method and device for restoring light transmittance of optical fiber bundle for image transmission of endoscope
FR8202432A FR2500201A1 (en) 1981-02-17 1982-02-15 METHOD AND APPARATUS FOR REINSTALLING THE OPTICAL TRANSMITTANCE OF A BEAM OF OPTICAL FIBERS AFTER REDUCTION BY IRRADIATION
CA000396344A CA1192071A (en) 1981-02-17 1982-02-16 Method and apparatus for recovering a light transmittance of an image transmitting optical fiber bundle used in a fiberoptic endoscope
AT82300813T ATE17790T1 (en) 1981-02-17 1982-02-17 METHOD AND APPARATUS FOR RESTORING THE LIGHT TRANSMITTING PROPERTIES OF AN IMAGE TRANSMITTING OPTICAL FIBER BUNDLE FOR USE IN A FIBER END SCOPE.
DE8282300813T DE3268730D1 (en) 1981-02-17 1982-02-17 Method of and apparatus for restoring the light transmittance of an image transmitting optical fiber bundle used in a fiberoptic endoscope
AU80540/82A AU541958B2 (en) 1981-02-17 1982-02-17 Apparatus for recovering a light transmittance of an image transmitting optical fiber bundle
US06/349,619 US4523806A (en) 1981-02-17 1982-02-17 Method and apparatus for restoring the light transmittance of an image-transmitting optical fiber bundle used in a fiber optic endoscope
GB8204625A GB2094021B (en) 1981-02-17 1982-02-17 Restoring the light transmittance of an image transmitting optical fiber bundle
EP82300813A EP0058574B1 (en) 1981-02-17 1982-02-17 Method of and apparatus for restoring the light transmittance of an image transmitting optical fiber bundle used in a fiberoptic endoscope
AR288452A AR229690A1 (en) 1981-02-17 1982-02-17 APPARATUS TO RECOVER THE REDUCTION INDUCED BY IRRADIATION IN THE TRANSMITANCE OF LIGHT FROM A BEAM OF OPTICAL FIBERS TRANSMITTING IMAGES

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57005907A JPS58123505A (en) 1982-01-20 1982-01-20 Method and device for restoring light transmittance of optical fiber bundle for image transmission of endoscope

Publications (2)

Publication Number Publication Date
JPS58123505A true JPS58123505A (en) 1983-07-22
JPS6262322B2 JPS6262322B2 (en) 1987-12-25

Family

ID=11623966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57005907A Granted JPS58123505A (en) 1981-02-17 1982-01-20 Method and device for restoring light transmittance of optical fiber bundle for image transmission of endoscope

Country Status (1)

Country Link
JP (1) JPS58123505A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104736044A (en) * 2012-08-03 2015-06-24 塞卡解决方案有限责任公司 Diagnostic device, therapeutic device, and uses thereof
WO2020129147A1 (en) * 2018-12-18 2020-06-25 オリンパス株式会社 Endoscope light source device and endoscope having same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5343025A (en) * 1976-09-30 1978-04-18 Yamatake Honeywell Co Ltd Thermocouples for detecting flame
JPS5429105A (en) * 1977-08-09 1979-03-05 Vickers Sperry Rand Gmbh Impeller pump for steering aid

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5343025A (en) * 1976-09-30 1978-04-18 Yamatake Honeywell Co Ltd Thermocouples for detecting flame
JPS5429105A (en) * 1977-08-09 1979-03-05 Vickers Sperry Rand Gmbh Impeller pump for steering aid

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104736044A (en) * 2012-08-03 2015-06-24 塞卡解决方案有限责任公司 Diagnostic device, therapeutic device, and uses thereof
WO2020129147A1 (en) * 2018-12-18 2020-06-25 オリンパス株式会社 Endoscope light source device and endoscope having same
CN113164028A (en) * 2018-12-18 2021-07-23 奥林巴斯株式会社 Light source device for endoscope and endoscope having the same
JPWO2020129147A1 (en) * 2018-12-18 2021-11-11 オリンパス株式会社 Light source device for endoscopes, endoscopes having them, heat dissipation method
US11889989B2 (en) 2018-12-18 2024-02-06 Olympus Corporation Light source apparatus for endoscope, endoscope using the same and heat dissipation method

Also Published As

Publication number Publication date
JPS6262322B2 (en) 1987-12-25

Similar Documents

Publication Publication Date Title
US4523806A (en) Method and apparatus for restoring the light transmittance of an image-transmitting optical fiber bundle used in a fiber optic endoscope
US3494354A (en) Flexible endoscope for use in cancer diagnosis
US6716162B2 (en) Fluorescent endoscope apparatus
JP5225438B2 (en) Small endoscope system
US7582057B2 (en) Endoscopic system using an extremely fine composite optical fiber
US6510338B1 (en) Method of and devices for fluorescence diagnosis of tissue, particularly by endoscopy
US3327712A (en) Photocoagulation type fiber optical surgical device
US4072147A (en) Radiation endoscope
US8945195B2 (en) Small bowel endoscope of ileus tube type that enables laser inspection and therapy
AU664070B2 (en) Method for manufacturing a disposable arthroscopic probe
JP5520540B2 (en) Endoscope system
EP1408813A1 (en) Miniature endoscope system
US4569334A (en) Apparatus for restoring the light transmittance of an image-transmitting optical fiber bundle used in a fiber optic endoscope
WO2012050116A1 (en) Endoscope
US3456641A (en) Flexible endoscope for photographing diseased parts in cancer diagnosis
JPH09131305A (en) Fluorescence observation endoscope
JP2011104333A (en) Endoscope apparatus and distal end hood used for endoscope used therefor
JPH0412727A (en) Endoscope
JP4521528B2 (en) Endoscope system using ultrafine composite optical fiber
US6640131B1 (en) Device for photodynamic diagnosis or treatment
DE19548913A1 (en) Diagnostic device for photosensitised reaction in living tissue
JP2013202082A (en) Endoscope shielding light leakage from light guide fiber
JPS58123505A (en) Method and device for restoring light transmittance of optical fiber bundle for image transmission of endoscope
Goldman et al. Effect of the Laser on the Skin: III. Transmission of Laser Beams Through Fiber Optics
JP6463218B2 (en) Laser therapy apparatus and photodynamic therapy apparatus for esophageal cancer