JPS5812334B2 - Manufacturing method of hard sintered alloy - Google Patents

Manufacturing method of hard sintered alloy

Info

Publication number
JPS5812334B2
JPS5812334B2 JP55122956A JP12295680A JPS5812334B2 JP S5812334 B2 JPS5812334 B2 JP S5812334B2 JP 55122956 A JP55122956 A JP 55122956A JP 12295680 A JP12295680 A JP 12295680A JP S5812334 B2 JPS5812334 B2 JP S5812334B2
Authority
JP
Japan
Prior art keywords
powder
boride
alloy
iron
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55122956A
Other languages
Japanese (ja)
Other versions
JPS5655534A (en
Inventor
岡田毅
近藤嘉一
箕浦陽一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP55122956A priority Critical patent/JPS5812334B2/en
Publication of JPS5655534A publication Critical patent/JPS5655534A/en
Publication of JPS5812334B2 publication Critical patent/JPS5812334B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 本発明は鉄を含む硼化物または複硼化物を硬質相として
含み、Fe1原子の周期率表でV−a族金属のTi,Z
r,Hf,V−a族金属のV1Nb1Ta,V−a族金
属のCr,Mo1Wおよびこれらの混合物の1種または
2種以上の金属か合金あるいは、これらの金属を主成分
とする合金よりなる結合相を含む新規な硬質焼結合金の
製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention contains iron-containing borides or complex borides as a hard phase, and contains metals of group Va such as Ti and Z in the periodic table of Fe1 atoms.
A bond made of one or more metals or alloys of r, Hf, Va group metals V1Nb1Ta, Va group metals Cr, Mo1W, and mixtures thereof, or alloys containing these metals as main components. The present invention relates to a method for manufacturing a novel hard sintered alloy containing a phase.

本発明方法による合金は高速度鋼と同等、もしくはそれ
以上の高硬度を有し、かつ高い強度を有する緻密な焼結
合金であり、また常温および高温での耐食性、耐酸化性
も優れた特徴を有する。
The alloy produced by the method of the present invention is a dense sintered alloy with high hardness equal to or higher than that of high-speed steel and high strength, and also has excellent corrosion resistance and oxidation resistance at room and high temperatures. has.

更に、従来から実用きれているWC系超硬合金と比較し
て、匹敵し得る硬度と強度をもつ焼結合金を得ることが
可能であり、かつ資源的に豊富な鉄やクロム等の元素を
多く含むので安価に製造できる上に、比重は7〜7.5
程度でWC系超合金の約1/2であり、軽いという特徴
を有する。
Furthermore, it is possible to obtain a sintered alloy with comparable hardness and strength compared to WC-based cemented carbide, which has been in practical use for a long time, and it is possible to obtain a sintered alloy with comparable hardness and strength, and it is also possible to obtain a sintered alloy that has abundant resources such as iron and chromium. It can be manufactured at low cost because it contains a large amount, and its specific gravity is 7 to 7.5.
It is about 1/2 the weight of WC superalloys, and is characterized by its light weight.

上記の特徴から本発明方法による合金は、耐摩耗性、耐
食性、耐熱性、耐酸化性あるいはこれらの特性を具備し
た材料として、引き抜き等の各種ダイス、切削工具、切
断工具、としての打ち抜き金型やプレス金型、スリツタ
ーの刃やその他の刃物等の広範囲の用途に利用できる。
Due to the above characteristics, the alloy produced by the method of the present invention has wear resistance, corrosion resistance, heat resistance, oxidation resistance, or as a material with these characteristics, it can be used as a punching die for various dies such as drawing, cutting tools, cutting tools, etc. It can be used for a wide range of applications such as press molds, slitter blades, and other cutlery.

本発明方法による合金は40〜96重量係の硬質相と、
4〜60重量係の結含相よりなる。
The alloy according to the method of the invention has a hard phase having a weight ratio of 40 to 96%;
It consists of a condensed phase of 4 to 60% by weight.

前記硬質相は鉄硼化物、もしくはその一部を1種または
2種以上の非鉄元素を含む鉄系複硼化物、非鉄元素の硼
化物あるいは非鉄元素の複硼化物の1種または2種以上
で置き換えた少なくとも20重量係以上の鉄元素を含む
複硼化物である。
The hard phase is an iron boride, or a part thereof is an iron-based complex boride containing one or more non-ferrous elements, a boride of a non-ferrous element, or one or more complex borides of a non-ferrous element. It is a complex boride containing at least 20 or more parts by weight of the iron element.

ここでいう非鉄元素とはV−a族、v−a族、V−a族
に含まれるTi.Zr.Hf,V,Nb1Ta,Cr1
Mo,Wの各元素および■族のNi,CO、■一a族の
Mnおよび非金属元素である01N1Pである。
The non-ferrous elements mentioned here include Ti, which is included in the V-a group, the V-a group, and the V-a group. Zr. Hf, V, Nb1Ta, Cr1
These are the elements Mo and W, Ni and CO of group 1, Mn of group 1a, and 01N1P, which is a nonmetallic element.

またこれらの元素の他にもLi,Na,Kなどのアルカ
リ金属、Be,Mg.Ca1Sr,Baなどのアルカリ
士類金属、La1Ceなどのランタン系元素、ThvN
)vなどのアクチニウム系元素、Ru,Rhなどの■族
元素などの硼化物があり、これらの少量を添加し、また
は不純物として含まれることは可能であり、こりらが少
量含まれることをさまたげるものではない。
In addition to these elements, alkali metals such as Li, Na, and K, Be, Mg. Alkali metals such as Ca1Sr and Ba, lanthanum elements such as La1Ce, ThvN
) There are borides such as actinium-based elements such as V, group II elements such as Ru and Rh, and it is possible to add small amounts of these elements or to include them as impurities, and to prevent these from being included in small amounts. It's not a thing.

結合相はFe1Cr,Mo,W.Ti,Zr,Hf,V
1Nb,Ta,から選ばれる金属、あるいはこれらの合
金、またはこれらの金属または合金を主成分としNi,
Cu,Co,Mn,P1Cのうち1種以上を補助成分と
する合金の1種または2種以上よりなる。
The bonded phase is Fe1Cr, Mo, W. Ti, Zr, Hf, V
A metal selected from 1Nb, Ta, or an alloy thereof, or a metal or alloy containing these metals or alloys as a main component, and Ni,
It is made of one or more alloys containing one or more of Cu, Co, Mn, and P1C as an auxiliary component.

硬質相および結合相の範囲を上記の範囲に限定したのは
、硬質相が40重量φ未満では硬度が不足し、結合相が
4重量係未満では靭性が不足するからである。
The range of the hard phase and the binder phase is limited to the above ranges because if the hard phase is less than 40% by weight, the hardness is insufficient, and if the binder phase is less than 4% by weight, the toughness is insufficient.

また硬質相となる硼化物中の鉄元素の含有量は20重量
係以上、好ま1くは30重量係以上とすることが望まし
い。
Further, it is desirable that the content of the iron element in the boride serving as the hard phase is 20 parts by weight or more, preferably 10 parts by weight or more.

また鉄の上限は96.8重量係である。The upper limit for iron is 96.8 weight ratio.

この理由は、鉄を含有する複硼化物の焼結体が充分に高
い硬度と靭性を示すこと、CrやMoなどの適量添加に
よってステンレス鋼と同様の優れた耐食性と耐熱性、耐
酸化性を糸すこと、鉄を主とした硼化物粉末は工業的に
容易に作ることができること、鉄は資源的に豊富であり
、かつ最も安価であることによる。
The reason for this is that the sintered body of complex boride containing iron exhibits sufficiently high hardness and toughness, and that by adding appropriate amounts of Cr and Mo, it has excellent corrosion resistance, heat resistance, and oxidation resistance similar to that of stainless steel. This is because iron-based boride powder can be easily produced industrially, and iron is an abundant resource and is the cheapest.

焼結合金中のBの含有量は3〜20重量係、好ましくは
4〜17重量係である。
The content of B in the sintered alloy is 3 to 20 parts by weight, preferably 4 to 17 parts by weight.

B量が3%より少ないと、硬度が目的とする高硬度に達
しなくなる。
If the amount of B is less than 3%, the hardness will not reach the desired high hardness.

逆にB量が多過ぎると抗折力の低下をもたらし、充分な
靭性を得ることが困難になるので上限は20飴である。
On the other hand, if the amount of B is too large, the transverse rupture strength will decrease and it will be difficult to obtain sufficient toughness, so the upper limit is 20 pieces.

鉄一硼素系合金は溶解鋳造することが可能であるが、鋳
造された合金は非常に脆く、また熱間や冷間の加工が困
難であり、機械加工も困難であるために実用に供し難い
Iron-boron alloys can be melted and cast, but the cast alloys are extremely brittle, difficult to hot or cold work, and difficult to machine, making them difficult to put to practical use. .

また、ZrB2AMoB2(融点2100℃)、TiB
2(融点2800〜3000C)、WB(融点2400
〜2800℃)やNbB2(融点3000℃)などを硬
質相として多く含有する成分は通常の加熱溶解法では、
硼化物の融点が高過ぎるために、溶解法に困難が伴なう
In addition, ZrB2AMoB2 (melting point 2100°C), TiB
2 (melting point 2800-3000C), WB (melting point 2400C)
- 2800℃) and NbB2 (melting point 3000℃) as hard phases can be melted using normal heat melting method.
The melting point of boride is too high, making the dissolution process difficult.

本発明方法では、粉末冶金法を用い、焼結合金とするこ
とによって合金に充分な強度を与え、最終的な所望の形
状を持った硬質合金を容易に作ることができる。
In the method of the present invention, by using a powder metallurgy method and forming a sintered alloy, sufficient strength is imparted to the alloy, and a hard alloy having a final desired shape can be easily produced.

本発明の硬質合金は、鉄を含む硼化物合金粉末と金属粉
末を混合後、圧粉成型し、焼結して製造される。
The hard alloy of the present invention is manufactured by mixing iron-containing boride alloy powder and metal powder, compacting the mixture, and sintering the mixture.

焼結の際に硼化物相と金属相間に共晶液相を生じること
によって、緻密な焼結合金が容易に得られる。
By generating a eutectic liquid phase between the boride phase and the metal phase during sintering, a dense sintered alloy can be easily obtained.

したがって結合相の中には少量の硼素が含有されるもの
と考えられる。
Therefore, it is considered that a small amount of boron is contained in the binder phase.

また硼化物合金粉末中の金属成分を硼化物生成量よりも
過剰に含有させておけば、結合相としての金属粉末を添
加混合することなしに焼結して製造することも可能であ
る。
Furthermore, if the metal component in the boride alloy powder is contained in excess of the amount of boride produced, it is also possible to manufacture by sintering without adding and mixing metal powder as a binder phase.

本発明の硬質焼結合金の製造法において、合金中の硬質
相を形成する硼化物粉末は所望の元素を含有させた溶融
合金を細孔から落下させ、ノズルから噴出する高圧の水
流またはアルゴンガスや窒素ガスによって粉砕する、い
わゆる水アトマイズ法または、ガスアトマイズ法によっ
て作ることが工業的に有利であるが、その他の粉末製造
法を利用してもよい。
In the method for producing a hard sintered alloy of the present invention, the boride powder that forms the hard phase in the alloy is produced by dropping a molten alloy containing desired elements through pores, and then using a high-pressure water stream or argon gas jetted from a nozzle. Although it is industrially advantageous to produce powder by the so-called water atomization method or gas atomization method, in which the powder is pulverized using nitrogen gas, other powder production methods may also be used.

このようにして作られた硬質硼化物合金粉末に、結合相
を形成させる金属粉末を混合し.て圧粉成形して所望の
形の圧粉体とし、この圧粉体を真空中または水素ガスや
アルゴンガス等の還元性雰囲気や不活性雰囲気中で加熱
し、一部液相を生成させることによって、焼結体の密度
を上昇させる。
The hard boride alloy powder thus produced is mixed with metal powder to form a binder phase. The powder compact is compacted into a desired shape, and the compact is heated in a vacuum or in a reducing atmosphere such as hydrogen gas or argon gas, or in an inert atmosphere to partially generate a liquid phase. This increases the density of the sintered body.

しかしながら、TiB2やWBSNbB2、ZrB2、
やMoB2などの高融点の硼化物を多く含む硬質硼化物
合金粉末は、これらの合金を加熱溶解して、水やガスで
粉砕するアトマイズ法では、溶解温度を非常な高温とし
なければならないので、粉末の製造法に困難が伴なう。
However, TiB2, WBSNbB2, ZrB2,
For hard boride alloy powders containing a large amount of high-melting-point borides, such as MoB2 and MoB2, the melting temperature must be extremely high in the atomization method, in which these alloys are melted by heating and pulverized with water or gas. Difficulties arise in the method of manufacturing the powder.

その他の気相硼化法なども工業的な実施について問題が
ある。
Other methods such as vapor phase boronization also have problems in industrial implementation.

この点に関して、本発明者らは、低融点の鉄硼化物およ
び鉄系複硼化物合金粉末に、高融点硼化物を生成する元
素の粉末や金属粉末を添加し、混合して、圧粉、成形後
焼結し、焼結中こ高融点の硼化物を生成させ、同時に焼
結も完了させるととができるということを見出した。
In this regard, the present inventors added powders of elements and metal powders that produce high-melting-point borides to low-melting-point iron boride and iron-based complex boride alloy powders, mixed them, and compacted powder. It has been found that it is possible to sinter after molding, generate a boride with a high melting point during sintering, and complete sintering at the same time.

すなわち、製造が容易でかつ比較的低融点の鉄硼化物粉
末または鉄系複硼化物合金粉末に、Mo,W・・・・・
・合金粉末」とあるのを「鉄硼化物よりも高融点の硼化
物を生成し得るC粉末ミまたはMo1W,Cr,Ti,
Zr,Hf1V1Nb,Taから選ばれる金属粉末ある
いはCr,Mo,W,Ti1Zr.Hf,V,Nb,T
aおよびFeの合金粉末、もしくはCr’MO%W1T
t%ZrNHf,V、Nb,TaおよびFeを主成分と
しNi1Cu,Co,Mn,P,Cのうち1種以上を補
助成分とする合金粉末を添加混合し、圧粉、成形後焼結
する。
That is, Mo, W...
・Alloy powder” is replaced with “C powder, Mo1W, Cr, Ti, which can produce boride with a higher melting point than iron boride.
Metal powder selected from Zr, Hf1V1Nb, Ta or Cr, Mo, W, Ti1Zr. Hf, V, Nb, T
a and Fe alloy powder or Cr'MO%W1T
An alloy powder containing t%ZrNHf, V, Nb, Ta, and Fe as main components and one or more of Ni1Cu, Co, Mn, P, and C as auxiliary components is added and mixed, and the powder is compacted, shaped, and sintered.

焼結の際に鉄硼化物と高融点硼化物生成元素との反応に
より、高融点硼化物を生成させ、同時に液相を生じさせ
、がつ適量の結合相を残すように粉末の混合比を選ぶこ
とにより、高硬度で強度も高い、緻密な焼結合金を作る
ことができるのである。
During sintering, the mixing ratio of the powder is adjusted so that a high melting point boride is generated by the reaction between iron boride and a high melting point boride forming element, and at the same time a liquid phase is generated, leaving an appropriate amount of binder phase. By selecting the right material, it is possible to create a dense sintered alloy with high hardness and strength.

上記のようにして作った高融点硼化物を含有する焼結体
を低密度としておき、これを再粉砕して粉末とし、この
粉末に結合材となる金属または合金粉末を添加混合して
圧粉し、焼結して硬質焼結合金としてもよい。
The sintered body containing the high melting point boride prepared as above is made into a low-density powder, which is re-pulverized into a powder, and a metal or alloy powder as a binder is added to this powder and mixed to form a powder. However, it may be sintered to form a hard sintered alloy.

本発明方法による硬質焼結合金は、液相焼結によって焼
結体を高密度化するが、熱間静水圧プレス法、熱間プレ
ス法、熱間鍛造法や放電焼結法などの方法によって、あ
るいはこれらの方法を液相焼結法と併用する方法によっ
て高密度焼結体を作ることもできる。
The hard sintered alloy produced by the method of the present invention is produced by densifying the sintered body by liquid phase sintering. Alternatively, a high-density sintered body can be produced by combining these methods with a liquid phase sintering method.

また常温での耐食性、高温での耐酸化性、耐熱性をより
向上させるためには、硬質相にCrやMo,Ni等の合
金元素を含有させることが有効である。
Further, in order to further improve corrosion resistance at room temperature, oxidation resistance and heat resistance at high temperatures, it is effective to include alloying elements such as Cr, Mo, and Ni in the hard phase.

また結合金属材としてCr粉末やMo粉末を用いること
も同様に効果がある。
Furthermore, using Cr powder or Mo powder as the bonding metal material is similarly effective.

次に本発明を実施例により説明する。Next, the present invention will be explained by examples.

実施例 1 鉄、フエロポロンおよびフエ口クロムを原料として高周
波炉により溶解した溶湯を水圧70kV/CI!で水ア
トマイズにより粉砕して、B7.8重量係、Crll.
7重量係、残部は鉄および少量の不純物よりなる粒度8
0メッシュ以下の硼化物合金粉末を作成した。
Example 1 Molten metal made from iron, ferroporon, and ferrochrome as raw materials was melted in a high-frequency furnace at a water pressure of 70 kV/CI! It was crushed by water atomization to give B7.8 weight, Crll.
Particle size: 7 by weight, the remainder consisting of iron and a small amount of impurities
A boride alloy powder with a size of 0 mesh or less was created.

この硼化物合金粉末とCr粉末、Ni粉末およびW粉末
を90:5:3:2の重量係で配合し、ボールミルによ
り、エチルアルコール溶液を用いて、48時間湿式混合
微粉砕した後、真空乾燥をおこないA3t/cI!め成
形圧力で圧粉した成形体を、10””iiHgの真空中
で1170℃で3時間焼結した。
This boride alloy powder, Cr powder, Ni powder and W powder were mixed in a weight ratio of 90:5:3:2, wet mixed and pulverized for 48 hours using an ethyl alcohol solution in a ball mill, and then vacuum dried. Perform A3t/cI! The compact was compacted under a compacting pressure and sintered at 1170°C for 3 hours in a vacuum of 10''iiHg.

抗折力130kg/mm2,硬度HRA85を示す密な
焼結体が得られた。
A dense sintered body having a transverse rupture strength of 130 kg/mm 2 and a hardness of HRA 85 was obtained.

実施例 2 実施例1の鉄系複硼化物合金粉末90重量係に対し、N
i,1.3重量係、Mo0.6重量係、Cu1.6重量
係残部はFeよりなる鉄合金粉末を10重量係の割合で
配合し、ボールミルにより48時間湿式混合し微粉砕し
た後、真空乾燥した粉末を3t/cI/の成形圧力で圧
粉し、成形体を真空中1180℃において3時間焼結し
た。
Example 2 N
i, 1.3 weight ratio, Mo 0.6 weight ratio, Cu 1.6 weight ratio, iron alloy powder consisting of Fe is blended at a ratio of 10 weight ratio, wet mixed in a ball mill for 48 hours, finely pulverized, and then vacuum The dried powder was compacted at a compacting pressure of 3 t/cI/, and the compact was sintered in vacuum at 1180° C. for 3 hours.

抗折力120kg/mm2、硬度HRA83を示す緻密
な焼結体が得られた。
A dense sintered body having a transverse rupture strength of 120 kg/mm2 and a hardness of HRA83 was obtained.

実施例 3 実施例1の鉄系複硼化物合金粉末とCr粉末を90:1
0の重量係で配合し、ボールミルにより48時間湿式混
合微粉砕したあと、真空乾燥をおこなった粉末を3t/
cI1の成形圧力で圧粉し、成形体を真空中1200℃
において3時間焼結した。
Example 3 The iron-based complex boride alloy powder of Example 1 and the Cr powder were mixed in a ratio of 90:1.
The powder was mixed at a weight ratio of 0, wet mixed and pulverized for 48 hours using a ball mill, and then vacuum dried.
The powder is compacted at a molding pressure of cI1, and the molded body is heated at 1200°C in a vacuum.
It was sintered for 3 hours.

抗折力115ky/mm4、硬度HRA84を示す密な
焼結体が得られた。
A dense sintered body having a transverse rupture strength of 115 ky/mm4 and a hardness of HRA84 was obtained.

実施例 4 鉄、フエロボロン、フエ口クロムを原料として高周波溶
解炉で溶解した溶湯を水アトマイズ法により粉砕してB
16.6重量係、Cr9.5重量係、残部は鉄よりなる
組成と80メッシュ以下の粒度を有する鉄系硼化物合金
粉末を作成した。
Example 4 A molten metal made of iron, ferroboron, and ferrochromium as raw materials was melted in a high-frequency melting furnace and pulverized by water atomization.
An iron-based boride alloy powder was prepared having a composition of 16.6% by weight, 9.5% by weight of Cr, the balance being iron, and a particle size of 80 mesh or less.

この硼化■合金粉末とMo粉末、Cr粉末、Ti粉末お
よびFe粉末を重量係で45:27:12:7:9にて
配合し、ボールミルで48時間湿式混合粉砕した後、真
空乾燥をおこなった。
This boride alloy powder, Mo powder, Cr powder, Ti powder, and Fe powder were mixed in a weight ratio of 45:27:12:7:9, wet mixed and ground in a ball mill for 48 hours, and then vacuum dried. Ta.

得られた粉末を3t/im2の圧力で、圧粉成形し、真
空中1300℃において、2時間焼結した。
The obtained powder was compacted at a pressure of 3 t/im 2 and sintered in vacuum at 1300° C. for 2 hours.

抗折力100kg/rn4、硬度HRA89を示す緻密
な焼結合金が得られた。
A dense sintered alloy having a transverse rupture strength of 100 kg/rn4 and a hardness of HRA 89 was obtained.

実施例 5 実施例4の鉄系硼化物合金粉末とTi粉末およびFe粉
末を重量係で70:20:10に配合し、ボールミルで
48時間湿式混合粉砕したあと、真空乾燥をおこなった
Example 5 The iron-based boride alloy powder of Example 4, Ti powder, and Fe powder were mixed in a weight ratio of 70:20:10, wet mixed and ground in a ball mill for 48 hours, and then vacuum dried.

得られた粉末を3t/fflの圧力で圧粉成形し、13
00℃で2時間真空中で焼結した。
The obtained powder was compacted at a pressure of 3t/ffl, and
Sintering was carried out in vacuum at 00°C for 2 hours.

抗折力78kg/mm2,硬度HRA85の緻密な焼結
体が得られた。
A dense sintered body with a transverse rupture strength of 78 kg/mm 2 and a hardness of HRA 85 was obtained.

この焼結体をX線回析により同定した。This sintered body was identified by X-ray diffraction.

同定の結果はFe2BNTtB2、Tiと少量のFeの
存在が確認された。
The identification results confirmed the presence of Fe2BNTtB2, Ti, and a small amount of Fe.

FeBの存在は認められなかった。The presence of FeB was not recognized.

低融点の鉄硼化物であるFeB(融点1540C)を含
む鉄系硼化物合傘粉末と、Ti粉末が焼結中に反応し、
高融点硼化物であるTiB2(融点2980C)を生成
したことが確認された。
Iron-based boride compound powder containing FeB (melting point 1540C), which is a low melting point iron boride, and Ti powder react during sintering,
It was confirmed that TiB2 (melting point: 2980C), which is a high melting point boride, was produced.

実施例 6 実施例4の鉄系硼化物合金粉末とMo粉末、Cr粉末、
Zr粉末、Fe粉末およびNi粉末を重量係で48:2
5:10:7:8:2に配合し、ボールミルで48時間
湿式混合粉砕したあと、真空乾燥をおこなった。
Example 6 Iron-based boride alloy powder of Example 4, Mo powder, Cr powder,
Zr powder, Fe powder and Ni powder in a weight ratio of 48:2
The mixture was mixed in a ratio of 5:10:7:8:2, wet mixed and ground in a ball mill for 48 hours, and then vacuum dried.

得られた粉末を3t/fflの圧力で圧粉成形し、真空
中で1350℃において2時間焼結した。
The obtained powder was compacted at a pressure of 3 t/ffl and sintered in vacuum at 1350° C. for 2 hours.

抗折力68kg/mA2,硬度HRA90の焼結体が得
られた。
A sintered body having a transverse rupture strength of 68 kg/mA2 and a hardness of HRA90 was obtained.

実施例 7 実施例4の鉄系硼化物合金粉末と、MO粉末、Nb粉末
、Ti粉末、Cr粉末および低炭素鋼粉末を重量係で4
3:19:7:7:11:13に配合し、ボールミルで
48時間湿式混合粉砕したあと、真空乾燥をおこなった
Example 7 The iron-based boride alloy powder of Example 4, MO powder, Nb powder, Ti powder, Cr powder, and low carbon steel powder were mixed in a weight ratio of 4.
The mixture was mixed at a ratio of 3:19:7:7:11:13, wet mixed and ground in a ball mill for 48 hours, and then vacuum dried.

得られた粉末を3t/cm2の圧力で圧粉成形し、12
50Cで2時間真空中で焼結した。
The obtained powder was compacted at a pressure of 3t/cm2, and
Sintering was carried out in vacuum at 50C for 2 hours.

抗折力83kg/mi2、硬度HRA89の緻密な焼結
体が得られた。
A dense sintered body with a transverse rupture strength of 83 kg/mi2 and a hardness of HRA 89 was obtained.

実施例 8 実施例4の鉄系硼化物今金粉末とMo粉末、Ti粉末、
Cr粉末、低炭素鋼粉末およびTiC粉末を重量係で4
5:27:6:12:9:1に配合し、ボールミルで4
8時間湿式混合粉砕したあと真空乾燥をおこなった。
Example 8 Iron-based boride powder of Example 4, Mo powder, Ti powder,
Cr powder, low carbon steel powder and TiC powder by weight
Blend in the ratio of 5:27:6:12:9:1 and use a ball mill to
After wet mixing and pulverization for 8 hours, vacuum drying was performed.

得られた粉末を3t/fflの圧力で圧粉成形し、13
00℃で2時間真空中で焼結した。
The obtained powder was compacted at a pressure of 3t/ffl, and
Sintering was carried out in vacuum at 00°C for 2 hours.

抗折力81k9/mA2、硬度HRA88の緻密な焼結
体が得られた。
A dense sintered body with a transverse rupture strength of 81k9/mA2 and a hardness of HRA88 was obtained.

実施例 9 実施例4のFe−16.6%B−9.5%Cr粉末40
重量係にFe−60%Cr粉末23.4重量チ、Fe−
40%Ti粉末17.5重量係とFe−60%MO粉末
19.1重量係を配合し、ボールミルで48時間湿式混
合粉砕したあと真空乾燥をおこなった。
Example 9 Fe-16.6%B-9.5%Cr powder 40 of Example 4
Weight section: Fe-60% Cr powder 23.4 wt.
40% Ti powder (17.5% by weight) and Fe-60% MO powder (19.1% by weight) were blended, wet mixed and ground in a ball mill for 48 hours, and then vacuum dried.

得られた粉末を3t/crLの圧力で圧粉成形し、真空
中1300℃で1時間焼結した。
The obtained powder was compacted at a pressure of 3 t/crL and sintered at 1300° C. for 1 hour in vacuum.

抗折力95kg/mix,硬度HRA87の焼結体が得
られた。
A sintered body having a transverse rupture strength of 95 kg/mix and a hardness of HRA 87 was obtained.

密度はη.01g/criであった。The density is η. It was 01g/cri.

実施例 10 実施例4の鉄系硼化物合金粉末と、MO粉末、Cr粉末
、Ni粉末、Fe粉末、C粉末を重量係で45:28:
5:10:11.3:0.7に配合し、ボールミルで4
8時間湿式混合粉砕したあと、真空乾燥をおこなった。
Example 10 The weight ratio of the iron-based boride alloy powder of Example 4, MO powder, Cr powder, Ni powder, Fe powder, and C powder was 45:28:
5:10:11.3:0.7 and ball mill
After wet mixing and pulverization for 8 hours, vacuum drying was performed.

得られた粉末を3t/cn!の圧力で圧粉成形し、12
75℃で1時間真空中で焼結した。
3t/cn of the obtained powder! Compacting at a pressure of 12
Sintering was carried out in vacuum at 75° C. for 1 hour.

抗折力140kg/mm2。Transverse rupture strength 140kg/mm2.

硬度HRA88の緻密な焼結体が得られた。A dense sintered body with a hardness of HRA88 was obtained.

Claims (1)

【特許請求の範囲】 1 FeBおよび/またはFe2Bを主成分とする鉄硼
化物、FeおよびTi,Zr,Hf,V,Nb1Ta.
Cr,M6、W,Ni,Co.Mnから選ばれた非鉄元
素の1種以上から成る、鉄系複硼化物合金粉末に、これ
らの鉄硼化物よりも高融点の硼化物を生成し得るC粉末
または、Cr1Mo1W,Ti,Zr,Hf,V,Nb
,Taから選ばれる金属粉末あるいはCr1Mo1W,
Ti,Zr,Hf1V.Nb,TaおよびFeの合金粉
末、もしくはCr,Mo,W1Ti,Zr1Hf.V、
Nb,TaおよびFeを主成分としNi.Cu,Co,
Mn.P,Cのうち1種以上を補助成分とする合金粉末
の1種または2種以上を混合し、該混合時に焼結後の硬
質焼結合金の硬質相が40〜96重量チになる範囲の混
合比とし、湿式法によって機械的に微粉化混合をおこな
った粉末を、圧縮成形した後、真空中、還元ガス中ある
いは不活性ガス中で加熱して焼結し、該焼結中の反応に
より高融点、高硬度の硼化物または複硼化物を形成させ
、同時に液相焼結をおこなうことを特徴とする耐摩耗性
を有する該硬質焼結合金の製造法。 2 FeBおよび/またはFe2Bを主成分とする鉄硼
化物、FeおよびTi,Zr,Hf,V,Nb1Ta,
Cr,Mo,W1Ni,Co,Mnから選ばれた非鉄元
素の1種以上から成る鉄系複硼化物の化学成分になるよ
うに調整して加熱落解した溶湯を、高圧の水流または不
活性ガス流によって粉砕して粉末とし、該粉末に特許請
求の範囲第1項記載の結合相を形成させるFe1Cr,
Mo,W,Ti,Zr1Hf,V,Nb,Taから選ば
れる金属粉末、あるいはこれらの合金粉末、またはこれ
らの金属または合金を主成分としNi,Cu,Co,M
n,P,Cのうち1種以上を補助成分とする合金粉末の
1種または2種以上を混合し、該混合時に焼結後の硬質
焼結合金の硬質相が40〜96重量係になる範囲の混合
比とし、湿式法法によって機械的に微粉化混合をおこな
った粉末を、圧縮成形した後、真空中、還元ガス中ある
いは不活性ガス中で加熱することによって液相焼結をお
こなわせることを特徴とする耐摩耗性を有する該硬質焼
結合金の製造法。
[Claims] 1 Iron boride containing FeB and/or Fe2B as a main component, Fe and Ti, Zr, Hf, V, Nb1Ta.
Cr, M6, W, Ni, Co. C powder or Cr1Mo1W, Ti, Zr, Hf, which can produce a boride with a higher melting point than these iron borides, is added to the iron-based complex boride alloy powder consisting of one or more non-ferrous elements selected from Mn. ,V,Nb
, Ta or Cr1Mo1W,
Ti, Zr, Hf1V. Alloy powder of Nb, Ta and Fe, or Cr, Mo, W1Ti, Zr1Hf. V,
Ni. Cu, Co,
Mn. One or more types of alloy powders containing one or more types of P and C as auxiliary components are mixed, and the hard phase of the hard sintered alloy after sintering at the time of mixing is in the range of 40 to 96 wt. After the powder is mechanically pulverized and mixed using a wet method, it is compressed and then heated and sintered in a vacuum, reducing gas, or inert gas. A method for producing a hard sintered alloy having wear resistance, which comprises forming a boride or complex boride with a high melting point and high hardness, and simultaneously performing liquid phase sintering. 2 FeB and/or Fe2B-based iron boride, Fe and Ti, Zr, Hf, V, Nb1Ta,
The molten metal, which has been heated and melted and adjusted to have a chemical composition of iron-based complex boride consisting of one or more nonferrous elements selected from Cr, Mo, W1Ni, Co, and Mn, is heated and melted using a high-pressure water stream or inert gas. Fe1Cr, which is ground into a powder by means of a flow, and which powder forms a binder phase according to claim 1;
Metal powder selected from Mo, W, Ti, Zr1Hf, V, Nb, Ta, or an alloy powder of these, or a powder containing these metals or alloys as a main component and containing Ni, Cu, Co, M
One or more types of alloy powders containing one or more types of n, P, and C as auxiliary components are mixed, and at the time of mixing, the hard phase of the hard sintered alloy after sintering becomes 40 to 96% by weight. The powder is mechanically pulverized and mixed using a wet method at a mixing ratio within a range, and after compression molding, liquid phase sintering is performed by heating in vacuum, reducing gas, or inert gas. A method for producing the hard sintered alloy having wear resistance, characterized by:
JP55122956A 1980-09-06 1980-09-06 Manufacturing method of hard sintered alloy Expired JPS5812334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55122956A JPS5812334B2 (en) 1980-09-06 1980-09-06 Manufacturing method of hard sintered alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55122956A JPS5812334B2 (en) 1980-09-06 1980-09-06 Manufacturing method of hard sintered alloy

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP49129541A Division JPS5155708A (en) 1974-11-12 1974-11-12 Koshitsushoketsugokin

Publications (2)

Publication Number Publication Date
JPS5655534A JPS5655534A (en) 1981-05-16
JPS5812334B2 true JPS5812334B2 (en) 1983-03-08

Family

ID=14848780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55122956A Expired JPS5812334B2 (en) 1980-09-06 1980-09-06 Manufacturing method of hard sintered alloy

Country Status (1)

Country Link
JP (1) JPS5812334B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950156A (en) * 1982-09-14 1984-03-23 インガ−ソル・ランド・カンパニ− Sintered forged products and manufacture

Also Published As

Publication number Publication date
JPS5655534A (en) 1981-05-16

Similar Documents

Publication Publication Date Title
US3999952A (en) Sintered hard alloy of multiple boride containing iron
US4673550A (en) TiB2 -based materials and process of producing the same
US4194900A (en) Hard alloyed powder and method of making the same
US3838981A (en) Wear-resistant power metallurgy nickel-base alloy
US5194237A (en) TiC based materials and process for producing same
US4270952A (en) Process for preparing titanium carbide-tungsten carbide base powder for cemented carbide alloys
CN112063869B (en) Preparation method of hydrogen-assisted powder metallurgy titanium-based composite material
US4722826A (en) Production of water atomized powder metallurgy products
CN107914019B (en) A kind of iron nickel Al-based agent diamond tool and preparation method thereof
JPS6289803A (en) Powdery particle for fine granular hard alloy and its production
GB2074609A (en) Metal binder in compaction of metal powders
US3720990A (en) Liquid phase sintered molybdenum base alloys
US5439499A (en) Cermets based on transition metal borides, their production and use
US4263046A (en) Sinterable mass for producing workpieces of alloy steel
JPS5812334B2 (en) Manufacturing method of hard sintered alloy
RU2739898C1 (en) Method of producing composite metal alloy containing titanium carbide
CN101649398A (en) Method for synthesizing TiCx particle enhanced nickel base composite material by reaction in-situ
JPS5857502B2 (en) Sintered material with toughness and wear resistance
JPS59118852A (en) Composite high speed steel of sintered hard alloy and its production
JPS63286549A (en) Nitrogen-containing titanium carbide-base sintered alloy having excellent resistance to plastic deformation
CN115323244B (en) High-entropy alloy material and preparation method thereof
US4092156A (en) Process for preparing titanium carbide base powder for cemented carbide alloys
JPH11323401A (en) Titanium boride-dispersed hard material
JPH0635637B2 (en) Diamond composite high speed tool steel sintered body and its manufacturing method
JPS6119593B2 (en)